
Quickstart Guide of Codee
Matrix-Matrix Multiplication (MATMUL-C)

Step-by-Step in Perlmutter @NERSC

Step 1. Setup the environment 1
Step 2: Understanding the implementation of MATMUL 1
Step 3: Producing the Codee Screening Report (optional) 2
Step 4: Producing the Codee Checks Report 3
Step 5: Generating code optimized for single-core (loop interchange) 5
Step 6: Generating code optimized for GPU (loop interchange + offloading) 7
Step 7. Submitting a job to a GPU node 9
Additional remarks about the optimization of MATMUL 11

About the Nvidia compiler in Perlmutter 11
About the GNU compiler in Perlmutter 13

Step 1. Setup the environment
Load Codee last version and the Nvidia programming environment 1 through the modules
management system:

$ module load codee
$ module load PrgEnv-nvidia

Run Codee configuration wizard to set up the compiler used to generate executables. In this case,
select the option “No target compiler (Skip)” 2, meaning that Codee will not attempt to interpret the
user messages emitted by the compiler.

$ pwreport --configuration-wizard

Step 2: Understanding the implementation of MATMUL
The implementation of the Matrix-Matrix multiplication code in the C programming language
considered in this case is shown below 3. Note it is a standard implementation using dynamically
allocated arrays of floating-point values. The two-dimensional arrays are traversed in the naive
row-major order, iterating per row and later iterating per column within the row
(www.codee.com/knowledge/glossary-row-major-and-column-major-order/).

3 Note the sources of the source codes used in the NERSC course are distributed as a ZIP file, which creates the folder
nersc_examples_2023/ once uncompressed.

2 Note Codee 2023.04 supports the GNU, LLVM, Intel and Microsoft compilers. The Nvidia compiler is not supported.
1 Note we will use the Nvidia compiler nvc to generate executables for GPUs.

www.codee.com Page 1 April 24, 2023

https://www.codee.com/knowledge/glossary-row-major-and-column-major-order/

5 // C (m x n) = A (m x p) * B (p x n)
6 void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) {
7 // Initialization
8 for (size_t i = 0; i < m; i++) {
9 for (size_t j = 0; j < n; j++) {
10 C[i][j] = 0;
11 }
12 }
13
14 // Accumulation
15 for (size_t i = 0; i < m; i++) {
16 for (size_t j = 0; j < n; j++) {
17 for (size_t k = 0; k < p; k++) {
18 C[i][j] += A[i][k] * B[k][j];
19 }
20 }
21 }
22 }

Step 3: Producing the Codee Screening Report (optional)
The Codee Screening Report is intended to help assess the speed-up potential of the code. Invoke
the pwreport --screening command enabling source code checks for GPU (--screening-tags all),
passing the target source code (main.c) and its corresponding compilation flags after the special
mark “--” (-I include -fast). In this case, the screening reported 8 checks in the source code, the
breakdown being 1 check related to scalar optimizations, 3 checks related to memory issues, 2
checks related to vectorization, 1 check related to multithreading and 1 check related to offloading.

$ pwreport --screening main.c --include-tags all -- -I include -fast
Compiler flags: -I include -fast

[C] target compiler: <none> (Compiler Agnostic Mode)

SCREENING REPORT

Target Lines of code Optimizable lines Analysis time # checks Effort Cost Profiling
------ ------------- ----------------- ------------- -------- ------ ------- ---------
main.c 55 14 137 ms 8 57 h 1865€ n/a
------ ------------- ----------------- ------------- -------- ------ ------- ---------
Total 55 14 137 ms 8 57 h 1865€ n/a

CHECKS PER STAGE OF THE PERFORMANCE OPTIMIZATION ROADMAP
Target Scalar Control Memory Vector Multi Offload
------ ------ ------- ------ ------ ----- -------
main.c 1 0 3 2 1 1
------ ------ ------- ------ ------ ----- -------
Total 1 0 3 2 1 1

TOTAL NUMBER OF LOOPS FOR CODEE AUTO AND GUIDED MODES
---------------- # checks ----------------

Codee mode # Loops Scalar Control Memory Vector Multi Offload
---------- ------- ------ ------- ------ ------ ----- -------
Auto 1 0 0 0 1 0 0
Guided 3 0 0 3 1 1 1

Target : analyzed directory or source code file
Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)
Optimizable lines : relevant lines of code that Codee detects as optimizable
Analysis time : time required to analyze the target
checks : total actionable items (opportunities, recommendations, defects and remarks) detected
Effort : estimated number of hours it would take to carry out all checks (scalar, control, memory, vector, multi and
offload with 1, 2, 4, 8, 12 and 16 hours respectively)
Cost : estimated cost in euros to carry out all the checks, paying the average salary of 56,286€/year for a
professional C/C++ developer working 1720 hours per year
Profiling : estimation of overall execution time required by this target

www.codee.com Page 2 April 24, 2023

Codee mode : Available Codee mode for the loop:
- Auto: Codee optimizes the code automatically
- Guided: Codee identifies the performance issue, and the programmer must apply the changes to the code

