
Quickstart Guide of Codee
Nuclear Structure and Nuclear Reactions (NUCCOR)

Step-by-Step in Perlmutter @NERSC

Step 1. Setup the environment 1
Step 2. Connect to a CPU node 1
Step 3: Understanding the implementation of NUCCOR 2
Step 4: Producing the Codee Screening Report 2
Step 5: Producing the Codee Checks Report 4
Step 6: Diagnose Fortran unsupported features in Codee 5
Step 7: Producing the Codee Checks Report 9
Step 8: Generating code optimized for GPU (offloading) 10
Additional remarks about Codee Fortran support 10

Step 1. Setup the environment
Load Codee last version and the GNU programming environment 1 through the modules
management system:

$ module load codee
$ module load PrgEnv-gnu

Run Codee configuration wizard to set up the compiler used to generate executables.In this case,
select the option “No target compiler (Skip)” 2, meaning that Codee will not attempt to interpret the
user messages emitted by the compiler.

$ pwreport --configuration-wizard

Step 2. Connect to a CPU node
Pelmutter has CPU and GPU nodes. To run an interactive job in a CPU node 3:

$ salloc --nodes 1 --qos interactive --time 01:00:00 --constraint cpu --reservation=codee_day2_cpu -A ntrain8

3 Note that the --reservation “codee_day2_cpu” may need to be renamed to any other reservation available to the user.

2 Note Codee 2023.1 can be used to generate code for any compiler. The tool provides integrations with the GNU, LLVM,
Intel and Microsoft compilers to analyze the compiler optimizations (e.g. compiler’s vectorization report).

1 Note we will use the Nvidia compiler nvc to generate executables for GPUs.

www.codee.com Page 1 April 24, 2023

Step 3: Understanding the implementation of NUCCOR
NUCCOR is a nuclear physics application for deciphering the structure and reactions of atomic
nuclei (https://www.olcf.ornl.gov/caar/summit-caar/nuccor/) developed at the Oak Ridge National
Laboratory (ORNL). The implementation of the code 4 is written in the Fortran programming
language and consists of the following files: Makefile, mtc.F90, mtc_main.F90, mtc_openmp.F90
and mtc_patch.f90.

Later in this step-by-step guide we will use the following Fortran source code snippet to illustrate
the usage of Code capabilities:

1
2 subroutine contract_simple(dst, src, op)
3 use, intrinsic :: iso_fortran_env, only : int64, real64
4
5 real(real64), dimension(:,:,:,:), intent(inout) :: dst
6 real(real64), dimension(:,:,:,:,:,:), intent(in) :: src
7 real(real64), dimension(:,:,:,:), intent(in) :: op
8
9 integer :: i, j, m, a, b, e, f
10 real(real64) :: temp
11
12 do j = 1, size(dst, 4)
13 do i = 1, size(dst, 3)
14 do b = 1, size(dst, 2)
15 do a = 1, size(dst, 1)
16 temp = 0.0d0
17 do m = 1, size(op, 1)
18 do f = 1, size(op, 3)
19 do e = 1, size(op, 4)
20 temp = temp + op(m, a, e, f)*src(e, f, b, i, j, m)
21 end do
22 end do
23 end do
24 dst(a, b, i, j) = 0.5d0*temp
25 end do
26 end do
27 end do
28 end do
29 end subroutine contract_simple

Step 4: Producing the Codee Screening Report
The Codee Screening Report is intended to help assess the speed-up potential of the code. Invoke
the pwreport --screening command, enabling multithreading and GPU offload (--include-tags all).
The Codee best practice recommendation is to start with the analysis of the open-source project
as a whole. For this purpose, let’s take advantage of Codee integration with build systems through
the compile commands JSON file. The commands below show how to produce it from Makefile

4 Note the sources of the source codes used in the NERSC course are distributed as a ZIP file, which creates the folder
nersc_examples_2023/ once uncompressed.

www.codee.com Page 2 April 24, 2023

https://www.olcf.ornl.gov/caar/summit-caar/nuccor/

files through the bear tool, and how to pass the JSON file to the pwreport tool 5 6. Note the
screening shows the progress through all files successfully analyzed (flag --show-progress).

