s#codee

Quickstart Guide of Codee
MBedTLS Cryptographic Library (MBEDTLS)
Step-by-Step in Perimutter @NERSC

Step 1. Setup the environment

Step 2: Understanding the implementation of MBEDTLS

Step 3: Producing the Codee Screening Report

Step 4: Automatically rewriting the source code with Codee Assistant

Step 5: Compiling, running and benchmarking the optimized code

Step 6. Further optimize MBedTLS exploring other functions

Step 7. Submitting a job to a CPU node 1

© ©W 00 W= -

Step 1. Setup the environment

Load Codee last version and the GNU programming environment ' through the modules
management system:

$ module load codee
$ module load PrgEnv-gnu

Run Codee configuration wizard to set up the compiler used to generate executables. In this case,
select the option “gcc-11.2 (/opt/cray/pe/gcc/11.2.0/bin/gec” 2, meaning that Codee will attempt to
interpret the user messages emitted by the compiler.

$ pwreport --configuration-wizard

Step 2: Understanding the implementation of MBEDTLS

MbedTLS is an open source C library that implements cryptographic primitives, X.509 certificate
manipulation and the TLS and DTLS protocols. Its small code footprint makes it suitable for
embedded systems. It is a solution endorsed by ARM, and a very common choice for implementing
TLS in embedded systems. As an example, the source code below shows the implementation of
the AES encryption algorithm, in particular a snippet of the source file “library/aes.c”.

/*
* AES-XTS buffer encryption/decryption
*/

int mbedtls_aes_crypt_xts(mbedtls_aes_xts_context *ctx,
int mode,
size_t length,

" Note we will use the Nvidia compiler nvc to generate executables for GPUs.
2 Note Codee 2023.04 supports the GNU, LLVM, Intel and Microsoft compilers. The Nvidia compiler is not supported.

const unsigned char data_unit[16],
const unsigned char *input,
unsigned char *output)

int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t blocks = length / 16;

size_t leftover = length % 16;

unsigned char tweak[16];

unsigned char prev_tweak[16];

unsigned char tmp[16];

AES_VALIDATE_RET(ctx != NULL);
AES_VALIDATE_RET(mode == MBEDTLS_AES_ENCRYPT ||
mode == MBEDTLS_AES_DECRYPT);
AES_VALIDATE_RET(data_unit != NULL);

AES_VALIDATE_RET(input != NULL);
AES_VALIDATE_RET(output != NULL);

/* Data units must be at least 16 bytes long. */
if(length < 16)
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;

/* NIST SP 800-38E disallows data units larger than 2**20 blocks.
if(length > (1 << 20) * 16)
return MBEDTLS_ERR_AES_INVALID INPUT_LENGTH;

/* Compute the tweak. */

ret = mbedtls_aes_crypt_ecb(&ctx->tweak, MBEDTLS_AES_ENCRYPT,
data_unit, tweak);

if(ret =0)

return(ret);

while(blocks--)
{

size_t i;

if(leftover &% (mode == MBEDTLS_AES_DECRYPT) && blocks == 0)

{

/* We are on the last block in a decrypt operation that has
* leftover bytes, so we need to use the next tweak for this block,
* and this tweak for the lefover bytes. Save the current tweak for
* the leftovers and then update the current tweak for use on this,
* the last full block. */

memcpy(prev_tweak, tweak, sizeof(tweak));

mbedtls_gf128mul_x_ble(tweak, tweak);

}

for(i =0; i< 16; i++)
tmp[i] input[i] ~ tweak[i];

ret = mbedtls_aes_crypt_ecb(&ctx->crypt, mode, tmp, tmp);
if(ret !'=0)
return(ret);

for(1 =0; i < 16; i++)
output[i] = tmp[i] ~ tweak[i];

/* Update the tweak for the next block. */
mbedtls_gf128mul_x_ble(tweak, tweak);

output += 16;
input += 16;
}

if(leftover)

/* If we are on the leftover bytes in a decrypt operation, we need to
* use the previous tweak for these bytes (as saved in prev_tweak). */
unsigned char *t = mode == MBEDTLS_AES_DECRYPT ? prev_tweak : tweak;

/* We are now on the final part of the data unit, which doesn't divide
* evenly by 16. It's time for ciphertext stealing. */

size t i;

unsigned char *prev_output = output - 16;

/* Copy ciphertext bytes from the previous block to our output for each
* byte of cyphertext we won't steal. At the same time, copy the

www.codee.com April 19, 2023

* remainder of the input for this final round (since the loop bounds
* are the same). */
for(i = @; i < leftover; i++)

output[i] = prev_output[i];
tmp[i] = input[i] ~ t[i];