SUGGESTIONS
Use --verbose to get more details, e.g:

pwreport --verbose --screening main.c --include-tags all -- -I include -fast

You can specify multiple inputs which will be displayed as multiple rows (ie. targets) in the table, eg:
pwreport --screening some/other/dir main.c --include-tags all -- -I include -fast

Use --checks to find out details about the detected checks:
pwreport --checks main.c --include-tags all -- -I include -fast

You can automatically vectorize every vectorizable loop of one function with:
pwdirectives --auto --simd omp --in-place main.c -- -I include -fast

You can focus on a specific optimization type by filtering by its tag (scalar, control, memory, vector, multi,
offload), eg.:

pwreport --checks --include-tags scalar main.c -- -I include -fast

1 file successfully analyzed and 0 failures in 138 ms

Step 4: Producing the Codee Checks Report
The Codee output suggests subsequent Codee commands useful to dig deeper into the
performance issues discovered by the tool. The suggested next step is to produce the Codee
Checks Report to list all the checks found in the code, by invoking the pwreport --checks
command. The output format is similar to other static code analyzers in order to facilitate the user
uptake and integration in the development workflow. The details about the checks reported in the
screening phase are shown, including the position where the checks were detected in the source
code and the title of each check.

$ pwreport --checks main.c:matmul --include-tags all -- -I include -fast
Compiler flags: -I include -fast

[C] target compiler: <none> (Compiler Agnostic Mode)

CHECKS REPORT

main.c:18:17 [PWR048]: Replace multiplication/addition combo with an explicit call to fused multiply-add
main.c:9:9 [PWR053]: consider applying vectorization to forall loop
main.c:15:5 [PWR035]: avoid non-consecutive array access for variables 'A', 'B' and 'C' to improve performance
main.c:15:5 [PWR050]: consider applying multithreading parallelism to forall loop
main.c:15:5 [PWR055]: consider applying offloading parallelism to forall loop
main.c:16:9 [PWR039]: consider loop interchange to improve the locality of reference and enable vectorization
main.c:17:13 [PWR010]: 'B' multi-dimensional array not accessed in row-major order
main.c:17:13 [RMK010]: the vectorization cost model states the loop is not a SIMD opportunity due to strided memory
accesses in the loop body

SUGGESTIONS

Use --verbose to get more details, e.g:
pwreport --verbose --checks main.c:matmul --include-tags all -- -I include -fast

More details on the defects, recommendations and more in the Knowledge Base:
https://www.codee.com/knowledge/

1 file successfully analyzed and 0 failures in 135 ms

www.codee.com Page 3 April 24, 2023

Codee suggests to request further information by invoking the pwreport --checks command with
verbosity enabled (--verbose). In the scope of this document, we remark a memory inefficiency
that can be fixed through loop interchange (PWR039) and a loop that is a candidate to be
offloaded to the GPU (PWR055).

$ pwreport --verbose --checks main.c:matmul --include-tags all -- -I include -fast
Compiler flags: -I include -fast

[C] target compiler: <none> (Compiler Agnostic Mode)

CHECKS REPORT

main.c:18:17 [PWR048]: Replace multiplication/addition combo with an explicit call to fused multiply-add
Suggestion: Replace a combination of multiplication and addition `C[i][j] += A[i][k] * B[k][j];`, with a call to the

`fma` function.
Documentation: https://www.codee.com/knowledge/pwr048

main.c:9:9 [PWR053]: consider applying vectorization to forall loop
Suggestion: use pwdirectives to automatically optimize the code
Documentation: https://www.codee.com/knowledge/pwr053
AutoFix:
* Using OpenMP pragmas (recommended):

pwdirectives --vector omp --in-place main.c:9:9 -- -I include -fast
* Using Clang compiler pragmas:

pwdirectives --vector clang --in-place main.c:9:9 -- -I include -fast
* Using GCC pragmas

pwdirectives --vector gcc --in-place main.c:9:9 -- -I include -fast
* Using ICC pragmas:

pwdirectives --vector icc --in-place main.c:9:9 -- -I include -fast

main.c:15:5 [PWR035]: avoid non-consecutive array access for variables 'A', 'B' and 'C' to improve performance
Non-consecutive array access:
18: C[i][j] += A[i][k] * B[k][j];

Suggestion: consider using techniques like loop fusion, loop interchange, loop tiling or changing the data layout to
avoid non-sequential access to variables 'A', 'B' and 'C'.
Documentation: https://www.codee.com/knowledge/pwr035

main.c:15:5 [PWR050]: consider applying multithreading parallelism to forall loop
Suggestion: use pwdirectives to automatically optimize the code
Documentation: https://www.codee.com/knowledge/pwr050
AutoFix (choose one option):

