
Shift Left Performance
Automated Code inspection for Performance

April 24th, 2023

Codee Training Series
April 25-26, 2023

Automated Code Inspection for Performance

ZPIC: The code “em2d”

Website: https://zpic-plasma.github.io/ [last checked: Apr 2023]
Github: https://github.com/zpic-plasma/zpic [last checked: Apr 2023]

● Particle-in-Cell (PIC) codes are used in almost all areas of plasma physics, such
as fusion energy research, plasma accelerators, space physics, ion propulsion,

and plasma processing, and many other areas.
● ZPIC is a suite of 1D/2D fully relativistic electromagnetic PIC codes, as well as

1D electrostatic.
● Code written in the C programming language.
● The directory structure is organized as follows:

● em1d - 1D electromagnetic (finite difference)
● em1ds - 1D electromagnetic (spectral)
● em2d - 2D electromagnetic (finite difference)
● em2ds - 2D electromagnetic (spectral)
● es1d - 1D electrostatic
● mods - Modified versions of the base codes
● python - Python interface to ZPIC codes

Benchmark “ZPIC/em2d”

14 files

193 functions

141 loops

4035 lines of code (SLOC)

https://zpic-plasma.github.io/
https://github.com/zpic-plasma/zpic

Automated Code Inspection for Performance

Build, run & verify ZPIC with Weibel workload

$ cd em2d-0-serial
$ make clean
$ make CC=gcc CFLAGS="-Ofast"
$./zpic
Starting simulation ...

n = 0, t = 0.000000
n = 1, t = 0.070000
n = 2, t = 0.140000
n = 3, t = 0.210000
...
n = 497, t = 34.790001
n = 498, t = 34.860001
n = 499, t = 34.930000
n = 500, t = 35.000000

Simulation ended.

Time for spec. advance = 10.339094 s
Time for emf advance = 0.066140 s
Total simulation time = 10.431528 s

Particle advance [nsec/part] = 78.723580
Particle advance [Mpart/sec] = 12.702674

3

$ cat -n input/simulation_test.c
 1 /**
 2 * ZPIC - em2d
 3 *
 4 * Weibel instability
 5 */
 6

 7 #include <stdlib.h>

 8 #include "../simulation.h"

 9

 10 void sim_init(t_simulation* sim){

 11

 12 // Time step

 13 float dt = 0.07;

 14 float tmax = 35.0;

 15

 16 // Simulation box

 17 int nx[2] = { 128, 128 };

 18 float box[2] = { 12.8, 12.8 };

 19

 20 // Diagnostic frequency

 21 int ndump = 10;

 22

 23 // Initialize particles

 24 const int n_species = 2;

 25 t_species* species = (t_species *) malloc(n_species * sizeof(t_species));

 26

 27 // Use 4x2 particles per cell

 28 int ppc[] = {4,2};

 29

 30 // Initial fluid and thermal velocities

 31 t_part_data ufl[] = { 0.0, 0.0, 0.6 };

 32 t_part_data uth[] = { 0.1, 0.1, 0.1 };

 33

 34 spec_new(&species[0], "electrons", -1.0, ppc, ufl, uth, nx, box, dt, NULL);

 35

 36 ufl[2] = -ufl[2];

 37 spec_new(&species[1], "positrons", +1.0, ppc, ufl, uth, nx, box, dt, NULL);

 38

 39 // Initialize Simulation data

 40 sim_new(sim, nx, box, dt, tmax, ndump, species, n_species);

 41

 42 }

 43

 44 void sim_report(t_simulation* sim){

 45

 46 // All magnetic field components

 47 emf_report(&sim->emf, BFLD, 0);

 48 emf_report(&sim->emf, BFLD, 1);

 49 emf_report(&sim->emf, BFLD, 2);

 50

 51 }

Experimental setup of ZPIC:
- Weibel
- Grid 128x128 cells
- 500 time-steps
- 8 particles per cell
- uniform distribution

Automated Code Inspection for Performance

Profiling: Find the hotspots of ZPIC/em2d

// Build and add profiling
// flag -pg to the ZPIC code
$ make CC=gcc CFLAGS="-Ofast -pg" clean zpic

// Run the ZPIC code
$./zpic

// Output gprof information
$ gprof zpic

Gprof flat profile

Gprof call graph for function spec_advance()

Automated Code Inspection for Performance

Profiling: Find the hotspots of ZPIC/em2d (cont’d)

● The profiler gprof reports hotspots at the function-level

○ ie. functions are ranked by % time consumed.

● We need more information to select the target hotspots.

● We need to analyze the function/procedure calls and the loops altogether (at least).

particle.c:889:spec_advance() [55.80%]
 -> contains 1+ loops with function calls

 -> calls particle.c:840:interpolate_fld() [22.43%]
 -> does not contain any loops

 -> calls particle.c:605:dep_current_zamb() [19.00%]
 -> contains 1 loop without function calls

This loop in spec_advance() is a good parallelization opportunity
(coarse-grain parallelism).

This hotspot interpolate_fld() does not contain loops, so it is not
a (loop-level) parallelization opportunity.