/* Copy ciphertext bytes from the previous block for input in this
* round. */

for(; i < 16; i++)

tmp[i] = prev_output[i] ~ t[i];

ret = mbedtls_aes_crypt_ecb(&ctx->crypt, mode, tmp, tmp);
if(ret !=0)
return ret;

/* Write the result back to the previous block, overriding the previous
* output we copied. */

for(i =0; i < 16; i++)

prev_output[i] = tmp[i] ~ t[i];

}

return(@);

¥
#endif /* MBEDTLS_CIPHER_MODE_XTS */

Step 3: Producing the Codee Screening Report

The Codee Screening Report is intended to help assess the speed-up potential of the code. Invoke
the pwreport --screening command. The default set up enables single-core optimizations on the
CPU (note multithreading and GPU offload are disabled by default). The Codee best practice
recommendation is to start with the analysis of the open-source project as a whole. For this
purpose, let's take advantage of Codee integration with build systems through the compile
commands JSON file. The commands below show how to produce it from CMake, and how to pass
the JSON file to the pwreport tool. Note the screening shows the gcc compiler optimization flag
(-02) and the progress through all the files of the project (--show-progress).

$ cmake -DENABLE_TESTING=On -DCMAKE_C_COMPILER=gcc -DUSE_SHARED_MBEDTLS_LIBRARY=On -DCMAKE_BUILD_TYPE=Release
-DCMAKE_EXPORT_COMPILE_COMMANDS=1 -DMBEDTLS_FATAL_WARNINGS=Off -B build -G "Unix Makefiles"

$ make -C build/

$ pwreport --screening --config build/compile_commands.json --show-progress
pwreport: warning: repeated files found in the provided compilation database. Ignoring additional occurrences.
[C] target compiler '/opt/cray/pe/gcc/11.2.0/bin/gcc', 11.2.0

Full version name: gcc version 11.2.0 20210728 (Cray Inc.) (GCC)

Optimization flags: -02

1/263] /global/homes/s/user/MbedTLS/tests/src/asnl_helpers.c
2/263] /global/homes/s/user/MbedTLS/tests/src/certs.c
3/263] /global/homes/s/user/MbedTLS/tests/src/drivers/hash.c
4/263] /global/homes/s/user/MbedTLS/tests/src/drivers/platform_builtin_keys.c
5/263] /global/homes/s/user/MbedTLS/tests/src/drivers/test_driver_aead.c
6/263] /global/homes/s/user/MbedTLS/tests/src/drivers/test_driver_cipher.c
7/263] /global/homes/s/user/MbedTLS/tests/src/drivers/test_driver_key_management.c
8/263] /global/homes/s/user/MbedTLS/tests/src/drivers/test_driver_mac.c
9/263] /global/homes/s/user/MbedTLS/tests/src/drivers/test_driver_signature.c
10/263] /global/homes/s/user/MbedTLS/tests/src/fake_external_rng_for_test.c
11/263] /global/homes/s/user/MbedTLS/tests/src/helpers.c
12/263] /global/homes/s/user/MbedTLS/tests/src/psa_crypto_helpers.c
13/263] /global/homes/s/user/MbedTLS/tests/src/psa_exercise_key.c
14/263] /global/homes/s/user/MbedTLS/tests/src/random.c
15/263] /global/homes/s/user/MbedTLS/tests/src/threading_helpers.c
16/263] /global/homes/s/user/MbedTLS/library/aes.c

www.codee.com Page 3 April 19, 2023

[18/263] /global/homes/s/user/MbedTLS/library/aria.c

[36/263] /global/homes/s/user/MbedTLS/library/cmac.c

[262/263] /global/homes/s/user/MbedTLS/build/tests/test_suite_net.c
[263/263] /global/homes/s/user/MbedTLS/build/tests/test_suite_oid.c

SCREENING REPORT

Lines of code Optimizable lines Analysis time # checks Effort Cost Profiling

245177 296341

CHECKS PER STAGE OF THE PERFORMANCE OPTIMIZATION ROADMAP
Scalar Control Memory Vector Multi Offload

Guided 102 148 22 n/a

Target : analyzed directory or source code file

Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)

Optimizable lines : relevant lines of code that Codee detects as optimizable

Analysis time : time required to analyze the target

checks : total actionable items (opportunities, recommendations, defects and remarks) detected

Effort : estimated number of hours it would take to carry out all checks (scalar, control, memory, vector, multi and
offload with 1, 2, 4, 8, 12 and 16 hours respectively)

Cost : estimated cost in euros to carry out all the checks, paying the average salary of 56,286€/year for a
professional C/C++ developer working 1720 hours per year