* Using OpenMP 'for' (recommended):
pwdirectives --multi omp-for --in-place main.c:15:5 -- -I include -fast

* Using OpenMP 'taskwait':
pwdirectives --multi omp-taskwait --in-place main.c:15:5 -- -I include -fast

* Using OpenMP 'taskloop':
pwdirectives --multi omp-taskloop --in-place main.c:15:5 -- -I include -fast

main.c:15:5 [PWR055]: consider applying offloading parallelism to forall loop
Suggestion: use pwdirectives to automatically optimize the code
Documentation: https://www.codee.com/knowledge/pwr055
AutoFix:
* Using OpenMP (recommended):

pwdirectives --offload omp-teams --in-place main.c:15:5 -- -I include -fast
* Using OpenAcc:

pwdirectives --offload acc --in-place main.c:15:5 -- -I include -fast

main.c:16:9 [PWR039]: consider loop interchange to improve the locality of reference and enable vectorization
Loops to interchange:
16: for (size_t j = 0; j < n; j++) {
17: for (size_t k = 0; k < p; k++) {

Suggestion: loop interchange can be used to improve the performance of the loop nest.
Documentation: https://www.codee.com/knowledge/pwr039
AutoFix:
pwdirectives --memory loop-interchange --in-place main.c:16:9 -- -I include -fast

main.c:17:13 [PWR010]: 'B' multi-dimensional array not accessed in row-major order
Accesses:
18: C[i][j] += A[i][k] * B[k][j];

Suggestion: change the code to access the 'B' multi-dimensional array in a row-major order
Documentation: https://www.codee.com/knowledge/pwr010

main.c:17:13 [RMK010]: the vectorization cost model states the loop is not a SIMD opportunity due to strided memory
accesses in the loop body

www.codee.com Page 4 April 24, 2023

https://www.codee.com/knowledge/pwr039/
https://www.codee.com/knowledge/pwr055/

Documentation: https://www.codee.com/knowledge/rmk010

SUGGESTIONS

More details on the defects, recommendations and more in the Knowledge Base:
https://www.codee.com/knowledge/

1 file successfully analyzed and 0 failures in 110 ms

Step 5: Generating code optimized for single-core (loop
interchange)
The Codee software also includes source code rewriting capabilities to implement a performance
optimization triggered by the Codee Static Code Analyzer. The source code rewriting is always
triggered by the developer through the invocation of the pwdirectives tool, it never happens
automatically without the supervision of the developer. Several examples of usage of the Codee
Coding Assistant are shown below.

First, focus on the PWR039 check reported by Codee related to a memory inefficiency that can be
fixed by implementing loop interchange in the source code. As shown above, the verbose Codee
Checks Report for PWR039 is as follows:

...
main.c:16:9 [PWR039]: consider loop interchange to improve the locality of reference and enable vectorization
Loops to interchange:
16: for (size_t j = 0; j < n; j++) {
17: for (size_t k = 0; k < p; k++) {

Suggestion: loop interchange can be used to improve the performance of the loop nest.
Documentation: https://www.codee.com/knowledge/pwr039
AutoFix:
pwdirectives --memory loop-interchange --in-place main.c:16:9 -- -I include -fast

...

Second, produce a new optimized source code (new file name “matmul_li.c") that implements the
loop interchange recommendation (PWR039). For this purpose copy and paste the pwdirectives
invocation suggested by the tool in the AutoFix section 4.

$ pwdirectives --memory loop-interchange main.c:16:9 -o main_li.c -- -I include -fast
Compiler flags: -I include -fast

[C] target compiler: <none> (Compiler Agnostic Mode)

Results for file 'main.c':
Successfully loop interchange at main.c:16:9:

Successfully created main_li.c

4 Note that in order to reproduce this testing in a GPU node, a new output file is created by replacing the "--in-place" flag of
the Autofix suggestion by "-o main_li.c".

www.codee.com Page 5 April 24, 2023

https://www.codee.com/knowledge/pwr039/

Third, review the optimized source code generated by the pwdirectives tool, which actually
interchanged the headers of the loops located at the lines 16 and 17. The new code looks like this:

5 // C (m x n) = A (m x p) * B (p x n)
6 void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) {
7 // Initialization
8 for (size_t i = 0; i < m; i++) {
9 for (size_t j = 0; j < n; j++) {
10 C[i][j] = 0;
11 }
12 }
13
14 // Accumulation
15 for (size_t i = 0; i < m; i++) {
16 for (size_t k = 0; k < p; k++) {
17 for (size_t j = 0; j < n; j++) {
18 C[i][j] += A[i][k] * B[k][j];
19 }
20 }
21 }
22 }

Finally, let’s benchmark the original source code (“main.c”) and the optimized version based on
loop interchange (“main_li.c”). As shown below, the single-core performance gain is 3.2x using the
Nvidia nvc compiler with maximum optimization level (-fast), reducing the runtime from 39.6
seconds down to 12.2 seconds.