This loop in dep_current_zamb() is a good parallelization
opportunity (fine-grain parallelism).

● The selected hotspot is loop at line 677 in function spec_advance() [up to 97.23% of the runtime]
○ Note it includes runtime of the other two hotspots as well.
○ Ignore interpolate_fld() because it does not contain any loop.
○ Try to parallelize dep_current_zamb(), but you will slow down ZPIC (65M calls at ~0 seconds/call).

https://github.com/ricardo-fonseca/zpic/blob/master/em2d/particles.c
https://github.com/ricardo-fonseca/zpic/blob/master/em2d/particles.c
https://github.com/ricardo-fonseca/zpic/blob/master/em2d/particles.c

Automated Code Inspection for Performance

Parallel ZPIC/em2d: from serial to CPU & GPU...

6

EM2D #7a (Basic GPU+OpenACC Atomic)

EM2D #6a (Basic GPU+OpenMP Atomic)

EM2D #5a (Basic CPU+OpenMP Atomic)

EM2D #4 (loop fission)

EM2D #3 (change Array of Structs by separate arrays)

EM2D #2 (inlining deb_current_zamb)

EM2D #1 (outlining, gather-scatter data)

EM2D #0 (serial version)

Automated Code Inspection for Performance

EM2D #0 (serial version)

7

● Start by running pwreport --screening to get an assessment of the hotspot function.
● Reported a total of 3 checks, but none of the related to parallelism (Vector, Multi and Offload).

$ cd em2d-0-serial/

$ pwreport --screening --include-tags all particles.c:spec_advance --brief -- -Ofast -lm
[C] target compiler: <none> (Compiler Agnostic Mode)

SCREENING REPORT

Target Lines of code Optimizable lines Analysis time # checks Effort Cost Profiling
------------------------ ------------- ----------------- ------------- -------- ------ ------ ---------
particles.c:spec_advance 749 6 131 ms 3 9 h 294€ n/a
------------------------ ------------- ----------------- ------------- -------- ------ ------ ---------
Total 749 6 131 ms 3 9 h 294€ n/a

CHECKS PER STAGE OF THE PERFORMANCE OPTIMIZATION ROADMAP
Target Scalar Control Memory Vector Multi Offload
------------------------ ------ ------- ------ ------ ----- -------
particles.c:spec_advance 1 0 2 0 0 0
------------------------ ------ ------- ------ ------ ----- -------
Total 1 0 2 0 0 0

TOTAL NUMBER OF LOOPS FOR CODEE AUTO AND GUIDED MODES
 ---------------- # checks ----------------
Codee mode # Loops Scalar Control Memory Vector Multi Offload
---------- ------- ------ ------- ------ ------ ----- -------
Auto 0 0 0 0 0 0 0
Guided 1 0 0 1 0 0 0

1 file successfully analyzed and 0 failures in 131 ms

Automated Code Inspection for Performance

EM2D #0 (serial version)

8

● Let’s run pwreport --non-analyzable to get a report of the challenges identified by Codee in the code.
● We need to remove the unsupported C programming language feature from the source code.

○ Usage of structs

○ Calls to functions/procedures

$ cd em2d-0-serial/

$ pwreport --non-analyzable particles.c:spec_advance -- -Ofast -lm
Compiler flags: -Ofast -lm

[C] target compiler: <none> (Compiler Agnostic Mode)

Count Type
----- ---
1 Unsupported usage of different fields of a struct type variable
1 Potential aliasing in call to a function
1 Unsupported usage of variable inside unstructured code

Count : Number of occurrences of the unsupported feature
Type : Type of unsupported feature

1 file successfully analyzed and 0 failures in 112 ms

Automated Code Inspection for Performance

Parallel ZPIC/em2d: from serial to CPU & GPU...

9

EM2D #7a (Basic GPU+OpenACC Atomic)

EM2D #6a (Basic GPU+OpenMP Atomic)

EM2D #5a (Basic CPU+OpenMP Atomic)

EM2D #4 (loop fission)

EM2D #3 (change Array of Structs by separate arrays)

EM2D #2 (inlining deb_current_zamb)

EM2D #1 (outlining, gather-scatter)

EM2D #0 (serial version)

Automated Code Inspection for Performance

EM2D #1 (outlining, gather-scatter)

10

● Addressing the issues reported by Codee with respect to pointers to structs and function/procedure calls
requires significant changes in the source code of ZPIC. It might even require to rethink the data types
used across the entire project.

● So let’s adopt an incremental approach that is less intrusive and less time-consuming.

● We will do the following actions:

○ First, use the outlining technique to isolate the hotspot loop at em2d/particles.c:spec_advance:677 into a separate
function that receives all the input data as function parameters (i.e., no global variables are used in the function body).

○ Second, use the gather-scatter technique to copy input data and output data into temporary arrays with a
contiguous data layout in memory. This copies input data dispersed across memory into consecutive arrays (gather),
makes the hotspot loop at em2d/particles.c:spec_advance:677 operate on those temporary consecutive arrays, and
finally copies the results into the output data dispersed across memory (scatter).