Profiling : estimation of overall execution time required by this target

Codee mode : Available Codee mode for the loop:
- Auto: Codee optimizes the code automatically
- Guided: Codee identifies the performance issue, and the programmer must apply the changes to the code

SUGGESTIONS
Use --verbose to get more details, e.g:
pwreport --verbose --screening --config build/compile_commands.json --show-progress

You can specify multiple inputs which will be displayed as multiple rows (ie. targets) in the table, eg:
pwreport --screening some/other/dir --config build/compile_commands.json --show-progress

Use --checks to find out details about the detected checks:
pwreport --checks --config build/compile_commands.json --show-progress

You can automatically vectorize every vectorizable loop of one function with:
pwdirectives --auto --vector omp --in-place --config build/compile_commands.json

Multithreading and offloading checks are filtered by default. Use --include-tags to enable them:
pwreport --screening --include-tags all --config build/compile_commands.json --show-progress

You can focus on a specific optimization type by filtering by its tag (scalar, control, memory, vector, multi,
offload), eg.:

pwreport --checks --include-tags scalar --config build/compile_commands.json --show-progress

263 files successfully analyzed and © failures in 1 m 12 s

www.codee.com April 19, 2023

Typically, the screening points to code snippets that can be optimized using Codee. Codee does
not do a profiling of the application, so it is good practice to dig deeper in the analysis of source
code functions/loops that consume a large amount of runtime (i.e. hotspots). Right below, the
screening of the hotspot source file “library/aes.c’ is shown, enabling the verbose mode
(--verbose) that identifies the loops of the source code where Codee source code rewriting
capabilities are useful (see files/functions listed in Auto mode). In the file “aes.c”, there are a total
of 4 loops that can be vectorized using Codee, and that were overlooked by GCC, spread across
the functions mbedtis_aes_crypt_xts and mbedtls_aes_crypt_cbc.

$ pwreport --screening --verbose --config build/compile_commands.json library/aes.c
[C] target compiler '/opt/cray/pe/gcc/11.2.0/bin/gcc', 11.2.0

Full version name: gcc version 11.2.0 20210728 (Cray Inc.) (GCC)

Optimization flags: -02

SCREENING REPORT

Lines of code Optimizable lines Analysis time # checks Effort Cost Profiling

1474 ms 119 h 3894€

CHECKS PER STAGE OF THE PERFORMANCE OPTIMIZATION ROADMAP
Scalar Control Memory Vector Multi Offload

LIST OF FUNCTIONS FOR CODEE AUTO AND GUIDED MODES
checks
Codee mode File :function # Loops Scalar Control Memory Vector Multi

/global/homes/s/user/performance-demos/MbedTLS/v3.1.0/1ibrary/aes.c
|- :mbedtls_aes_crypt_cbc (%] 0 0 2
*- :mbedtls_aes_crypt_xts

Guided
/global/homes/s/user/performance-demos/MbedTLS/v3.1.0/1ibrary/aes.c
raes_gen_tables 2
:mbedtls_aes_setkey_enc 4
:mbedtls_internal_aes_encrypt 1
:mbedtls_internal_aes_decrypt 1

Target : analyzed directory or source code file

Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)

Optimizable lines : relevant lines of code that Codee detects as optimizable

Analysis time : time required to analyze the target

checks : total actionable items (opportunities, recommendations, defects and remarks) detected

Effort : estimated number of hours it would take to carry out all checks (scalar, control, memory, vector, multi and
offload with 1, 2, 4, 8, 12 and 16 hours respectively)

Cost : estimated cost in euros to carry out all the checks, paying the average salary of 56,286€/year for a
professional C/C++ developer working 1720 hours per year

Profiling : estimation of overall execution time required by this target

Codee mode : Available Codee mode for the loop:
- Auto: Codee optimizes the code automatically
- Guided: Codee identifies the performance issue, and the programmer must apply the changes to the code

SUGGESTIONS
You can specify multiple inputs which will be displayed as multiple rows (ie. targets) in the table, eg:
You can specify multiple inputs which will be displayed as multiple rows (ie. targets) in the table, eg:
pwreport --screening some/other/dir --verbose --config build/compile_commands.json library/aes.c

Use --checks to find out details about the detected checks:
pwreport --checks --verbose --config build/compile_commands.json library/aes.c

www.codee.com Page 5 April 19, 2023

You can automatically vectorize every vectorizable loop of one function with:
pwdirectives --auto --vector omp --in-place --config build/compile_commands.json library/aes.c

Use pwloops to see the entire list of loops with further details (e.g. loop mode, compute patterns, variable scope):
pwloops --config build/compile_commands.json library/aes.c