$ nvc -fast matrix.c clock.c main.c -o matmul -I include
$./matmul 3000
- Input parameters
n = 3000
- Executing test...
time (s)= 39.637778
size = 3000
chksum = 546933812237

$ nvc -fast matrix.c clock.c main_li.c -o matmul_li -I include
$./matmul_li 3000
- Input parameters
n = 3000
- Executing test...
time (s)= 12.204002
size = 3000
chksum = 546933812237

www.codee.com Page 6 April 24, 2023

Step 6: Generating code optimized for GPU (loop
interchange + offloading)
Let’s use Codee to generate GPU-enabled code using OpenACC and OpenMP compiler pragmas.
The starting point is the Codee Checks Report corresponding to the MATMUL version with loop
interchange (file name “main_li.c”), which points out a PWR055:

...
main.c:15:5 [PWR055]: consider applying offloading parallelism to forall loop
Suggestion: use pwdirectives to automatically optimize the code
Documentation: https://www.codee.com/knowledge/pwr055
AutoFix:
* Using OpenMP (recommended):

pwdirectives --offload omp-teams --in-place main.c:15:5 -- -I include -fast
* Using OpenAcc:

pwdirectives --offload acc --in-place main.c:15:5 -- -I include -fast
...

First, produce a further optimized source code (new file name “main_li_acc.c”) that implements the
offload opportunity (PWR055) using the OpenACC directives on top of the code version with loop
interchange. For this purpose copy and paste the pwdirectives invocation suggested by the tool in
the AutoFix section 5:

$ pwdirectives --offload acc -o main_li_acc.c main_li.c:15:5 -- -I include -fast
Compiler flags: -I include -fast

[C] target compiler: <none> (Compiler Agnostic Mode)

Results for file 'main_li.c':
Successfully parallelized loop at 'main_li.c:matmul:15:5' [using offloading without teams]:

[INFO] main_li.c:15:5 Parallel forall: variable 'C'
[INFO] main_li.c:15:5 Parallel region defined by OpenACC directive 'parallel'
[INFO] main_li.c:15:5 Loop parallelized with OpenACC directive 'loop'
[INFO] main_li.c:15:5 Data region for host-device data transfers defined by OpenACC directive 'data'
[INFO] main_li.c:15:5 Make sure there is no aliasing among variables: A, B, C

Successfully created main_li_acc.c

Minimum software stack requirements: OpenACC version 2.0 with offloading capabilities

Thus, the resulting MATMUL version that implements loop interchange and OpenACC offload is as
follows:

5 // C (m x n) = A (m x p) * B (p x n)
6 void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) {
7 // Initialization
8 for (size_t i = 0; i < m; i++) {
9 for (size_t j = 0; j < n; j++) {
10 C[i][j] = 0;
11 }
12 }
13
14 // Accumulation
15 #pragma acc data copyin(A[0:m][0:p], B[0:p][0:n], m, n, p) copy(C[0:m][0:n])
16 #pragma acc parallel
17 #pragma acc loop

5 Note that in order to reproduce this testing in a GPU node, a new output file is created by replacing the "--in-place" flag of
the Autofix suggestion by "-o main_li_acc.c".

www.codee.com Page 7 April 24, 2023

18 for (size_t i = 0; i < m; i++) {
19 for (size_t k = 0; k < p; k++) {
20 for (size_t j = 0; j < n; j++) {
21 C[i][j] += A[i][k] * B[k][j];
22 }
23 }
24 }
25 }

Second, use Codee to generate the corresponding version based on OpenMP offload pragmas 6:

$ pwdirectives --offload omp-teams -o main_li_omp.c main_li.c:15:5 -- -I include -fast
Compiler flags: -I include -fast

[C] target compiler: <none> (Compiler Agnostic Mode)

Results for file 'main_li.c':
Successfully parallelized loop at 'main_li.c:matmul:15:5' [using offloading]:

[INFO] main_li.c:15:5 Parallel forall: variable 'C'
[INFO] main_li.c:15:5 Loop parallelized with teams using OpenMP directive 'target teams distribute parallel for'

Successfully created main_li_omp.c

Minimum software stack requirements: OpenMP version 4.5 with offloading capabilities

Thus, the resulting MATMUL version that implements loop interchange and OpenMP offload is as
follows:

5 // C (m x n) = A (m x p) * B (p x n)
6 void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) {
7 // Initialization
8 for (size_t i = 0; i < m; i++) {
9 for (size_t j = 0; j < n; j++) {
10 C[i][j] = 0;
11 }
12 }
13
14 // Accumulation
15 #pragma omp target enter data map(to: A[0:m])
16 for(int i0 = 0; i0 < m; ++i0) {
17 #pragma omp target enter data map(to: A[i0][0:p])
18 }
19 #pragma omp target enter data map(to: B[0:p])
20 for(int i0 = 0; i0 < p; ++i0) {
21 #pragma omp target enter data map(to: B[i0][0:n])
22 }
23 #pragma omp target enter data map(to: C[0:m])
24 for(int i0 = 0; i0 < m; ++i0) {
25 #pragma omp target enter data map(to: C[i0][0:n])
26 }
27 #pragma omp target teams distribute parallel for shared(A, B, m, n, p) map(to: m, n, p) schedule(static)
28 for (size_t i = 0; i < m; i++) {
29 for (size_t k = 0; k < p; k++) {
30 for (size_t j = 0; j < n; j++) {
31 C[i][j] += A[i][k] * B[k][j];
32 }
33 }
34 }
35 for(int i0 = 0; i0 < m; ++i0) {
36 #pragma omp target exit data map(from: C[i0][0:n])
37 }
38 #pragma omp target exit data map(from: C[0:m])
39 }

Finally, let’s benchmark the original source code (“main.c”) versus the optimized version based on
loop interchange and GPU offload directives, both OpenACC offload (“main_li_acc.c”) and OpenMP

6 Note that in order to reproduce this testing in a GPU node, a new output file is created by replacing the "--in-place" flag of
the Autofix suggestion by "-o main_li_omp.c".

www.codee.com Page 8 April 24, 2023

offload (“main_li_omp.c”). As shown below, the GPU-enabled performance gain is 6.4x and 7.8x
using the Nvidia nvc compiler with maximum optimization level (-fast), reducing the runtime from
39.6 seconds down to 6.1 and 5.1 seconds, respectively.

$ nvc -fast matrix.c clock.c main.c -o matmul -I include
$./matmul 3000
- Input parameters
n = 3000
- Executing test...
time (s)= 39.637778
size = 3000
chksum = 546933812237

$ nvc -fast -acc -target=gpu -Minfo=acc matrix.c clock.c main_li_acc.c -o matmul_li_acc -I include
$./matmul_li_acc 3000
- Input parameters
n = 3000
- Executing test...
time (s)= 6.198646
size = 3000
chksum = 546933812237

$ nvc -fast -mp -target=gpu -Minfo=mp matrix.c clock.c main_li_omp.c -o matmul_li_omp -I include
$./matmul_li_omp 3000
- Input parameters
n = 3000
- Executing test...
time (s)= 5.081679
size = 3000
chksum = 546933812237

Step 7. Submitting a job to a GPU node
Pelmutter has CPU and GPU nodes. The user is expected to follow this step-by-step guide,
typically running the commands in an interactive session. Additionally, a set of scripts to do the
benchmarking using the queueing system of Perlmutter are provided.

For illustrative purposes, the user is expected to run the following sbatch command:

$ sbatch launch.sh

The script “launch.sh” to run a job in a GPU node is as follows 7:

#!/bin/bash
#SBATCH -A ntrain8
#SBATCH --reservation=codee_day1_gpu
#SBATCH -C gpu
#SBATCH -J Codee_Matmul_C
#SBATCH -q regular
#SBATCH -t 0:10:00
#SBATCH -N 1
#SBATCH --ntasks-per-node=1
#SBATCH -c 128
#SBATCH --gpus-per-task=1

export SLURM_CPU_BIND="cores"
srun MATMUL_C.sh

7 Note that the --reservation named “codee_day1” needs to be renamed as “codee_day2” or as any other reservation
available to the user.

www.codee.com Page 9 April 24, 2023

Finally, the script MATMUL_C.sh to build and run all the codes is as follows (note it does not
include the generation of new code versions with Codee pwdirectives):

#!/bin/bash

function printRunCommand(){
Print the command
printf "\n$ $@\n"
Run the command
$@

}

module load PrgEnv-nvidia

rm -f matmul matmul_li matmul_li_acc matmul_li_omp *.o

echo ""
echo ""
echo "Matmul"
printRunCommand "nvc -fast matrix.c clock.c main.c -o matmul -I include"
printRunCommand "./matmul 3000"

echo ""
echo ""
echo "Matmul with loop interchange"
printRunCommand "nvc -fast matrix.c clock.c main_li.c -o matmul_li -I include"
printRunCommand "./matmul_li 3000"

echo ""
echo ""
echo "Matmul with loop interchange and OpenACC"
printRunCommand "nvc -fast -acc -target=gpu -Minfo=acc matrix.c clock.c main_li_acc.c -o matmul_li_acc -I include"
printRunCommand "./matmul_li_acc 3000"

echo ""
echo ""
echo "Matmul with loop interchange and OpenMP"
printRunCommand "nvc -fast -mp -target=gpu -Minfo=mp matrix.c clock.c main_li_omp.c -o matmul_li_omp -I include"
printRunCommand "./matmul_li_omp 3000"

www.codee.com Page 10 April 24, 2023

Additional remarks about the optimization of MATMUL
Codee helps enforce performance optimization best practices. Following Codee hints, the source
code created by the developer achieves a performance that is less dependent on the capabilities
of the target compiler 8. It is good practice that the developer writes code where the performance
optimizations are explicit in the source code. This makes the source code of the application more
compiler-friendly and hardware-friendly from the point of view of performance.

