Containerization of HSI/HTAR Clients at NERSC

Melinda Jacobsen Rosario Martinez Storage Systems Group October 13, 2021

Introduction

- Containers are increasing in use in modern system architectures
- Perlmutter is the new NERSC computational system
 - Will feature containerized user environments with Kubernetes orchestration
 - Container instances will manage the data transfer process
 - We will look at the design for HPSS access on the system
- Some users require special distribution of HPSS client software
 - Distributing a client image alleviates support and maintenance
 - We will cover results in this area

Container concepts

- Container
 - Lightweight package of an application and its dependencies
 - Makes code portable
 - Can run many use less RAM than a VM
 - Can use host network or its own network namespace

Reference: Julia Evans, "containers vs. VMs", https://twitter.com/b0rk/status/1237744128450072578

Office of

Science

Container concepts

- Container image
 - Executable that creates a container
 - Supports a reproducible container environment
 - Can be stored in a container registry for download
- Container orchestration
 - Microservice: Service that runs in its own container
 - Scale, schedule, and monitor a large number of containers
 - Decides where to run the containers

HSI/HTAR as a microservice

- The new Perlmutter computational system will run a Cray OS featuring containerized instances for managing the data transfer process over a high speed network
- Preparation for integration on Perlmutter:
 - 1. Demonstrate HSI/HTAR control interface can run in a **container** and move data
 - 2. Provide a programmatic interface via **REST API** for sending commands to HSI/HTAR in the container

U.S. DEPARTMENT OF

BERKELEY LAB

Office of

HSI/HTAR in a container

Create an HSI/HTAR client docker image

Office of

Science

Container networking options

- Research how containerized HSI/HTAR control communicates with HSI GWD
- Looked at host and bridge networking

	HSI parallel mode	HSI firewall mode	HTAR
bridge	incomplete	Y	Ν
host	Y	unknown	Y

BERKELEY LAB

U.S. DEPARTMENT OF

Office of

- bridge networking
 - Containers are assigned a private IP
 - Host and containers use mapped ports for communication
- host networking
 - Removes any network isolation between host and container

HSI in parallel mode with bridge networking

Neither HSI nor HTAR worked as-is

	HSI parallel mode	HSI firewall mode	HTAR
bridge	incomplete	Y	N
host	Y	unknown	Y

- Looked at this early on when Perlmutter networking was unknown since it had the best chance of working in most environments
 - Development on HSI was prioritized but not completed
 - No further work was done with HTAR
- The next slides cover what we learned for this networking option

HSI in parallel mode with bridge networking: Port forwarding

- Docker can forward a range of ports on the host to an HSI container
 - HSI containers can be created from the same image
 - A container is assigned a unique range of ports on the host when it is started

docker run \
-p \$CONTAINER_PORT_RANGE:\$HOST_PORT_RANGE \
-e HPSS_PFTC_PORT_RANGE=\$HOST_PORT_RANGE

• HPSS will connect back to the client using the host port(s) that will forward to the nominal range in the container. Simple example:

Office o

BFRKFI FY I AB

Container instance	HOST_PORT_RANGE	CONTAINER_PORT_RANGE
1	7000 - 7009	7000 - 7009
2	7010 - 7019	7000 - 7009
10	7090 - 7099	7000 - 7009

HSI in parallel mode with bridge networking: Client control hostname

- An HPSS mover needs to connect back to the host machine of the container
 - The HSI client must send the host IP in the IOD message, so the movers know how to connect back
 - Environment settings can be passed to the container to set this

docker run

-e HPSS_HOSTNAME=\$HOSTNAME

- -e HPSS_CTL_HOSTNAME=\$HOSTNAME
- The client contains logic that forces the host IP back to the container IP
 - The IOD message contains the container IP
 - Calls to getsockname or hpss_net_getsockname were undoing the host IP override. This logic helps secure a transaction but is not able to support this use case.
 - o This work was not completed because new directions were identified

HSI in firewall mode with bridge networking

HSI worked as-is

	HSI parallel mode	HSI firewall mode	HTAR
bridge	incomplete	Y	Ν
host	Y	unknown	Y

Does not help with integration onto Perlmutter but helpful to know for other possible uses

Office of

HSI in parallel mode with host networking

• HSI and HTAR worked as-is

	HSI parallel mode	HSI firewall mode	HTAR
bridge	incomplete	Y	Ν
host	Y	unknown	Y

- Perlmutter will support networking similar to host: macvlan
 - A container instance will be assigned a unique IP address on the high speed network

User application with host networking

NERSC groups using HSI/HTAR are no longer tied to RHEL 7

native

• With host networking enabled and no firewall, performance is close to native

podman

BERKELEY LAB

Office of

Science

ENERG

Work performed by Thomas Davis, Operations Technology Group, NERSC

HSI/HTAR client containers on Perlmutter

CURRENT "Bare Metal" installation

- User can ssh to Login Node
- User runs HSI and HTAR

Perlmutter User Access Node

A key benefit of separating login instances from HSI/HTAR instances: Enables access methods other than simply ssh (e.g. automated workflow,

jupyter notebook)

Office of

Science

PLANNED FOR SPRING 2022 Containerized Clients

- User can ssh to a Login Container
- Login Container may start one or more HPSS client containers downstream depending on need

Data staging for computational workflows

Design input from Lisa Gerhardt, Data & Analytics Services Group, NERSC

BERKELEY LAB

Office of

HPSS client REST API

- A REST API will allow users or system to automatically stage or store data
 - Frontend equivalent to the CLI
 - Data movement will be performed by the client and not use http
- As a starting point, five operations will be handled:
 - Get one or more files
 - **Put** one or more files
 - **Delete** one or more files
 - **List** a directory or files
 - **Status** of the operation, e.g., complete, error, in progress, etc.
- Will look at S3 interface, HSB, and Globus REST APIs for potential reuse

Future path

- Spring 2022 timeframe
 - Ensure clients can run in Perlmutter's Kubernetes environment
 - Develop initial REST API frontend for HSI/HTAR
 - Integration and performance testing
- Longer term
 - Incorporate HPSS-aware features into workflow
 - Which media files are on, ordering/sorting, etc.
 - Evaluate other HPSS clients and REST APIs
 - S3/MinIO + HPSSFS (CR 563 in progress)
 - HSB
 - Globus
 - Quaid
 - Others
 - Key consideration: Much of NERSC data is stored using HTAR

Office o

Next: Update from IBM