● Note that these techniques will introduce an overhead that increases the runtime of the sequential ZPIC
code and that must be amortized by exploiting parallelism in the hotspot loop at
em2d/particles.c:spec_advance:677.

Automated Code Inspection for Performance

EM2D #1 (outlining, gather-scatter) (cont’d)

11

● In computing, outlining is a manual or compiler
optimization that replaces a code section by a
function call site and creates a new function
with the code section as function body.

● Benefits of outlining for the programmer:
○ Improve the readability and the structure of the

source code.
○ Enable code transformations that otherwise would

not be applicable.

● In ZPIC we use it to isolate the hotspot loop
into a separate function promoting data hiding
(i.e., all input data and output data passed as
explicit function parameters), and increase the
code coverage of Codee tools.

Automated Code Inspection for Performance

● Let’s apply outlining to the hotpost loop em2d/particles.c:spec_advance:677 of function

void spec_advance(t_species* spec, t_emf* emf, t_current* current)

And create a separate function named spec_advance_outlining().

void spec_advance_outlining(

 // Spec data

 const int spec_np, const t_part_data spec_q, const t_part_data qnx, const t_part_data qny, const t_part_data tem,

 const t_part_data dt_dx, const t_part_data dt_dy, int *restrict spec_ix, int *restrict spec_iy, t_part_data *restrict spec_x,

 t_part_data *restrict spec_y, t_part_data *restrict spec_ux, t_part_data *restrict spec_uy, t_part_data *restrict spec_uz,

 // Emf data

 const int emf_nrow, t_fld *restrict Ex, t_fld *restrict Ey, t_fld *restrict Ez, t_fld *restrict Bx, t_fld *restrict By,

 t_fld *restrict Bz,

 // Current data

 const int current_nrow, t_fld *restrict current_Jx, t_fld *restrict current_Jy, t_fld *restrict current_Jz)

● This is time-consuming so we provide you the new source code to make better use of your time.

EM2D #1 (outlining, gather-scatter) (cont’d)

12

Automated Code Inspection for Performance

EM2D #1 (outlining, gather-scatter) (cont’d)

13

● In computing, gather-scatter is a manual
optimization that changes memory addressing
enabling to replace indexed read/write operations
by consecutive memory accesses.

● Benefits for the programmer:
○ It is often used in sparse linear algebra operations to

gather indexed reads and scatter indexed writes.
○ It is also used to improve locality by enabling loops to

benefit from consecutive memory accesses.
○ It is also important in SIMD/vector programming, as

SIMD/vector CPUs often provide hardware support for
gather-scatter operations.

● In ZPIC we use it
○ To “pack” data spread across memory through

pointer-to-structs into consecutive arrays
○ And increase the code coverage of Codee tools by

promoting data hiding (removing pointer-to-structs).

The code has a vector y holding n elements stored at
memory locations given by index, so they are not
guaranteed to be at consecutive memory locations.

The gather copies all those array elements into a
consecutive array x.

for(int i=0; i<n; ++i) {

 x[i] = y[index[i]];

}

The code now computes the results using array x. At
the end, the scatter copies the consecutive array
entries of x into the corresponding entries of y.

for(int i=0; i<n; i++) {

 y[index[i]] = x[i];

}

Automated Code Inspection for Performance

EM2D #1 (cont’d)

14

● Let’s apply gather-scatter to the
hotpost loop
em2d/particles.c:spec_advance:677

● The following pointers-to-struct are
used in the source code:

t_species (/* particles.h */)
t_emf (/* emf.h */)
t_current (/* current.h */)

● In ZPIC there are multiple parameters of
type pointer to Array-of-Structs (AoS)
that must be “packed”:

t_part * t_species.part
t_vfld * t_current.J_buf

Automated Code Inspection for Performance

EM2D #1 (cont’d)

15

● Let’s take a look at how we have
implemented the gather-scatter in ZPIC.

● First, we have defined a new struct
t_all_data to hold all the “packed” data.

● It provides access to all the plain arrays
that hold the consecutive data to be
processed in the hotpost loop.

t_fld *Jx_buf
t_fld *Jy_buf
t_fld *Jz_buf
t_fld *Jx
t_fld *Jy
t_fld *Jz
...

● With t_fld being a float data type.
typedef float t_fld;

Automated Code Inspection for Performance

EM2D #1 (outlining, gather-scatter) (cont’d)

16

Allocate (malloc) memory Deallocate (free) memoryCopy data to/from 1D arrays

Automated Code Inspection for Performance

EM2D #1 (outlining, gather-scatter) (cont’d)

17

● The ZPIC code also adapts the size of the data structures to the number of particles interacting at each
simulation step. This leads to additional computations to keep data consistent in ZPIC.

Automated Code Inspection for Performance

EM2D #1 (cont’d)

18

● How do we glue all these pieces of code?

● The original function spec_advance() has the
same interface with the rest of the code.

● Reallocation of memory is needed before
running the hotspot loop.

● Also needed to gather the relevant data into
consecutive arrays.

