Tutorial to get started with Codee

Automated Code Inspection for Performance

Shift Left Performance

codee

Codee Static Code Analyzer

Codee implements the first static code analysis solution specifically designed to automate
performance optimization for C/C++/Fortran applications

<

Quick Assessment Pinpoint Opportunities Better Testing & Comprehensive Save Development
via Al Analysis of to Optimize Quality Assurance and Accurate Costs and Empower
Source Code Performance: through Performance Reporting Developers to Deliver
Speed, Size & Energy Sanity Checks Performant Code

Benefits Cost: Extends hardware lifespan and saves development costs
Time: Decreases development hours shortening time-to-market
COdee Expertise: Reduces dependability on expert developers
Energy: Facilitates development of greener applications

Shift Left Performance

s7codee

Codee & Ecosystem

Alternatives:

s7codee

Do nothing

Rely on the compiler

Manual process by experts in
performance

Manual process by external

consultancy services

fast

Performance

slow

Codee cuts down
months/weeks to minutes/seconds

Codee brings
2x-40x
faster code

COMPILERS

EE see
[| | .
NEC Microsoft Creentills

—
A e arm

NVIDIA.

pre)
intel ‘,, FUJITSU

manual Automation automatic

Proof points of Codee | Verifiable & reproducible performance gain

@ : .
I/COdee Benchmarking the impact of Codee on the performance

achievable in Perimutter at NERSC Benchmarking on Perlmutter using GCC 11.2 (*)

$ CC=gcc RUNS=10 RUNS_WARMUP=5

About Perimutter About Codee e e e f.?czg“ RUNS=1@ RUNS_WARMUP=5 ./benchmark-omp-multi.sh

Perlmutter, an HPE Cray EX supercomputer delivered Codee is a software development platform that ;xi;;orithm Original Optimized
to the National Energy Research Scientific Computing provides automated code inspection specifically " = -

3 a = & AES-XTS-128 487183 KiB/s 662658 KiB/s 36.02%

Center, is a heterogeneous system with both designed to improve the performance of C/C++/Fortran AES-XTS-256 437422 KiB/s 554505 KiB/s 26.77%

GPU-accelerated and CPU-only nodes. applications. It provides a systematic predictable AES-CBC-128 601075 KiB/s 791688 KiB/s 31.71%

. I ht timiz: ++/Fortran I for AES-CBC-192 551989 KiB/s 711305 KiB/s 28.86%

The HPE Cray system integrates NVIDIA A100 GPUs, \al'?:t:?cet e(r)'nv(i)r%nmeﬁt C/exFortran ‘sourcescoderfo AES-CBC-256 510423 KiB/s 644649 KiB/s 26.30%

AMD "Milan" EPYC CPUs, a HPE Slingshot high-speed 9 : AES-CMAC-128 572083 KiB/s 777086 KiB/s 35.83%

i : 5 e e AES-CMAC-192 561390 KiB/s 698712 KiB/s 24.46%

network, and a 35 petabyte - all FLASH - scratch file Codee discovers performance optimization AES-CMAC-256 514169 KiB/s 631578 KiB/s 22.83%

system. opportunities in C/C++/Fortran source code, enabling AES-CMAC-PRF-128 571208 KiB/s 772162 KiB/s 35.18%

to benefit from the memory efficiency, vectorization, ARIA-CBC-128 134467 KiB/s 138524 KiB/s 3.02%

Perlmutter is designed to meet the emerging
simulation, data analytics, and artificial intelligence
requirements of the scientific community.

htt;gs:((www.nerscAgovLsystemsmerlmutter(
https://perimutter.carrd.co/

ARIA-CBC-192 118090 KiB/s 121049 KiB/s 2.51%

multithreading and offloading capabilities available in i s 104817 KiB/s 106999 KiB/s 2.88%

modern computers.

(*) Benchmarking conducted on Perimutter using Codee 1.6.0-186 (Jan 12, 2023) on a remote machine equipped with AMD EPYC 7763 64-Core CPU and SUSE Linux Enterprise Server
15 SP4 Operating System and GCC 1.2 compiler. Performance measured by running 5 warm-up runs and calculating the average of 10 runs, using Slurm (salloc --nodes 1--qos

Reproduce the impact on the performance of selected 2 1
interactive --time 01:00:00 cpu . The compiler levels are as follows: MBedTLS release with -02 and MULTI benchmarks with -03.

codes representative of embedded and
high-performance computing benchmarks. Follow the
instructions in the following GitHub repository:

About NERSC

https://aithub.com/teamappentra/performance-demos, . o .
The National Energy Research Scientific Computing

Center (NERSC) is a U.S. Department of Energy Office
of Science User Facility that serves as the primary
high-performance computing center for scientific
research sponsored by the Office of Science. Located
at Lawrence Berkeley National Laboratory, the NERSC
Center serves more than 8,000 scientists at national
laboratories and universities researching a wide range
of problems in combustion, climate modeling, fusion
energy, materials science, physics, chemistry,
computational biology, and other disciplines.

www.codee.com | info@codee.com | +34881015556

s7codee

How does Codee Static Code Analyzer work?