$ pwreport --screening --include-tags all mtc_patch.f90 mtc.F90 mtc_openmp.F90 mtc_main.F90 --show-progress
[Fortran] target compiler: <none> (Compiler Agnostic Mode)

pwreport: warning: Fortran support is experimental
[1/4] mtc_patch.f90
[2/4] mtc.F90
[3/4] mtc_openmp.F90
[4/4] mtc_main.F90

SCREENING REPORT

Target Lines of code Optimizable lines Analysis time # checks Effort Cost Profiling
-------------- ------------- ----------------- ------------- -------- ------ ------- ---------
mtc.F90 98 0 31 ms 5 20 h 654€ n/a
mtc_openmp.F90 116 0 23 ms 5 20 h 654€ n/a
mtc_patch.f90 54 0 153 ms 0 0 h 0€ n/a
mtc_main.F90 209 0 73 ms 0 0 h 0€ n/a
-------------- ------------- ----------------- ------------- -------- ------ ------- ---------
Total 477 0 280 ms 10 40 h 1308€ n/a

CHECKS PER STAGE OF THE PERFORMANCE OPTIMIZATION ROADMAP
Target Scalar Control Memory Vector Multi Offload
-------------- ------ ------- ------ ------ ----- -------
mtc.F90 0 0 5 0 0 0
mtc_openmp.F90 0 0 5 0 0 0
mtc_patch.f90 0 0 0 0 0 0
mtc_main.F90 0 0 0 0 0 0
-------------- ------ ------- ------ ------ ----- -------
Total 0 0 10 0 0 0

TOTAL NUMBER OF LOOPS FOR CODEE AUTO AND GUIDED MODES
---------------- # checks ----------------

Codee mode # Loops Scalar Control Memory Vector Multi Offload
---------- ------- ------ ------- ------ ------ ----- -------
Auto 0 0 0 0 0 0 0
Guided 8 0 0 8 0 0 0

Target : analyzed directory or source code file
Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)
Optimizable lines : relevant lines of code that Codee detects as optimizable
Analysis time : time required to analyze the target
checks : total actionable items (opportunities, recommendations, defects and remarks) detected

6 Note that analysis of Fortran source codes with Codee follows similar behaviour as compilers. It requires that the source
code of a Fortran module is analyzed before any usage of the module. This implies specifying the Fortran source codes in
an order that guarantees that Codee first analyzes a Fortran module source file, before analyzing the Fortran source code
that uses that module. It is work-in-progress to improve these usability issues. Below an example Codee invocation of
gfortran and pwreport with a wrong ordering of the source codes in the command line:

$ gfortran -o out mtc.F90 mtc_main.F90 mtc_openmp.F90 mtc_patch.f90
3 | use :: mtc_patch_module, only : mtc_patch
| 1

Fatal Error: Cannot open module file ‘mtc_patch_module.mod’ for reading at (1): No such file or directory

$ pwreport --screening mtc.F90 mtc_main.F90 mtc_openmp.F90 mtc_patch.f90 --show-failures
pwreport: error: failed to analyze 'mtc.F90'

error: Semantic errors in mtc.F90
mtc.F90:3:12: error: Cannot read module file for module 'mtc_patch_module': Source file 'mtc_patch_module.pw.mod' was not
found

use :: mtc_patch_module, only : mtc_patch
^^^^^^^^^^^^^^^^

1 file successfully analyzed and 3 failures in 63 ms

5 Codee best practice recommendation is to use the integration with build systems for large code bases. In particular, this
is implemented through Codee support for JSON compile commands databases. Build systems like cmake, ninja and waf
offer built-in support. For Makefiles the bear tool is available in Linux and can be used as follows (not in Perlmutter):

$ cd nersc_examples_2023/NUCCOR/
$ bear -- make
$ pwreport --screening --config compile_commands.json --include-tags all --show-progress

www.codee.com Page 3 April 24, 2023

Effort : estimated number of hours it would take to carry out all checks (scalar, control, memory, vector, multi and
offload with 1, 2, 4, 8, 12 and 16 hours respectively)
Cost : estimated cost in euros to carry out all the checks, paying the average salary of 56,286€/year for a
professional C/C++ developer working 1720 hours per year
Profiling : estimation of overall execution time required by this target

Codee mode : Available Codee mode for the loop:
- Auto: Codee optimizes the code automatically
- Guided: Codee identifies the performance issue, and the programmer must apply the changes to the code

SUGGESTIONS
Use --verbose to get more details, e.g:

pwreport --verbose --screening --include-tags all mtc_patch.f90 mtc.F90 mtc_openmp.F90 mtc_main.F90
--show-progress

Use --checks to find out details about the detected checks:
pwreport --checks --include-tags all mtc_patch.f90 mtc.F90 mtc_openmp.F90 mtc_main.F90 --show-progress