● Next step is to compute the hotspot loop by
invoking the outlined function.

● Once the output of the simulation step is
ready, it is scattered to the corresponding
memory locations.

● And finally the memory re-allocation is done
after running the hotspot loop.

Automated Code Inspection for Performance

EM2D #1 (outlining, gather-scatter) (cont’d)

19

● Let’s see changes in Codee Screening Report by narrowing it down to the outlined function.

● Reported 0 checks, so nothing helps to exploit parallelism (Vector, Multi and Offload).

$ cd em2d-1-outlining/

$ pwreport --screening --include-tags all particles.c:spec_advance_outlining --brief -- -Ofast -lm
Compiler flags: -Ofast -lm

[C] target compiler: <none> (Compiler Agnostic Mode)

SCREENING REPORT

Target Lines of code Optimizable lines Analysis time # checks Effort Cost Profiling
---------------------------------- ------------- ----------------- ------------- -------- ------ ---- ---------
particles.c:spec_advance_outlining 837 0 128 ms 0 0 h 0€ n/a
---------------------------------- ------------- ----------------- ------------- -------- ------ ---- ---------
Total 837 0 128 ms 0 0 h 0€ n/a

CHECKS PER STAGE OF THE PERFORMANCE OPTIMIZATION ROADMAP
Target Scalar Control Memory Vector Multi Offload
---------------------------------- ------ ------- ------ ------ ----- -------
particles.c:spec_advance_outlining 0 0 0 0 0 0
---------------------------------- ------ ------- ------ ------ ----- -------
Total 0 0 0 0 0 0

TOTAL NUMBER OF LOOPS FOR CODEE AUTO AND GUIDED MODES
 ---------------- # checks ----------------
Codee mode # Loops Scalar Control Memory Vector Multi Offload
---------- ------- ------ ------- ------ ------ ----- -------
Auto 0 0 0 0 0 0 0
Guided 0 0 0 0 0 0 0

1 file successfully analyzed and 0 failures in 129 ms

Automated Code Inspection for Performance

EM2D #1 (outlining, gather-scatter data) (cont’d)

20

● Let’s investigate the remaining challenges in the outlined function through pwreport --non-analyzable.

● Codee output message “Unsupported interprocedural dependency analysis for a function” pinpoints the call to

the function “dep_current_zamp()” as the next issue to overcome.

$ pwreport --non-analyzable particles.c:spec_advance_outlining
[C] target compiler: <none> (Compiler Agnostic Mode)

Count Type
----- --
1 Unsupported interprocedural dependency analysis for a function

Count : Number of occurrences of the unsupported feature
Type : Type of unsupported feature

1 file successfully analyzed and 0 failures in 96 ms

Automated Code Inspection for Performance

Parallel ZPIC/em2d: from serial to CPU & GPU...

21

EM2D #7a (Basic GPU+OpenACC Atomic)

EM2D #6a (Basic GPU+OpenMP Atomic)

EM2D #5a (Basic CPU+OpenMP Atomic)

EM2D #4 (loop fission)

EM2D #3 (change Array of Structs by separate arrays)

EM2D #2 (inlining deb_current_zamb)

EM2D #1 (outlining, gather-scatter data)

EM2D #0 (serial version)

Automated Code Inspection for Performance

EM2D #2 (inlining deb_current_zamb)

22

● In computing, inline expansion, or inlining,

is a manual or compiler optimization that

replaces a function call site with the body

of the called function.

● Benefits for the programmer:
○ Eliminates overhead from calls to

functions/procedures.
○ Enable code transformations that otherwise

would not be applicable.

● In ZPIC we use inlining to enable the

detection of the pattern “sparse reduction”

by Codee (it is work-in-progress to do

detection across procedure calls).

The code has a function that is called in other code sections:

void foo(int *x, int i) {

 x[i] = 0;

}

Before inlining (e.g., assume foo is called within a loop):

for(int i=0; i<n; ++i) {

 foo(x, i);

}

After inlining:

for(int i=0; i<n; ++i) {

 x[i] = 0;

}

Automated Code Inspection for Performance

EM2D #2 (inlining deb_current_zamb)

23

...

The inlining exposes
the computation of
Jx, Jy and Jz in the
target hotspot loop.
As a result, the
sparse reduction
pattern in the code.

Before inlining After inlining

Automated Code Inspection for Performance

EM2D #2 (inlining deb_current_zamb) (cont’d)

24

● After applying inlining, Codee reports a total of 135 checks in the hotspot function.
● It also reports 2 loops in the function, but 0 opportunities related to parallelism (Multi, Offload).