Multithreading and offloading checks are filtered by default. Use --include-tags to enable them:

pwreport --screening --include-tags all --verbose --config build/compile_commands.json library/aes.c
You can focus on a specific optimization type by filtering by its tag (scalar, control, memory, vector, multi,
offload), eg.:
pwreport --checks --include-tags scalar --verbose --config build/compile_commands.json library/aes.c

1 file successfully analyzed and @ failures in 748 ms

Step 4: Automatically rewriting the source code with Codee
Assistant

Codee provides source code rewriting capabilities that enable the optimization of several loops in
the same function in one single invocation of the pwdirectives tool. The report shown below
optimizes the 5 loops of the mbedtis_aes_crypt_xts function reported in Auto mode in the
screening report (flag --auto).

$ pwdirectives --auto --vector omp --in-place --config build/compile_commands.json library/aes.c:mbedtls_aes_crypt_xts
[C] target compiler '/opt/cray/pe/gcc/11.2.0/bin/gcc', 11.2.0

Full version name: gcc version 11.2.0 20210728 (Cray Inc.) (GCC)

Optimization flags for rewriting:

Optimization flags for verificati -02 -fopenmp-simd

pwdirectives: warning: remember to add the -fopenmp-simd flag to the compiler flags needed to compile this file.
Otherwise, the compiler will not be able to vectorize the loops annotated with pragmas by Codee.
gcc-11.2 Codee 2023.0-29386 Verified by Codee

obal/homes/s/user/performance-demos/MbedTLS/v3.1.0/1library/aes.c
mbedtls_aes_crypt_xts:1126:5 n/a (cost)
mbedtls_aes_crypt_xts:1127: VL] (cost)
mbedtls_aes_crypt_xts:1129: n/a (cost)
mbedtls_aes_crypt_xts:1130: n/a (cost)
mbedtls_aes_crypt_xts:1131: n/a (cost)
mbedtls_aes_crypt_xts:1147:5 n/a (othr)

|- mbedtls_aes_crypt_xts:1162:9 n/a auto not verified
" - mbedtls_aes_crypt_xts:1169:9 n/a auto not verified
mbedtls_aes_crypt_xts:1194:9 n/a auto not verified
mbedtls_aes_crypt_xts:1202:9 n/a yes
mbedtls_aes_crypt_xts:1211:9 n/a auto not verified

5
5
5
5

Compiler command used by Codee to verify the auto-generated code:

/opt/cray/pe/gcc/11.2.0/bin/gcc -I /global/homes/s/user/performance-demos/MbedTLS/v3.1.0/include -I
/global/homes/s/user/performance-demos/MbedTLS/v3.1.0/1library -Wall -Wextra -Wwrite-strings -Wformat=2
-Wno-format-nonliteral -Wvla -Wshadow -Wmissing-declarations -Wmissing-prototypes -02 -o
CMakeFiles/mbedcrypto_static.dir/aes.c.o -c /global/homes/s/user/performance-demos/MbedTLS/v3.1.0/1library/aes.c
-fopt-info-vec-missed -fopt-info -c

Loop : loop name following the syntax <file>:<function>:<line>:<column>
gcc-11.2 : Target compiler vectorization status:
auto: loop automatically vectorized by the compiler
no: loop not vectorized by the compiler. Could happen for different reasons:
no (cost): the compiler's cost model recommends so
no (ctrl): complex control flow inhibits vectorization
no (dep) : there is (or seems to be) a dependency inhibiting vectorization
no (prec): potential precision loss if vectorized
no (vgen): SIMD instruction generator not supported by the compiler
no (outr): unsupported outer loop
no (unrl): the loop was fully unrolled by the compiler
no (call): the loop was replaced by a library call
no (othr): any other reason

www.codee.com Page 6 April 19, 2023

n/a: no information was provided by the compiler for this loop
Codee 2023.0-29386 : Codee vectorization status:
skipped: the target compiler vectorized the loop automatically, so that Codee skipped it
auto: Codee is able to automatically rewrite the loop using SIMD pragmas
yes: Codee detect it as a SIMD opportunity, but it is unable to rewrite it automatically
no: Codee vectorization cost model determines that the loop is not a worthwhile SIMD opportunity. The reason is

indicated in brackets (same options as compiler column)

Verified by Codee : Explicit vectorization profitable (‘verified: vect. by gcc-11.2° when Codee successfully produced
an explicit omp|gcc|clang SIMD pragma that resulted in automatic compiler vectorization, ‘verified: not vectorized by
gcc-11.2° when the compiler reports that it did not vectorize it (despite the new pragma), ‘not verified’ when no
vectorization report for this loop was recognized, and ‘'error' when a problem has occurred.