You can focus on a specific optimization type by filtering by its tag (scalar, control, memory, vector, multi,
offload), eg.:

pwreport --checks --include-tags scalar mtc_patch.f90 mtc.F90 mtc_openmp.F90 mtc_main.F90 --show-progress

4 files successfully analyzed and 0 failures in 288 ms

Step 5: Producing the Codee Checks Report
The Codee output suggests subsequent Codee commands useful to dig deeper into the
performance issues discovered by the tool. The suggested next step is to produce the Codee
Checks Report to list all the checks found in the code, by invoking the pwreport --checks
command. The output format is similar to other static code analyzers in order to facilitate the user
uptake and integration in the development workflow. The details about the checks reported in the
screening phase are shown, including the position where the checks were detected in the source
code and the title of each check.

$ pwreport --checks --include-tags all mtc_patch.f90 mtc.F90 mtc_openmp.F90 mtc_main.F90
[Fortran] target compiler: <none> (Compiler Agnostic Mode)

pwreport: warning: Fortran support is experimental
CHECKS REPORT

mtc.F90:62:5 [PWR001]: function 'transpose_1_4_3_2_real64' uses global variable 'int64'
mtc.F90:62:5 [PWR001]: function 'transpose_1_4_3_2_real64' uses global variable 'int64'
mtc.F90:62:5 [PWR001]: function 'transpose_1_4_3_2_real64' uses global variable 'int64'
mtc.F90:62:5 [PWR001]: function 'transpose_1_4_3_2_real64' uses global variable 'int64'
mtc.F90:62:5 [PWR001]: function 'transpose_1_4_3_2_real64' uses global variable 'int64'
mtc_openmp.F90:73:5 [PWR001]: function 'transpose_1_4_3_2_real64' uses global variable 'int64'
mtc_openmp.F90:73:5 [PWR001]: function 'transpose_1_4_3_2_real64' uses global variable 'int64'
mtc_openmp.F90:73:5 [PWR001]: function 'transpose_1_4_3_2_real64' uses global variable 'int64'
mtc_openmp.F90:73:5 [PWR001]: function 'transpose_1_4_3_2_real64' uses global variable 'int64'
mtc_openmp.F90:73:5 [PWR001]: function 'transpose_1_4_3_2_real64' uses global variable 'int64'

SUGGESTIONS

Use --verbose to get more details, e.g:
pwreport --verbose --checks --include-tags all mtc_patch.f90 mtc.F90 mtc_openmp.F90 mtc_main.F90

43 loops could not be analyzed, get more information with pwloops:
pwloops --non-analyzable --include-tags all mtc_patch.f90 mtc.F90 mtc_openmp.F90 mtc_main.F90

More details on the defects, recommendations and more in the Knowledge Base:
https://www.codee.com/knowledge/

4 files successfully analyzed and 0 failures in 291 ms

www.codee.com Page 4 April 24, 2023

Step 6: Diagnose Fortran unsupported features in Codee
The Fortran support in Codee is evolving fast and it is relevant to identify unsupported Fortran
constructs. The pwreport command with the --non-analyzable flag serves for this purpose. Note it
reports the usage of modern Fortran polymorphic types, which are not supported in the current
version of the LLVM Flang project that provides Codee with the Fortran front-end.

$ pwreport --non-analyzable mtc_patch.f90 mtc.F90 mtc_openmp.F90 mtc_main.F90
[Fortran] target compiler: <none> (Compiler Agnostic Mode)

pwreport: warning: Fortran support is experimental
Count Type
----- ----

Count : Number of occurrences of the unsupported feature
Type : Type of unsupported feature

4 files successfully analyzed and 0 failures in 69 ms

The Codee support for Fortran leverages the LLVM Flang front-end. Thus, in order for Codee to
provide more precise checks (e.g. GPU offload opportunities), the target Fortran functions must be
available in source files completely parseable by LLVM Flang front-end. For illustrative purposes,
three target Fortran functions were outlined in separate files. Find below the output of the Codee
Screening Report for those source files.