$ cd em2d-2-inlining/

$ pwreport --screening --include-tags all particles.c:spec_advance_outlining --brief -- -Ofast -lm
Compiler flags: -Ofast -lm

[C] target compiler: <none> (Compiler Agnostic Mode)

SCREENING REPORT

Target Lines of code Optimizable lines Analysis time # checks Effort Cost Profiling
---------------------------------- ------------- ----------------- ------------- -------- ------ -------- ---------
particles.c:spec_advance_outlining 936 172 183 ms 135 513 h 16787€ n/a
---------------------------------- ------------- ----------------- ------------- -------- ------ -------- ---------
Total 936 172 183 ms 135 513 h 16787€ n/a

CHECKS PER STAGE OF THE PERFORMANCE OPTIMIZATION ROADMAP
Target Scalar Control Memory Vector Multi Offload
---------------------------------- ------ ------- ------ ------ ----- -------
particles.c:spec_advance_outlining 11 1 121 2 0 0
---------------------------------- ------ ------- ------ ------ ----- -------
Total 11 1 121 2 0 0

TOTAL NUMBER OF LOOPS FOR CODEE AUTO AND GUIDED MODES
 ---------------- # checks ----------------
Codee mode # Loops Scalar Control Memory Vector Multi Offload
---------- ------- ------ ------- ------ ------ ----- -------
Auto 0 0 0 0 0 0 0
Guided 2 5 1 121 2 0 0

1 file successfully analyzed and 0 failures in 183 ms

Automated Code Inspection for Performance

EM2D #2 (inlining deb_current_zamb) (cont’d)

25

● Let’s see the detailed list of checkers reported by Codee, and we can identify the next recommendations:
○ Avoid the usage of Array of Structs (AoS) [PWR016]
○ Avoid the usage of non-consecutive and indirect memory accesses [PWR010, PWR035, PWR036]

● These recommendations are reported for the loops at lines 690 and 891.

$ pwreport --checks --include-tags all particles.c:spec_advance_outlining --brief -- -Ofast -lm
Compiler flags: -Ofast -lm

[C] target compiler: <none> (Compiler Agnostic Mode)

CHECKS REPORT

particles.c:823:22 [PWR048]: Replace multiplication/addition combo with an explicit call to fused multiply-add
...
particles.c:795:5 [PWR016]: using separated plain arrays instead of Array-of-Structs (AoS) 'vp' is recommended to maximize data locality
...
particles.c:687:15 [PWR002]: 'qvz' not declared in the innermost scope possible
particles.c:690:3 [PWR010]: 'vp' multi-dimensional array not accessed in row-major order
particles.c:690:3 [PWR021]: extract temporary computations to a vectorizable loop
particles.c:690:3 [PWR035]: avoid non-consecutive array access for variable 'vp' to improve performance
particles.c:690:3 [PWR036]: avoid indirect array access for variables 'current_Jz', 'current_Jy' and 'current_Jx' to improve performance
particles.c:804:17 [PWR045]: replace division with a multiplication with a reciprocal
particles.c:896:23 [PWR016]: using separated plain arrays instead of Array-of-Structs (AoS) 'vp' is recommended to maximize data locality
...
particles.c:891:5 [PWR010]: 'vp' multi-dimensional array not accessed in row-major order
particles.c:891:5 [PWR021]: extract temporary computations to a vectorizable loop
particles.c:891:5 [PWR035]: avoid non-consecutive array access for variable 'vp' to improve performance
particles.c:891:5 [PWR036]: avoid indirect array access for variables 'current_Jz', 'current_Jy' and 'current_Jx' to improve performance
particles.c:925:24 [PWR045]: replace division with a multiplication with a reciprocal
...

1 file successfully analyzed and 0 failures in 209 ms

Automated Code Inspection for Performance

Parallel ZPIC/em2d: from serial to CPU & GPU...

26

EM2D #7a (Basic GPU+OpenACC Atomic)

EM2D #6a (Basic GPU+OpenMP Atomic)

EM2D #5a (Basic CPU+OpenMP Atomic)

EM2D #4 (loop fission)

EM2D #3 (change Array of Structs by separate arrays)

EM2D #2 (inlining deb_current_zamb)

EM2D #1 (outlining, gather-scatter data)

EM2D #0 (serial version)

Automated Code Inspection for Performance

EM2D #3 (change Array of Structs by separate arrays)

27

● In computing, Array of Structures (AoS),

Structure of Arrays (SoA) and Array of

Structures of Arrays (AoSoA) refer to

contrasting ways to arrange a sequence of

records in memory, with regard to

interleaving, and are of interest in SIMD

programming, for example.

● In ZPIC we use it to enable the detection

of the pattern “sparse reduction”, which

cannot be detected because the loop body

contains uses of AoS (that we must first

replace by separate arrays).

[Source: PWR016: Use separate arrays instead of an Array-of-Structs
(https://www.codee.com/knowledge/pwr016/)]

https://www.codee.com/knowledge/pwr016/

Automated Code Inspection for Performance

EM2D #3 (change Array of Structs by separate arrays)

28

Applying convert AoS
into separate arrays
enables to detect the
sparse reduction
pattern associated
with Jx, Jy and Jz in the
target hotspot loop.

Example: Replace
‘vp[k].x0’ by ‘vp_x0[k]’.

Before AoS into separate arrays After AoS into separate arrays

Automated Code Inspection for Performance

EM2D #3 (change Array of Structs by separate arrays) (cont’d)

29

● Now that the AOS issues have been overcome, Codee still reports the non-consecutive memory access
issues [PWR036] in both loops at lines 690 and 887.