Application code

Xxy

Quick assessment

Checks report (’)
Mo

pwreport --screening

|

Screening report

from Codee

Support for target environments

pureport --checks (operating system, compiler, hardware)

|

Integration with DevOps CI/CD

Checks report
from Codee

s7codee

First, Produce the Codee Screening Report

$ pwreport --screening --config build/compile_commands.json --show-progress

Lines of code Optimizable lines Analysis time # checks Effort Cost Profiling

105 n/a
Guided 136 137 45 n/a n/a

Codee mode : Available Codee mode for the loop:

- Auto: Codee optimizes the code automatically
- Guided: Codee identifies the performance issue, and the programmer must apply the changes to the code

Use --checks to find out details about the detected checks:
pwreport --checks --config build/compile_commands.json --show-progress

370 files successfully analyzed and @ failures in 1 m 39 s

s7codee

Second, Produce the Codee Checks Report

$ pwreport --checks --verbose library/aes.c:mbedtls_aes_crypt_xts --config build/compile_commands.json

CHECKS REPORT

library/aes.c:1162:9 [PWR053]: consider applying vectorization to forall loop

Suggestion: use pwdirectives to automatically optimize the code

Documentation: https://www.codee.com/knowledge/pwre53

AutoFix (choose one option):
* Using OpenMP pragmas (recommended):
pwdirectives --vector omp --in-place library/aes.c:1162:9 --config build/compile_commands. json
* Using Clang compiler pragmas:
pwdirectives --vector clang --in-place library/aes.c:1162:9 --config build/compile_commands. json
* Using GCC pragmas
pwdirectives --vector gcc --in-place library/aes.c:1162:9 --config build/compile_commands. json
* Using ICC pragmas:
pwdirectives --vector icc --in-place library/aes.c:1162:9 --config build/compile_commands. json

library/aes.c:1202:9 [PWR024]: the loop is currently not in OpenMP canonical form
Suggestion: rewrite the loop in order to comply with the OpenMP Canonical Loop Form
Documentation: https://www.codee.com/knowledge/pwr024

1 file successfully analyzed and 0 failures in 597 ms

[‘/Codee Shift Left Performance | Automated Code inspection for Performance CONFIDENTIAL 7

Open Catalog of Performance Optimization Best Practices

s7codee

KNOWLEDGE BASE
Catalog of best practice rules for
performance

Levera

Discov

n of C/C++/Fortrar

Recommendations

Defects

PWDO002: U

PWRO005: Disable default OpenMP scoping

PWRO032: Avoid calls to mathematical functions
with higher precision than required

PWRO039: Consider loop interchange to improve
the locality of reference and enable vectorization

Issue
Ineffcient mat ern deected that can be mproved through loop
i P i loop W o
Relevance
 low performance on modern
in. erating over them column ise
Nested loops that terate over matrices neffciently can be optim plying loop inte nge, the
incficient ess parternis replaced with a more effcient one. Often,loop interchange enables ation of the innermost
loop which additonally improves performance.
Actions
Interchange inner and outer loops in the aop nest
Note
Loop iterchange can be performed only on perfectly nested loops, . on loop: allthe s are i the body of the
innermast loop. I the loops are not perfectly nested, it i often possible to ctly nested through refactoring,
Code example
3
The following code shows two nested loops:
3 & b

The malrix s accessed column:

hich s inefficient. To fx it we perform the loop interchange of logps over 1 and 3. Alter the

intercha < the outer loop and loop over becomes the inner loop.

nge, the loop over § becor

Afterthis modification, the access to matrix ais no longer column-wise, but row-ise, which is much faster and more efficient,

Additionaly,the compiler can vectorize the inner loop.

Related resources

10: Consider loop iling to impr

0: Avoid column-major array

https://www.codee.com/knowledge/

Codee goes beyond the State of the Art: Loop Interchange

s7codee

Why is Loop Interchange important?