$ pwreport --screening --include-tags all split/*
[Fortran] target compiler: <none> (Compiler Agnostic Mode)

pwreport: warning: Fortran support is experimental
SCREENING REPORT

Target Lines of code Optimizable lines Analysis time # checks Effort Cost Profiling
-------------------------------------- ------------- ----------------- ------------- -------- ------ ------- ---------
split/mtc_transpose_1_4_3_2_real64.F90 15 0 19 ms 6 24 h 785€ n/a
split/mtc_contract.F90 29 0 65 ms 1 4 h 130€ n/a
split/mtc_contract_simple.F90 25 0 44 ms 1 4 h 130€ n/a
-------------------------------------- ------------- ----------------- ------------- -------- ------ ------- ---------
Total 69 0 128 ms 8 32 h 1047€ n/a

CHECKS PER STAGE OF THE PERFORMANCE OPTIMIZATION ROADMAP
Target Scalar Control Memory Vector Multi Offload
-------------------------------------- ------ ------- ------ ------ ----- -------
split/mtc_transpose_1_4_3_2_real64.F90 0 0 6 0 0 0
split/mtc_contract.F90 0 0 1 0 0 0
split/mtc_contract_simple.F90 0 0 1 0 0 0
-------------------------------------- ------ ------- ------ ------ ----- -------
Total 0 0 8 0 0 0

TOTAL NUMBER OF LOOPS FOR CODEE AUTO AND GUIDED MODES
---------------- # checks ----------------

Codee mode # Loops Scalar Control Memory Vector Multi Offload
---------- ------- ------ ------- ------ ------ ----- -------
Auto 0 0 0 0 0 0 0
Guided 4 0 0 4 0 0 0

Target : analyzed directory or source code file
Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)
Optimizable lines : relevant lines of code that Codee detects as optimizable
Analysis time : time required to analyze the target
checks : total actionable items (opportunities, recommendations, defects and remarks) detected
Effort : estimated number of hours it would take to carry out all checks (scalar, control, memory, vector, multi and
offload with 1, 2, 4, 8, 12 and 16 hours respectively)
Cost : estimated cost in euros to carry out all the checks, paying the average salary of 56,286€/year for a
professional C/C++ developer working 1720 hours per year

www.codee.com Page 5 April 24, 2023

Profiling : estimation of overall execution time required by this target

Codee mode : Available Codee mode for the loop:
- Auto: Codee optimizes the code automatically
- Guided: Codee identifies the performance issue, and the programmer must apply the changes to the code

SUGGESTIONS
Use --verbose to get more details, e.g:

pwreport --verbose --screening --include-tags all split/mtc_contract.F90 split/mtc_contract_simple.F90
split/mtc_transpose_1_4_3_2_real64.F90

Use --checks to find out details about the detected checks:
pwreport --checks --include-tags all split/mtc_contract.F90 split/mtc_contract_simple.F90

split/mtc_transpose_1_4_3_2_real64.F90

You can focus on a specific optimization type by filtering by its tag (scalar, control, memory, vector, multi,
offload), eg.:

pwreport --checks --include-tags scalar split/mtc_contract.F90 split/mtc_contract_simple.F90
split/mtc_transpose_1_4_3_2_real64.F90

3 files successfully analyzed and 0 failures in 132 ms

Next, let’s use Codee to get insights about the Fortran unsupported constructs present in the
target files. In this case, the pwreport --non-analyzable commands identified function parameters
declared as “deferred shape arrays”. This is work in progress in Codee at the moment and support
will be available in upcoming releases.

$ pwreport --non-analyzable split/
[Fortran] target compiler: <none> (Compiler Agnostic Mode)

pwreport: warning: Fortran support is experimental
Count Type
----- --
12 Unsupported usaged of deferred shape array

Count : Number of occurrences of the unsupported feature
Type : Type of unsupported feature

3 files successfully analyzed and 0 failures in 88 ms

Finally, in order to illustrate the results that future releases of Codee will provide for this code, let’s
modify the source code to avoid the usage of deferred shape arrays. Note that in this new version
the construct “dimension” is used to provide the compiler and Codee with additional information
about the shape of the arrays (e.g. size of each array dimension).

Note that when the source code of a function is refactored to avoid deferred shape arrays,
required changes in the function prototype may require cascaded changes in the call site.