$ cd em2d-3-aos/

$ pwreport --checks particles.c:spec_advance_outlining --brief -- -Ofast -lm
[C] target compiler: <none> (Compiler Agnostic Mode)

CHECKS REPORT

particles.c:819:22 [PWR048]: Replace multiplication/addition combo with an explicit call to fused multiply-add
particles.c:856:22 [PWR048]: Replace multiplication/addition combo with an explicit call to fused multiply-add
particles.c:920:24 [PWR048]: Replace multiplication/addition combo with an explicit call to fused multiply-add
particles.c:923:24 [PWR048]: Replace multiplication/addition combo with an explicit call to fused multiply-add
particles.c:926:24 [PWR048]: Replace multiplication/addition combo with an explicit call to fused multiply-add
particles.c:929:24 [PWR048]: Replace multiplication/addition combo with an explicit call to fused multiply-add
particles.c:690:3 [PWR021]: extract temporary computations to a vectorizable loop
particles.c:690:3 [PWR036]: avoid indirect array access for variables 'current_Jz', 'current_Jy' and 'current_Jx' to improve performance
particles.c:800:17 [PWR045]: replace division with a multiplication with a reciprocal
particles.c:887:5 [PWR021]: extract temporary computations to a vectorizable loop
particles.c:887:5 [PWR036]: avoid indirect array access for variables 'current_Jz', 'current_Jy' and 'current_Jx' to improve performance
particles.c:921:24 [PWR045]: replace division with a multiplication with a reciprocal
particles.c:924:24 [PWR045]: replace division with a multiplication with a reciprocal
particles.c:927:24 [PWR045]: replace division with a multiplication with a reciprocal
particles.c:930:24 [PWR045]: replace division with a multiplication with a reciprocal

1 file successfully analyzed and 0 failures in 184 ms

Automated Code Inspection for Performance

Parallel ZPIC/em2d: from serial to CPU & GPU...

30

EM2D #7a (Basic GPU+OpenACC Atomic)

EM2D #6a (Basic GPU+OpenMP Atomic)

EM2D #5a (Basic CPU+OpenMP Atomic)

EM2D #4 (loop fission)

EM2D #3 (change Array of Structs by separate arrays)

EM2D #2 (inlining deb_current_zamb)

EM2D #1 (outlining, gather-scatter data)

EM2D #0 (serial version)

Automated Code Inspection for Performance

EM2D #4 (loop fission)

31

● In computer science, loop fission (or loop

distribution) is a compiler optimization in

which a loop is broken into multiple loops

over the same index range with each taking

only a part of the original loop's body.

● Benefits:
○ Break down a large loop body into smaller ones to

achieve better utilization of locality of reference.
○ In multi-core processors that can split a task into

multiple tasks for each processor.

● In ZPIC we use it to enable the detection of

the pattern “sparse reduction”, by separating

the part of the loop body that cannot be

matched to a pattern by Codee tools.

Before loop fission the code has a loop that computes
several output variables:

for(int i=0; i<n; ++i) {

 x[i] = 0;

 y[i] = y[i-1] + 1;

}

After loop fission: the code contains several loops
dedicated to the computation of different outputs:

for(int i=0; i<n; ++i) {

 x[i] = 0;

}

for(int i=0; i<n; ++i) {

 y[i] = y[i-1] + 1;

}

Automated Code Inspection for Performance

EM2D #4 (loop fission) (cont’d)

32

● Let’s use pwloops to figure out which variables lead to n/a, to split the loop body accordingly.
● So we need to split the loop body so that the computation of following variables is in a separate loop:

spec_ux spec_uy spec_uz spec_x spec_y spec_ix spec_iy

$ cd em2d-3-aos/

$ pwloops --datascoping particles.c:690 --single-loop --brief -- -Ofast -lm
Compiler flags: -Ofast -lm

[C] target compiler: <none> (Compiler Agnostic Mode)

Loop Variable Kind Read/Write Temporary Compute Pattern Memory Pattern OpenMP (multi) OpenACC (offload)
---------------------------------- ------------ ------- ---------- --------- --------------- -------------- ------------------------- -----------------------
particles.c
`- spec_advance_outlining:690:3
 |-> Bpx scalar rw x
 |-> Bpy scalar rw x
 |-> Bpz scalar rw x
 |-> Bx pointer ro shared(Bx) copyin(Bx)
 |-> By pointer ro shared(By) copyin(By)
 |-> Bz pointer ro shared(Bz) copyin(Bz)
...
 |-> qnx scalar ro shared(qnx) copyin(qnx)
 |-> qny scalar ro shared(qny) copyin(qny)
 |-> qvz scalar rw x private(qvz)
 |-> rg scalar rw x
 |-> spec_ix[] pointer n/a n/a n/a linear n/a n/a
 |-> spec_iy[] pointer n/a n/a n/a linear n/a n/a
 |-> spec_np scalar ro shared(spec_np) copyin(spec_np)
 |-> spec_q scalar ro shared(spec_q) copyin(spec_q)
 |-> spec_ux[] pointer n/a n/a n/a linear n/a n/a
 |-> spec_uy[] pointer n/a n/a n/a linear n/a n/a
 |-> spec_uz[] pointer n/a n/a n/a linear n/a n/a
 |-> spec_x[] pointer n/a n/a n/a linear n/a n/a
 |-> spec_y[] pointer n/a n/a n/a linear n/a n/a
...