Loop interchange is a performance optimization
technique that is used to improve the loop’s memory
access pattern and potentially enable vectorization.
Loop interchange if applied correctly can yield a
huge performance improvement.

Loop interchange as an optimization technique is
applicable to loop nests. A loop nest consists of two
or more nested loops. After loop interchange, a loop
that is once outer has now become inner, and the
loop that was once inner has become outer.

A ion of Loop Inter

Loop interchange is not automated in current tools,
so Codee brings new innovation in this space. Codee
has built-in support to detect loop nests where Loop
Interchange can bring a huge performance gain
through PWRs (PWR039, PWR042, PWR043), and it
is work-in-progress to fully automate source code
rewriting. Consider the implementation of the
matrix-matrix multiplication shown below:

Performance - Portability across compilers through
Loop Interchange

void matmul(int n, double *A, double *B, double *C) {
for (int i = 0; i < n; ++i)

for (int j j < n; ++j)
{

double
for (int k = 5 k < n; ++k)
c+=A[i*n+k]*Blk*n+jl;

ClL*n+ 9] +=c;

Running Codee for this code, the PWR042 is found
and reported to the user. After rewriting the source
code according to best practice, the following loop is
created:
void matmul(int n, double *A, double *B, double *C) {
for (int i icn; 4+
for (int k = ; k < n; ++k)

for (int j = 0; j < n; ++j)
{

it 4] 4= ALL* 0+ K] BIK * 0+ 5l
}

Note that after applying loop interchange, the
ordering of the nested loops changes from IJK to IKJ.
Also it favours sequential memory accesses in the
innermost loop, which enables its vectorization.

Performance Evaluation

The performance improvement achieved through loop
interchange in the example matrix-matrix multiplication
code is evaluated on x86 and Arm processors, resulting

in 2x-3x faster code.

Before

Environment Codee

After Codee
Linux Arm second:

Speedup

48.73%
(1.95x)

42.66%
(1.74%)

49.15%
357.39 18173 (1.97%)

329.59 188.97

Codee brings 2x faster code on Arm environments
through loop interchange and vectorization

Before
Codeo | AfterCodee

scond!

Environment

Linux x86_64 Speedup

64.86%
(2.85x)

64.86%
8.757 3.457 (2.85x)

64.86%

7342 3.261 (2.85x)

Codee brings 3x faster code on x86 environments
through loop interchange and vectorization

From the technology perspective, Codee automates
loop interchange and enables the efficient

vectorization of the innermost loop. Note that GNU,
LLVM and Intel compilers do not apply loop interchange
in the maximum performance optimization level setup.
In practice, this is a demonstrator of Codee advancing
the state-of-the-art of compilers.

GCCT1 CLANG14 armclang icc

Innermost loop
matmul_naive:35

Loop
interchange

NO NO
(costmodel) | (cost model)

vectorization

Loop peeling YES

NO NO
interleaving (costmodel) | (cost model)

Loop tumed
into non-loop

Download link: https://www.codee.com/wp-content/uploads/2023/01/Leaflet-Loop-Interchange.pdf

s7codee

https://www.codee.com/wp-content/uploads/2023/01/Leaflet-Loop-Interchange.pdf

Codee Static Code Analyzer (& Coding Assistant)

Codee also implements a coding assistant to help develop performance-portable C/C++/Fortran code
for GPU-based supercomputers using the industry standard compiler directives

Code rewriting features for Annotation of source code Annotation of source code for
C/C++/Fortran source code: for offloading with compiler single-core optimization:
guided & auto modes directives: ISA extensions, memory, control
OpenMP & OpenACC & vectorization

7 E

B

Annota?ion of source che Analysis of the performance Analysis of memory usage:
for multi-core optimization: optimizations reported by compilers: memory access patterns,
OpenMP multithreading GCC, LLVM, ICC, CL data scoping, memory footprint

s7codee

How to enable Codee’s coding assistant capabilities?

Application code

Quick assessment

pwreport --screening

—

< Checks report
Screening report
from Codee ﬂ
. Support for target environments
pwreport --checks (operating system, compiler, hardware)

Checks report Integration with DevOps CI/CD

from Codee

|

pwdirectives

E§@$|

New optimized code

Optimized application code
generated with Codee

s7codee

How to enable Codee’s coding assistant capabilities?