About the Nvidia compiler in Perlmutter
Regarding the MATMUL sequential source code, it is noticeable that the Nvidia nvc compiler: (1)
does not apply loop interchange to the C source code, and (2) reports attempts to vectorize loops
but does not report opportunities in loops that might be offloaded to the GPU. Same remarks apply
to the OpenACC-enabled source code written in C. The user messages reported by the nvc
compiler are shown below, indicating that Codee is a good complement to the compiler and
enables the programmer to create performant code for the GPU.

$ nvc -fast matrix.c clock.c main.c -o matmul -I include -Minfo=all
matrix.c:
new_matrix:

23, Loop not vectorized: may not be beneficial for target
Loop not vectorized: unknown
Loop unrolled 4 times

rand_matrix:
43, Loop not vectorized/parallelized: contains call

checksum_matrix:
55, Generated vector simd code for the loop containing reductions

clock.c:
getClock:

9, FMA (fused multiply-add) instruction(s) generated
main.c:
matmul:

8, Loop not fused: dependence chain to sibling loop
9, Generated vector simd code for the loop
17, Loop not vectorized: data dependency

Loop unrolled 2 times
FMA (fused multiply-add) instruction(s) generated

18, FMA (fused multiply-add) instruction(s) generated
main:

58, Loop not fused: function call before adjacent loop
59, matmul inlined, size=17 (inline) file main.c (6)

8, Loop not fused: different controlling conditions
9, Generated vector simd code for the loop
17, Loop not vectorized: data dependency

Loop unrolled 2 times
FMA (fused multiply-add) instruction(s) generated

58, Loop not vectorized/parallelized: too deeply nested

8 Documentation about the compilers available in Perlmutter https://docs.nersc.gov/development/compilers/base/ .

www.codee.com Page 11 April 24, 2023

https://docs.nersc.gov/development/compilers/base/

$ nvc -acc -target=gpu -Minfo=all -fast matrix.c clock.c main_li_acc.c -o matmul_li_acc -I include
matrix.c:
new_matrix:

23, Loop not vectorized: may not be beneficial for target
Loop not vectorized: unknown
Loop unrolled 4 times

rand_matrix:
43, Loop not vectorized/parallelized: contains call

checksum_matrix:
55, Generated vector simd code for the loop containing reductions

clock.c:
getClock:

9, FMA (fused multiply-add) instruction(s) generated
main_li_acc.c:
matmul:

8, Loop not fused: function call before adjacent loop
9, Generated vector simd code for the loop
16, Generating copyin(A[:m][:n]) [if not already present]

Generating copy(C[:m][:p]) [if not already present]
Generating copyin(m,n,p,B[:n][:p]) [if not already present]

18, Generating NVIDIA GPU code
20, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
21, #pragma acc loop seq
22, #pragma acc loop seq

21, Complex loop carried dependence of A->-> prevents parallelization
Loop carried dependence of C->-> prevents parallelization
Loop carried backward dependence of C->-> prevents vectorization
Complex loop carried dependence of C->->,B->-> prevents parallelization

22, Complex loop carried dependence of A->->,C->->,B->-> prevents parallelization
main:

65, Loop not vectorized/parallelized: contains call

$ nvc -mp -target=gpu -Minfo=all -fast matrix.c clock.c main_li_omp.c -o matmul_li_omp -I include
matrix.c:
new_matrix:

23, Loop not vectorized: may not be beneficial for target
Loop not vectorized: unknown
Loop unrolled 4 times

rand_matrix:
43, Loop not vectorized/parallelized: contains call

checksum_matrix:
55, Generated vector simd code for the loop containing reductions

clock.c:
main_li_omp.c:
matmul:

8, Loop not fused: function call before adjacent loop
9, Generated vector simd code for the loop
12, Generating target enter data map(to: A[:m])
16, Loop not vectorized/parallelized: contains call
18, Generating target enter data map(to: B[:p],A[i0][:p])
20, Loop not vectorized/parallelized: contains call
22, Generating target enter data map(to: C[:m],B[i0][:n])
24, Loop not vectorized/parallelized: contains call
26, #omp target teams distribute parallel for

26, Generating "nvkernel_matmul_F1L26_2" GPU kernel
28, Loop parallelized across teams and threads(128), schedule(static)

26, Generating target enter data map(to: C[i0][:n])
Generating map(to:m,p,n)

28, Loop not vectorized/parallelized: not countable
30, Loop not vectorized: data dependency

