April 24th, 2023

Codee Training Series
April 25-26, 2023

s7codee

Shift Left Performance

Automated Code inspection for Performance

Identifying defects in MATTiX
MULtiplication on the GPU with
OpenMP/OpenACC

Goals:
e Produce an OpenMP version for GPU using the “map” clause (do not use “enter/exit data”)

e |dentify the defect PWDOOG6 in the OpenMP version for GPU using “map”
e Build & run an OpenMP code on the GPU (for problem size N=1500)

First consideration about using Codee at NERSC

s7codee

First, remember to load the Codee module
$ module load codee

The flag --help lists all the options available in the Codee command-line tools
$ pwreport --help

$ pwloops --help

$ pwdirectives --help

You can run Codee command-line tools on the login nodes (no need to run them
on the compute nodes)

Build and run the example codes on the compute nodes using the batch scripts
o Scripts tuned to use the appropriate reservations: codee_day1, codee_day?2

Remember to check the open catalog of rules for performance optimization:

https://www.codee.com/knowledge/

Shift Left Performance

https://www.codee.com/knowledge/

The source code of MATMUL using double**

void matmul(size_t m, size_t n, size_t p, double **A, double **B, X . .
double **C // Creates a new dense matrix with the specified rows and columns

// Initialization doublg **new_matrix(size_t rows, size_t cols) {
for (size_t i = @; i < m; i++) { if (rows < 1 || cols < 1)
for (size_t j = 0; j < n; j++) { return NULL;

?[i][j] =0;

i3
i3

// Allocate a dynamic array of doubles to store the matrix data linearized
} size_t matBytes = cols * rows * sizeof(double);
double *memPtr = (double *)malloc(matBytes);

// Accumulation if (!memPtr) {
for (size_t i = 0; i <m; i return NULL;
for (size_t j = 0; j D }
for (size_t k = @;) e
CLil[j] += A[i]l 1. // Allocate an array of pointers to store the beginning of each row

double **mat = (double **)calloc(rows, sizeof(double *));
} if (!mat) {
free(memPtr) ;
return NULL;
}
L "
main(int argc, char *argv[]) { // Set the row pointers (eg. mat[2] points to the first double of row 3)
// Allocates input/output resources for (size_t i = 8; i < rows; i++)
double **in1_mat = new_matrix(rows, cols); mat[i] = memPtr + i * cols;
double **in2_mat = new_matrix(rows, cols);
double **out_mat = new_matrix(rows, cols); return mat;

matmul(rows, cols, cols, inl1_mat, in2_mat, out_mat);

s7codee shift Left Perfo

The source code of MATMUL with OpenMP
(defect PWDOO0G6 - Deep Copy -)

// C (mxn) =A(mxp)*B(pxn)
void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) {

// Initialization Important note: This is the only line of

O (SE & S U & 3 0p dE) the source code that was modified, by
for (size_t j = 0; j < n; j++) { .
Clillj] = eo; adding an OpenMP offload pragma.
}

}

// Accumulation
#pragma omp target teams distribute parallel for map(to: A, B, C, m, n, p) map(from: C) schedule(static)
for (size_t i =0; 1 < m; i++) {
for (size_t j = 0; j < n; j++) {
for (size_t k = 0; k < p; k++) {
) [11[3]1 += A[i][k] * B[kI[]];

Note there are hidden errors in this
OpenMP offload pragma, more
specifically in the “map” clause

I’/COdee Shift Left Performance

Produce Codee Checks Report and follow suggestions!

One of the actions related to offload is

the defect PWDOOG, triggered due to the
$ pwreport --checks --verbose main_pwd@@6.c:matmul --include-tags gpu -- -1m -fast -I include/ impl’OpeI’ Usage Of the "map" Clause fOI'
Compiler flags: -1m -fast -I include/ the dOUbIe** data type

[C] target compiler: <none> (Compiler Agnostic Mode)
CHECKS REPORT

main_pwd@e6.c:15:5 [PWDOO3]: missing 'A', 'B', 'C' and 'C' array ranges in data copy to accelerator device
Suggestion: specify the 'A', 'B', 'C' and 'C' array ranges to be copied to device memory
Documentation: https://www.codee.com/knowledge/pwdeo3

main_pwd@06.c:15:5 [PWDOO6]: missing deep copies of non-contiguous arrays 'A', 'B' and 'C' in data transfer to accelerator device
Suggestion: use OpenMP 4.5 enter/exit data execution statements to ensure that all the memory segments are copied to the memory of the accelerator device
Documentation: https://www.codee.com/knowledge/pwdeo6

main_pwd@@6.c:16:5 [PWRO35]: avoid non-consecutive array access for variables 'A', 'B' and 'C' to improve performance
Non-consecutive array access:
19: C[i1[3] += A[i][k] * B[kI[3];
Suggestion: consider using techniques like loop fusion, loop interchange, loop tiling or changing the data layout to avoid non-sequential access to variables 'A', 'B' and 'C'.
Documentation: https://www.codee.com/knowledge/pwro35