$ pwreport --screening --config build/compile_commands.json --verbose library/aes.c

Target Lines of code Optimizable lines Analysis time # checks Eff Cost Profiling

111 h 3632€ n/a

Codee mode File :function Multi Offload

library/aes.c
| - :mbedtls_aes_crypt_cbc
“- :mbedtls_aes_crypt_xts

Codee mode : Available Codee mode for the loop:
- Auto: Codee optimizes the code automatically
- Guided: Codee identifies the performance issue, and the programmer must apply the changes to the code

You can automatically vectorize every vectorizable loop of one function with:
pwdirectives --auto --simd omp --in-place --config build/compile_commands.json library/aes.c

1 file successfully analyzed and 0 failures in 481 ms

s7codee

Third, automatically rewrite & verify the optimized code

$ pwdirectives --auto --simd omp --in-place --config build/compile_commands.json library/aes.c:mbedtls_aes_crypt_xts
C target compiler: /usr/bin/gcc, version 9.4.0
GCC-9.4.0 Codee 1.6.0 Verified by Codee

library/aes.c

| - mbedtls_aes_crypt_xts: : (outr)
mbedtls_aes_crypt_xts:1127: n/a no (outr)
mbedtls_aes_crypt_xts:1129: n/a no (outr)
mbedtls_aes_crypt_xts:1130: n/a no (outr)
- mbedtls_aes_crypt_xts:1131: n/a no (outr)
- mbedtls_aes_crypt_xts:1147:5 n/a no (outr)
| - mbedtls_aes_crypt_xts:1162:9 n/a auto vectorized by GCC-

C-9.4.0
“- mbedtls_aes_crypt_xts:1169:9 n/a auto vectorized by GCC-9.4.0
- mbedtls_aes_crypt_xts:1194:9 no (othr) auto vectorized by GCC-9.4.0
- mbedtls_aes_crypt_xts:1202:9 no (othr) yes

mbedtls_aes_crypt_xts:1211:9 auto skipped

Loop : loop name following the syntax <file>:<function>:<line>:<column>

Codee 1.6.0 - Codee vectorization status:

skipped: the target compiler vectorized the loop automatically, so that Codee skipped it

auto: Codee is able to automatically rewrite the loop using SIMD pragmas

yes: Codee detect it as a SIMD opportunity, but it is unable to rewrite it automatically

no: Codee vectorization cost model determines that the loop is not a worthwhile SIMD opportunity. The reason is
indicated in brackets (same options as compiler column)

Verified by Codee - Explicit vectorization profitable (‘vectorized by GCC-9.4.8' when Codee successfully produced an
explicit omp|gcc|clang SIMD pragma that resulted in automatic compiler vectorization, ‘not vectorized by GCC-9.4.0' for
all the other cases)

1 file successfully analyzed and @ failures in 656 ms

s7codee

Challenges in the development of GPU-enabled code

Find Optimize Identify Exploit massive Minimize data Minimize data Identify
Challenges opportunities memory layout defects in parallelism transfers transfers auxiliary
for for offloading for data data transfers through loop across through functions to be
GPU acceleration transfers nest collapsing consecutive convergence offloaded

loop nests loops

MATMUL

Pl

LULESHmk

MATMUL PWDO0O06

ATMUX X

ZPIC X X X X X

Opportunities for
vectorization

MBEDTLS

NUCCOR X

Your code! Probably all of these challenges apply, and even more!

I?COdee Shift Left Performance

Demo #1: Codee Static Code Analyzer & Coding Assistant

e CodeeCLI: pwreport --screening
pwreport --checks
pwreport --checks --verbose

pwdirectives
e Environment: Perimutter with Nvidia/GNU compilers
e Application: MATMUL-C (matrix-matrix multiplication)

e Takeaways:
Codee found 8 checks applicable to MATMUL, out of 50+ checks available in the open catalog.

Codee reports checks to help enforcing performance optimization best practices on the code,
related to memory efficiency, offloading, multi-threading and vectorization.

First, enforce single-core optimations through Loop Interchange (PWR039).

Second, enable offloading to GPU using OpenACC and OpenMP.

Benchmarking on Perlmutter: Reduce runtime from 39.6 seconds down to 5-6 seconds.
Overall speedup on Perimutter GPUs is 6x-8x (using OpenACC and OpenMP).

Codee helps creating performance-portable code across compilers.

s7codee

% www.codee.com
o info@codee.com

= Subscribe: codee.com/newsletter/

codee o Spain

Automated Code Inspection for Performance

¥ codee com

in /codee-com/

http://www.codee.com
mailto:info@appentra.com
https://www.appentra.com/blog/newsletter/