Loop unrolled 2 times
FMA (fused multiply-add) instruction(s) generated

31, FMA (fused multiply-add) instruction(s) generated
35, Loop not vectorized/parallelized: contains call
37, Generating target exit data map(from: C[i0][:n])
39, Generating target exit data map(from: C[:m])

main:
75, Loop not vectorized/parallelized: contains call

/usr/bin/ld: warning: /tmp/pgcudafatG6ofGldlIIjz.o: missing .note.GNU-stack section implies executable stack
/usr/bin/ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker

www.codee.com Page 12 April 24, 2023

About the GNU compiler in Perlmutter
Regarding the GNU gcc compiler, the same remarks apply to the MATMUL sequential source code
written in C. Regarding the OpenACC-enabled, the gcc compiler does not provide OpenACC
support mature enough to generate efficient code for the GPU. For illustrative purposes, see the
messages reported by gcc set up in maximum optimization level (-fast) and in verbose mode
(-fopt-info-all):

$ module use /global/cfs/cdirs/m1759/yunhe/Modules/perlmutter/modulefiles
$ module load gcc/12.1.0

$ gcc -I include main.c -fopt-info-all -c -Ofast
main.c:59:9: note: Considering inline candidate matmul/22.
main.c:59:9: missed: will not early inline: main/23->matmul/22, call is cold and code would grow at least by 32
main.c:76:5: missed: not inlinable: main/23 -> delete_matrix/31, function body not available
main.c:75:5: missed: not inlinable: main/23 -> delete_matrix/31, function body not available
main.c:74:5: missed: not inlinable: main/23 -> delete_matrix/31, function body not available
main.c:69:5: missed: not inlinable: main/23 -> printf/24, function body not available
main.c:68:5: missed: not inlinable: main/23 -> printf/24, function body not available
main.c:67:5: missed: not inlinable: main/23 -> printf/24, function body not available
main.c:66:23: missed: not inlinable: main/23 -> checksum_matrix/30, function body not available
main.c:63:26: missed: not inlinable: main/23 -> getClock/29, function body not available
main.c:59:9: missed: not inlinable: main/23 -> matmul/22, --param max-inline-insns-auto limit reached
main.c:55:25: missed: not inlinable: main/23 -> getClock/29, function body not available
main.c:54:5: missed: not inlinable: main/23 -> __builtin_puts/25, function body not available
main.c:51:5: missed: not inlinable: main/23 -> rand_matrix/28, function body not available
main.c:50:5: missed: not inlinable: main/23 -> rand_matrix/28, function body not available
main.c:45:9: missed: not inlinable: main/23 -> printf/24, function body not available
main.c:43:24: missed: not inlinable: main/23 -> new_matrix/27, function body not available
main.c:42:24: missed: not inlinable: main/23 -> new_matrix/27, function body not available
main.c:41:24: missed: not inlinable: main/23 -> new_matrix/27, function body not available
main.c:37:5: missed: not inlinable: main/23 -> printf/24, function body not available
main.c:36:5: missed: not inlinable: main/23 -> __builtin_puts/25, function body not available
main.c:35:5: missed: not inlinable: main/23 -> sscanf/26, function body not available
main.c:29:9: missed: not inlinable: main/23 -> __builtin_puts/25, function body not available
main.c:28:9: missed: not inlinable: main/23 -> printf/24, function body not available
Unit growth for small function inlining: 134->134 (0%)

Inlined 0 calls, eliminated 0 functions

main.c:18:25: missed: failed: evolution of base is not affine.
main.c:18:42: missed: failed: evolution of base is not affine.
main.c:18:42: missed: failed: evolution of base is not affine.
consider run-time aliasing test between *_2 and *_5
main.c:9:30: optimized: Loop 5 distributed: split to 0 loops and 1 library calls.
main.c:18:25: missed: failed: evolution of base is not affine.
main.c:18:42: missed: failed: evolution of base is not affine.
main.c:15:26: missed: couldn't vectorize loop
main.c:15:26: missed: not vectorized: multiple nested loops.
main.c:16:30: missed: couldn't vectorize loop
main.c:18:25: missed: not vectorized: no vectype for stmt: pretmp_80 = *_10;
scalar_type: double
main.c:17:34: missed: couldn't vectorize loop
main.c:18:32: missed: not vectorized: no vectype for stmt: _16 = *_15;
scalar_type: double
main.c:8:26: missed: couldn't vectorize loop
main.c:10:21: missed: statement clobbers memory: __builtin_memset (_3, 0, _70);
main.c:6:6: note: vectorized 0 loops in function.
main.c:10:21: missed: statement clobbers memory: __builtin_memset (_3, 0, _70);
main.c:18:42: missed: failed: evolution of base is not affine.
main.c:10:21: missed: statement clobbers memory: __builtin_memset (_3, 0, _70);
main.c:22:1: note: ***** Analysis failed with vector mode V2DI
main.c:22:1: note: ***** Skipping vector mode V16QI, which would repeat the analysis for V2DI
main.c:24:5: note: vectorized 0 loops in function.
main.c:35:5: missed: statement clobbers memory: sscanf (_2, "%d", ¶m_n);
main.c:36:5: missed: statement clobbers memory: __builtin_puts (&"- Input parameters"[0]);
main.c:37:5: missed: statement clobbers memory: printf ("n\t= %i\n", param_n.0_3);
main.c:41:24: missed: statement clobbers memory: in1_mat_24 = new_matrix (rows_22, rows_22);
main.c:42:24: missed: statement clobbers memory: in2_mat_26 = new_matrix (rows_22, rows_22);
main.c:43:24: missed: statement clobbers memory: out_mat_28 = new_matrix (rows_22, rows_22);
main.c:50:5: missed: statement clobbers memory: rand_matrix (in1_mat_24, rows_22, rows_22);
main.c:51:5: missed: statement clobbers memory: rand_matrix (in2_mat_26, rows_22, rows_22);