1 file successfully analyzed and 0 failures in 1309 ms

Automated Code Inspection for Performance

EM2D #4 (loop fission) (cont’d)

33

Before loop fission After loop fission Applying loop fission requires
to duplicate the loop header.

In this code it also requires to
duplicate some computation
in the two loops resulting
from the fission.

Automated Code Inspection for Performance

EM2D #4 (loop fission) (cont’d)

34

● Now we have three loops, two outermost loops (lines 694 and 755) due to loop fission.
● And the second loop is analyzable (spec_advance_outlining:755), showing a parallelization opportunity

with a sparse reduction pattern.

$ cd em2d-4-loopfission/

$ pwreport --checks --include-tags all particles.c:spec_advance_outlining --brief -- -Ofast -lm

...

Automated Code Inspection for Performance

Parallel ZPIC/em2d: from serial to CPU & GPU...

35

EM2D #7a (Basic GPU+OpenACC Atomic)

EM2D #6a (Basic GPU+OpenMP Atomic)

EM2D #5a (Basic CPU+OpenMP Atomic)

EM2D #4 (loop fission)

EM2D #3 (change Array of Structs by separate arrays)

EM2D #2 (inlining deb_current_zamb)

EM2D #1 (outlining, gather-scatter data)

EM2D #0 (serial version)

Automated Code Inspection for Performance

Parallel ZPIC/em2d: from serial to CPU & GPU...

36

EM2D #7a (Basic GPU+OpenACC Atomic)

EM2D #6a (Basic GPU+OpenMP Atomic)

EM2D #5a (Basic CPU+OpenMP Atomic)

EM2D #4 (loop fission)

EM2D #3 (change Array of Structs by separate arrays)

EM2D #2 (inlining deb_current_zamb)

EM2D #1 (outlining, gather-scatter data)

EM2D #0 (serial version)

Automated Code Inspection for Performance

EM2D #5a
(Basic CPU+OpenMP Atomic)

37

● Now that the sparse reduction loop is a

parallelization opportunity reported by

Codee, we can take advantage of the

corresponding parallelization strategies using

OpenMP on CPU:

○ Parallel loop w/ atomic

○ Parallel loop w/ explicit privatization

● Let’s generate the “atomic” version as it is the
easiest to code and maintain.

● Running this version built with clang-11 on a

Cori GPU node with 8 threads @NERSC takes

9.19 seconds (speedup 1.22x)

...

Automated Code Inspection for Performance

EM2D #6a
(Basic GPU+OpenMP Atomic)

38

● The advantage of the “atomic” strategy is that it is

also available for OpenMP on GPU.

● Let’s generate the “atomic” version as it is the
easiest to code and maintain.

○ Note that to implement the data transfers you will need
an additional parameter current_size for
spec_advance_outlining(), as needed to transfer arrays
current_Jx, current_Jy and current_Jz.

● Running this version built with clang-11 on a Cori

GPU @NERSC takes 9,87 seconds (speedup 1,13x)

● Running this version built with cray on a Cori GPU

@NERSC takes 8,27 seconds (speedup 1,35x)

...

Automated Code Inspection for Performance

EM2D #7a
(Basic GPU+OpenACC Atomic)

39

● And the “atomic” strategy is also available for

OpenACC on GPU.

● Let’s generate the “atomic” version as it is the
easiest to code and maintain.

○ Note that to implement the data transfers you will
need an additional parameter current_size for
spec_advance_outlining(), as needed to transfer arrays
current_Jx, current_Jy and current_Jz.

● Running this version built with nvc on a Cori GPU

@NERSC takes 7,49 seconds (speedup 1,49x)

...

Automated Code Inspection for Performance

Benchmarking on Perlmutter using Nvidia & GNU toolchains

Version #threads
Nvidia @ GPU node

NVC 22.7
Time (sec) [Speedup]

GNU @ GPU node
GCC 12.1

Time (sec) [Speedup]

EM2D #0
(serial version)

n/a 9.95 s 11.44 s

EM2D #1
(outlining, gather-scatter data)

n/a 10.95 s [0,91x] 11.72 s [0,98x]

EM2D #2
(inlining deb_current_zamb)

n/a 10.67 s [0,93x] 11.46 s [0,99x]

EM2D #3
(refactor AoS)

n/a 10.23 s [0,97x] 11.32 s [1,01x]

EM2D #4
(apply loop fission)

n/a 6.47 s [1,54x] 9.41 s [1,21x]

EM2D #5a
(basic CPU OpenMP Atomic)

32 threads 5.48 s [1,82x] n/a
(gcc 7.5 yields 6.33 seconds, 1.82x speedup)

EM2D #6a
(basic GPU OpenMP Atomic)

n/a n/a
(nvc requires schedule(static) and Codee
generates schedule(auto))

n/a

EM2D #7a
(basic GPU OpenACC Atomic)

n/a n/a
(nvc 22.7 combined with Codee 2023.1 raises a
runtime error under investigation)

9.26s [1,23x]

OpenMP multithreading
yields speedup 1.82x

OpenACC offload yields
speedup 1.23x, a starting
point for further optimization

Automated Code Inspection for Performance

Parallel ZPIC/em2d: from serial to CPU & GPU...