www.codee.com Page 6 April 24, 2023

1
2 subroutine contract_simple(dst, src, op, O, P, Q, R, S, T)
3 use, intrinsic :: iso_fortran_env, only : int64, real64
4
5 integer, intent(in) :: O, P, Q, R, S, T
6
7 real(real64), dimension(1:O,1:P,1:Q,1:R), intent(inout) :: dst
8 real(real64), dimension(1:T,1:T,1:P,1:Q,1:R,1:S), intent(in) :: src
9 real(real64), dimension(1:S,1:O,1:T,1:T), intent(in) :: op
10
11 integer :: i, j, m, a, b, e, f
12 real(real64) :: temp
13
14 do j = 1, size(dst, 4)
15 do i = 1, size(dst, 3)
16 do b = 1, size(dst, 2)
17 do a = 1, size(dst, 1)
18 temp = 0.0d0
19 do m = 1, size(op, 1)
20 do f = 1, size(op, 3)
21 do e = 1, size(op, 4)
22 temp = temp + op(m, a, e, f)*src(e, f, b, i, j, m)
23 end do
24 end do
25 end do
26 dst(a, b, i, j) = 0.5d0*temp
27 end do
28 end do
29 end do
30 end do
31 end subroutine contract_simple

www.codee.com Page 7 April 24, 2023

At this moment we use Codee to produce the Codee Screening Report for the new Fortran
versions (without deferred shape arrays). Note that Codee reports more checks, including
opportunities for multithreading and GPU offloading.

$ pwreport --screening --include-tags all adapted/mtc_contract_simple.F90
[Fortran] target compiler: <none> (Compiler Agnostic Mode)

pwreport: warning: Fortran support is experimental
SCREENING REPORT

Target Lines of code Optimizable lines Analysis time # checks Effort Cost Profiling
------------------------------- ------------- ----------------- ------------- -------- ------ ------- ---------
adapted/mtc_contract_simple.F90 26 26 85 ms 9 60 h 1963€ n/a
------------------------------- ------------- ----------------- ------------- -------- ------ ------- ---------
Total 26 26 85 ms 9 60 h 1963€ n/a

CHECKS PER STAGE OF THE PERFORMANCE OPTIMIZATION ROADMAP
Target Scalar Control Memory Vector Multi Offload
------------------------------- ------ ------- ------ ------ ----- -------
adapted/mtc_contract_simple.F90 0 0 6 1 1 1
------------------------------- ------ ------- ------ ------ ----- -------
Total 0 0 6 1 1 1

TOTAL NUMBER OF LOOPS FOR CODEE AUTO AND GUIDED MODES
---------------- # checks ----------------

Codee mode # Loops Scalar Control Memory Vector Multi Offload
---------- ------- ------ ------- ------ ------ ----- -------
Auto 0 0 0 0 0 0 0
Guided 6 0 0 5 1 1 1

Target : analyzed directory or source code file
Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)
Optimizable lines : relevant lines of code that Codee detects as optimizable
Analysis time : time required to analyze the target
checks : total actionable items (opportunities, recommendations, defects and remarks) detected
Effort : estimated number of hours it would take to carry out all checks (scalar, control, memory, vector, multi and
offload with 1, 2, 4, 8, 12 and 16 hours respectively)
Cost : estimated cost in euros to carry out all the checks, paying the average salary of 56,286€/year for a
professional C/C++ developer working 1720 hours per year
Profiling : estimation of overall execution time required by this target

Codee mode : Available Codee mode for the loop:
- Auto: Codee optimizes the code automatically
- Guided: Codee identifies the performance issue, and the programmer must apply the changes to the code

SUGGESTIONS
Use --verbose to get more details, e.g:

pwreport --verbose --screening --include-tags all adapted/mtc_contract_simple.F90

You can specify multiple inputs which will be displayed as multiple rows (ie. targets) in the table, eg:
pwreport --screening some/other/dir --include-tags all adapted/mtc_contract_simple.F90

Use --checks to find out details about the detected checks:
pwreport --checks --include-tags all adapted/mtc_contract_simple.F90

You can focus on a specific optimization type by filtering by its tag (scalar, control, memory, vector, multi,
offload), eg.:

pwreport --checks --include-tags scalar adapted/mtc_contract_simple.F90

1 file successfully analyzed and 0 failures in 86 ms

www.codee.com Page 8 April 24, 2023

Step 7: Producing the Codee Checks Report
The process to produce the Codee Checks Report is similar, just follow the suggested commands.