www.codee.com Page 13 April 24, 2023

main.c:54:5: missed: statement clobbers memory: __builtin_puts (&"- Executing test..."[0]);
main.c:55:25: missed: statement clobbers memory: time_start_33 = getClock ();
main.c:59:9: missed: statement clobbers memory: matmul (rows_22, rows_22, rows_22, in1_mat_24, in2_mat_26,
out_mat_28);
main.c:63:26: missed: statement clobbers memory: time_finish_35 = getClock ();
main.c:66:23: missed: statement clobbers memory: checksum_37 = checksum_matrix (out_mat_28, rows_22, rows_22);
main.c:67:5: missed: statement clobbers memory: printf ("time (s)= %.6f\n", _9);
main.c:68:5: missed: statement clobbers memory: printf ("size\t= %i\n", param_n.4_10);
main.c:69:5: missed: statement clobbers memory: printf ("chksum\t= %.0f\n", checksum_37);
main.c:74:5: missed: statement clobbers memory: delete_matrix (in1_mat_24);
main.c:75:5: missed: statement clobbers memory: delete_matrix (in2_mat_26);
main.c:76:5: missed: statement clobbers memory: delete_matrix (out_mat_28);
main.c:45:9: missed: statement clobbers memory: printf ("Error: not enough memory to run the test using n = %i\n",
param_n.3_8);
main.c:28:9: missed: statement clobbers memory: printf ("Usage: %s <n> \n", _1);
main.c:29:9: missed: statement clobbers memory: __builtin_puts (&" <n> is the desired test size."[0]);
main.c:24:5: note: ***** Analysis failed with vector mode V4SI
main.c:24:5: note: ***** Skipping vector mode V16QI, which would repeat the analysis for V4SI

This reveals that the optimization capabilities of gcc and nvc are significantly different. This
indicates that Codee is a good complement to the compiler and enables the programmer to create
performant code for the GPU.

The runtime of the MATMUL sequential version written in C and compiled with gcc maximum
optimization level (-fast) is 33.4 seconds because gcc does not apply loop interchange
automatically. It goes down to 8.8 seconds using the version with explicit loop interchange.

$ gcc -Ofast clock.c matrix.c main.c -I include/ -o matmul

$./matmul 3000
- Input parameters
n = 3000
- Executing test...
time (s)= 33.369070
size = 3000
chksum = 546933812237

$ gcc -Ofast clock.c matrix.c main_li.c -I include/ -o matmul_li

$./matmul_li 3000
- Input parameters
n = 3000
- Executing test...
time (s)= 8.808224
size = 3000
chksum = 546933812237

www.codee.com Page 14 April 24, 2023

Finally, regarding the OpenACC-enabled version, the gcc compiler does not provide OpenACC
support mature enough to generate efficient code for the GPU 9.

$ module use /global/cfs/cdirs/m1759/yunhe/Modules/perlmutter/modulefiles
$ module load gcc/12.1.0

$ gcc -Ofast -openacc -foffload=nvptx-none="-Ofast -misa=sm_80" clock.c matrix.c main_li_acc.c -I include/ -o
matmul_li_acc

$./matmul_li_acc 3000
- Input parameters
n = 3000
- Executing test...
time (s)= 8.828352
size = 3000
chksum = 546933812237

$ gcc -Ofast -fopenmp -foffload=nvptx-none="-Ofast -misa=sm_80" matrix.c clock.c main_li_omp.c -o matmul_li_omp -I
include

$./matmul_li_omp 3000
- Input parameters
n = 3000
- Executing test...
libgomp: cuCtxSynchronize error: an illegal memory access was encountered
libgomp: cuMemFree_v2 error: an illegal memory access was encountered
libgomp: device finalization failed

9 Note the gcc 12.1 compiler combined Codee 2023.1 raises a runtime error under investigation.

www.codee.com Page 15 April 24, 2023