41

EM2D #7a (Basic GPU+OpenACC Atomic)

EM2D #6a (Basic GPU+OpenMP Atomic)

EM2D #5a (Basic CPU+OpenMP Atomic)

EM2D #4 (loop fission)

EM2D #3 (change Array of Structs by separate arrays)

EM2D #2 (inlining deb_current_zamb)

EM2D #1 (outlining, gather-scatter data)

EM2D #0 (serial version)

Automated Code Inspection for Performance

Further optimization of ZPIC is possible!

42

● Now we have a baseline implementation of ZPIC/em2d, using OpenMP/OpenACC on CPU/GPU.

● Optimizations for CPU+OpenMP:
○ You can try the performance of several parallelization strategies, like explicit privatization.
○ We suggest that first you parallelize the fist loop that arises after loop fission, which is a FORALL pattern that can be

parallelized in a straightforward manner.
○ Next, we suggest that you use one unique parallel region for the two loops: it covers both the FORALL loop and the

SPARSE REDUCTION loop.
○ And third, if your want to go a step beyond, move the parallel region outside the simulation loop.

● Optimizations for GPU+OpenMP/OpenACC:
○ We suggest that first you parallelize the fist loop that arises after loop fission, which is a FORALL patterns that can be

parallelized in a straightforward manner.
○ Next, we suggest that you use one unique data movement region for the two loops: it covers both the FORALL loop

and the SPARSE REDUCTION loop.
○ And third, if your want to go a step beyond, move the data movement region outside the simulation loop.

● Note the similarities between the optimized version: for CPU you reason about minimizing parallel
regions, and for GPUs you reason about minimizing data movement.

● Code the corresponding version and benchmark the performance improvements on the computer.

Automated Code Inspection for Performance

Final considerations about optimization of Sparse Reductions!

43

// Convergence loop of the simulation
for(iter=0, err = tol;
 err >= tol && iter < iter_max;
 iter++){

 // Forall “B”
 for (j=0; j<n; j++) {
 B[j] = j;
 }

 // Sparse reduction “A”
 for (j=0; j<n; j++) {
 A[C[j]] += B[j];
 }
}

ATMUX
(n = 17000)

LULESHmk
(n = 30000)

ZPIC
(128x128 cells, 8
particles per cell)

No. repetitions
(final value of “iter”)

10 223.680.000 65.000.000

No. loop iterations of sparse reduction
(value of “n”)

17.000 30.000 3

Execution time of one loop iteration LOW HIGH TINY

● ATMUX: it is challenging due to large memory requirements for sparse matrices...
○ Note that the cost of each sparse reduction is directly related to the memory consumption of the sparse matrix, which leads to high

parallelization overheads due to data movement on the GPU.

● LULESHmk: it is challenging to find parallelization opportunities in the source code...
○ In this case the sparse reduction is time-consuming and so the parallelization overhead has less impact on performance.
○ So it is easier to obtain performance for LULESHmk than for ZPIC.

● ZPIC: it is challenging to obtain performance on both CPU and GPU because...
○ The parallelization overhead of the sparse reduction is very high compared to the execution time of one run of the sparse reduction.
○ So parallelization overhead must be amortized across all of the repetitions (e.g. move data movement and thread creation out of the loop).
○ This also make it key to parallelize other code sections that interact with the sparse reduction (e.g. parallelize the forall pattern).

Automated Code Inspection for Performance

The Performance Quadrant of Sparse Reductions

44

Cost of each execution of the sparse reduction
(execution time of one sparse reduction)

R
ep

et
it

io
n

s
o

f t
h

e
sp

ar
se

 r
ed

u
ct

io
n

(n
u

m
b

er
 o

f r
ep

et
it

io
n

s
o

f o
n

e
sp

ar
se

 r
ed

u
ct

io
n

)

LULESHmk
4.37x on GPU

ATMUX
0.55x on GPU

ZPIC
1.23x on GPU

LOW HIGH

LO
W

H
IG

H

Difficulty to obtain
performance with ATOMIC

HIGH

MEDIUM

LOW

Mofit: Unstructured grids
(Particle-In-Cell)

Mofit: Structured grids
(Finite Elements)

Mofit: Sparse linear algebra

codee_com

company/codee-com/

www.codee.com

info@codee.com

Subscribe: codee.com/newsletter/

USA - Spain

https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
http://www.codee.com
mailto:info@appentra.com
https://www.appentra.com/blog/newsletter/