SUGGESTIONS

More details on the defects, recommendations and more in the Knowledge Base:
https://www.codee.com/knowledge/

1 file successfully analyzed and © failures in 23 ms

I?COdee Shift Left Performance

Benchmarking on Perimutter @NERSC using Nvidia toolchain

S nvc -fast -mp -target=gpu -Minfo=mp -I include matrix.c clock.c main_pwd@06.c -o matmul_pwd@e6
matrix.c:
clock.c:
main_pwd@e6.c:
matmul:
12, #omp target teams distribute parallel for
12, Generating "nvkernel_matmul_F1L12_2" GPU kernel
16, Loop parallelized across teams and threads(128), schedule(static)

Input parameters
= 1500
- Executing test...
Fatal error: expression 'HX_CU_CALL_CHECK(p_cuStreamSynchronize(stream[dev]))' (value 1) is not equal to expression 'HX_SUCCESS' (value)
Aborted

$./matmul_pwdoe6 3000
n

And the execution of the
OpenMP-enabled code reported to
suffer from defect PWDOO06 actually fails

s7codee shift Left Performance

Documentation at the Open Catalog of Best Practices
https://www.codee.com/knowledge/pwd006/

PWDOO0G6: Missing deep copy of hon-contiguous data to the GPU

Issue void foo(int **A) {
)))) #pragma omp target teams distribute parallel for map(tofrom:A)
The copy of a non-scalar variable to an accelerator device has been requested but none or only a part of its data will be transferred for (size_t 1 = 0; 1 < 10; i++) {
because it is laid out non-contiguously in memory. A[1][1] +=
}
Relevance
The data of non-scalar variables might be spread across memory, laid out in non-contiguous regions. One classical example is a Adding the array ranges (see map(tofrom:A[0:10](0:10])) could be seen as a solution:

dynamically-allocated two-dimensional array in C/C++, which consists of a contiguous array of pointers pointing to separate
contiguous arrays that contain the actual data. Note that the elements of each individual array are contiguous in memory but the d Foo(d A {
vois 00/ e,
different arrays are scattered in the memory. This also holds for dynamically-allocated multi-dimensional arrays as well as for structs #pragna omp target teams distribute parallel for map(tofrom:A[@:10][0:10])
containing pointers in C/C++. for (size_t 1 = @; 1 < 10; i++) {

A[1][4] += 15

In order to offload such non-scalar variables to an accelerator device using OpenMP or OpenACC, it is not enough to add it to a data }

movement clause. This is known as deep copy and currently is not automatically supported by either OpenMP or OpenACC. To

overcome this limitation, all the non-contiguous memory segments must be explicitly transferred by the programmer. In OpenMP 4.5,
this can be achieved through the enter/exit data execution statements. Alternatively, the code could be refactored so that it uses
variables with contiguous data layouts (eg. flatten an array of arrays).

However, this OpenMP code does not handle non-contiguous memory properly because deep copy is not automatically supported.
Therefore, each contiguous memory segment must be individually mapped to the accelerator device. This can be done through
OpenMP 4.5 enter/exit data execution statements as follows:

Actions
void foo(int **A) {
#pragma omp target enter data map(to:A[@:10])
accelerator device. for (size_t i = 0; 1 < 10; i++) {
#pragma omp target enter data map(to:A[1][:10])

}

Use OpenMP 4.5 enter/exit data execution statements to ensure that all the memory segments are copied to the memory of the

Code example

; o ; : ; #pragma omp t. teams distribi 1lel
The following OpenMP code declares that the bi-dimensional array A should be copied to the accelerator device (see the clause fp a‘z’f‘a(f’ip :rg:t :;”Si 1;‘;1 ke para.. a3 cron
or (in 3 1< 10; 14+

map(tofrom:A) and the data type int** of the array A). However, this is incorrect and will not copy the data to be accessed in the loop ALI[4] += 1;
body because OpenMP treats the pointer A as a zero-length array. Thus, the actual data of the variable will not be copied. As a result, }
dereferencing A in the GPU will cause invalid memory accesses, since its data has not been copied.

for (size_t 1 = 0; 1 < 10; i++) {
#pragma omp target exit data map(from:A[i][@:10])
}

#pragma omp target exit data map(from:A[0:10])

l'lcodee Shift Left Performance

https://www.codee.com/knowledge/pwd006/

¥ www.codee.com
© info@codee.com

® Subscribe: codee.com/newsletter/

s#codee o USh - Spain

¥ codee com

in company/codee-com/

https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
http://www.codee.com
mailto:info@appentra.com
https://www.appentra.com/blog/newsletter/