$ pwreport --checks --verbose --include-tags all adapted/mtc_contract_simple.F90
[Fortran] target compiler: <none> (Compiler Agnostic Mode)

pwreport: warning: Fortran support is experimental
CHECKS REPORT

adapted/mtc_contract_simple.F90:2:5 [PWR007]: procedure 'contract_simple' does not have or inherit IMPLICIT NONE policy
Suggestion: add IMPLICIT NONE in the specification part of the procedure
Documentation: https://www.codee.com/knowledge/pwr007

adapted/mtc_contract_simple.F90:14:9 [PWR035]: avoid non-consecutive array access for variable 'op' to improve
performance
Non-consecutive array access:
22: temp = temp + op(m, a, e, f)*src(e, f, b, i, j, m)

Suggestion: consider using techniques like loop fusion, loop interchange, loop tiling or changing the data layout to
avoid non-sequential access to variable 'op'.
Documentation: https://www.codee.com/knowledge/pwr035

adapted/mtc_contract_simple.F90:14:9 [PWR050]: consider applying multithreading parallelism to forall loop
Suggestion: use pwdirectives to automatically optimize the code
Documentation: https://www.codee.com/knowledge/pwr050
AutoFix (choose one option):

* Using OpenMP 'for' (recommended):
pwdirectives --multi omp-for --in-place adapted/mtc_contract_simple.F90:14:9

* Using OpenMP 'taskwait':
pwdirectives --multi omp-taskwait --in-place adapted/mtc_contract_simple.F90:14:9

* Using OpenMP 'taskloop':
pwdirectives --multi omp-taskloop --in-place adapted/mtc_contract_simple.F90:14:9

adapted/mtc_contract_simple.F90:14:9 [PWR055]: consider applying offloading parallelism to forall loop
Suggestion: use pwdirectives to automatically optimize the code
Documentation: https://www.codee.com/knowledge/pwr055
AutoFix:
* Using OpenMP (recommended):

pwdirectives --offload omp-teams --in-place adapted/mtc_contract_simple.F90:14:9
* Using OpenAcc:

pwdirectives --offload acc --in-place adapted/mtc_contract_simple.F90:14:9

adapted/mtc_contract_simple.F90:15:13 [PWR035]: avoid non-consecutive array access for variable 'op' to improve
performance
Non-consecutive array access:
22: temp = temp + op(m, a, e, f)*src(e, f, b, i, j, m)

Suggestion: consider using techniques like loop fusion, loop interchange, loop tiling or changing the data layout to
avoid non-sequential access to variable 'op'.
Documentation: https://www.codee.com/knowledge/pwr035

adapted/mtc_contract_simple.F90:16:17 [PWR035]: avoid non-consecutive array access for variable 'op' to improve
performance
Non-consecutive array access:
22: temp = temp + op(m, a, e, f)*src(e, f, b, i, j, m)

Suggestion: consider using techniques like loop fusion, loop interchange, loop tiling or changing the data layout to
avoid non-sequential access to variable 'op'.
Documentation: https://www.codee.com/knowledge/pwr035

adapted/mtc_contract_simple.F90:17:21 [PWR035]: avoid non-consecutive array access for variable 'op' to improve
performance
Non-consecutive array access:
22: temp = temp + op(m, a, e, f)*src(e, f, b, i, j, m)

Suggestion: consider using techniques like loop fusion, loop interchange, loop tiling or changing the data layout to
avoid non-sequential access to variable 'op'.
Documentation: https://www.codee.com/knowledge/pwr035

adapted/mtc_contract_simple.F90:19:25 [PWR035]: avoid non-consecutive array access for variable 'op' to improve
performance
Non-consecutive array access:
22: temp = temp + op(m, a, e, f)*src(e, f, b, i, j, m)

Suggestion: consider using techniques like loop fusion, loop interchange, loop tiling or changing the data layout to
avoid non-sequential access to variable 'op'.
Documentation: https://www.codee.com/knowledge/pwr035

www.codee.com Page 9 April 24, 2023

adapted/mtc_contract_simple.F90:21:33 [RMK010]: the vectorization cost model states the loop is not a SIMD opportunity
due to strided memory accesses in the loop body
Documentation: https://www.codee.com/knowledge/rmk010

SUGGESTIONS

More details on the defects, recommendations and more in the Knowledge Base:
https://www.codee.com/knowledge/

1 file successfully analyzed and 0 failures in 92 ms

Step 8: Generating code optimized for GPU (offloading)
The process to produce GPU-enabled Fortran source code with OpenMP and OpenACC directives
is similar, just follow the suggested pwdirectives commands (see step-by-step guide MATMUL
C/Fortran for the details).

Additional remarks about Codee Fortran support
Active development in Codee is focused on rapidly improving the Fortran supports, including
better support for modern Fortran language constructs as well as integration with Fortran build
systems to facilitate the screening of large Fortran codes. In addition, sampling real-world Fortran
applications will be used to drive the roadmap of the Codee Fortran support so that it serves the
Fortran developers community better.

www.codee.com Page 10 April 24, 2023