1 file successfully analyzed and © failures in 770 ms

A closer look at the pwadirectives output reveals that the gcc compiler reports the 5 target loops
(lines 1162, 1169, 1194, 1202, 1211) as not vectorized because the compiler (message “n/a"
indicates that gcc did not emit any user message related to vectorization). Instead, Codee
reported the 4 original loops as vectorizable (message “auto”) and produced the optimized source
code annotating it with OpenMP vectorization pragmas (“#pragma omp simd’). Note that at the
beginning Codee was set up to interoperate with the gcc-71.2 compiler (located at
/opt/cray/pe/gcc/11.2.0/bin/gcc). As a result, Codee identified the loops reported as not
vectorizable by the compiler and attempted to discover new opportunities for vectorization.

Given the large size of the code, find below the details of the annotations produced by Codee in
the format of a code patch:

@@ -1159,6 +1159,7 @@ int mbedtls_aes_crypt_xts(mbedtls_aes_xts_context *ctx,
mbedtls_gf128mul_x_ble(tweak, tweak);
}

#pragma omp simd
for(1 =0; i< 16; i++)
tmp[i] = input[i] ~ tweak[i];

@@ -1166,6 +1167,7 @@ int mbedtls_aes_crypt_xts(mbedtls_aes_xts_context *ctx,
if(ret =0)
return(ret);

#pragma omp simd
for(i =0; i< 16; i++)
output[i] = tmp[i] ~ tweak[i];

@@ -1191,6 +1193,7 @@ int mbedtls_aes_crypt_xts(mbedtls_aes_xts_context *ctx,
* byte of cyphertext we won't steal. At the same time, copy the
* remainder of the input for this final round (since the loop bounds
* are the same). */
#pragma omp simd lastprivate(i)
for(i = @; i < leftover; i++)

output[i] = prev_output[i];
@@ -1208,6 +1211,7 @@ int mbedtls_aes_crypt_xts(mbedtls_aes_xts_context *ctx,

/* Write the result back to the previous block, overriding the previous
* output we copied. */
#pragma omp simd
for(i =0; i < 16; i++)
prev_output[i] = tmp[i] ~ t[i];

www.codee.com Page 7 April 19, 2023

Step 5: Compiling, running and benchmarking the
optimized code

The MbedTLS software does not use OpenMP by default. The optimizations that take advantage
of vectorization were implemented with OpenMP SIMD pragmas. Thus, it is necessary to include
the compiler flag -fopenmp-simd flag * during the cmake build instruction of MBedTLS:

$ cmake -DENABLE_TESTING=On -DCMAKE_C_COMPILER=gcc -DUSE_SHARED_MBEDTLS_LIBRARY=On -DCMAKE_BUILD_TYPE=Release
-DCMAKE_EXPORT_COMPILE_COMMANDS=1 -DCMAKE_C_FLAGS=-fopenmp-simd -DMBEDTLS_FATAL_WARNINGS=Off -B buildVec -G "Unix

Makefiles

$ make -C buildvec/

Now the optimized source file “aes.c” is ready to be compiled, run and benchmarked:

$ buildVec/programs/test/benchmark aes_xts

AES-XTS-128 : 665714 KiB/s, 3 cycles/byte
AES-XTS-256 : 556754 KiB/s, 4 cycles/byte

In order to measure the performance gain achieved by using Codee, let’s run the previous compiled
version at build/.

$ build/programs/test/benchmark aes_xts

AES-XTS-128 8 502229 KiB/s, 4 cycles/byte
AES-XTS-256 H 449053 KiB/s, 5 cycles/byte

Finally, note that a performance gain of +20% faster has been achieved by following the
performance optimization best practices recommended by Codee. This indicates that Codee is a
good complement to the compiler and enables the programmer to create performant code.

® Note: The -fopenmp flag also works in this case. However, we recommend -fopenmp-simd if we are only using SIMD
pragmas because it does not include references to the OpenMP libraries for multithreading and offloading, and in this case
we are taking advantage of vectorization only.

Step 6. Further optimize MBedTLS exploring other
functions

The process described above for one function of MBedTLS can be repeated for other functions
identified in the Codee Screening Report. For illustrative purposes, consider the following
pwdirectives invocations for the source code files “aes.c”, “cmac.c” and “aria.c’.

$ pwdirectives --auto --vector omp --in-place --config build/compile_commands.json library/aes.c:mbedtls_aes_crypt_cbc

$ pwdirectives --auto --vector omp --in-place --config build/compile_commands.json library/cmac.c:cmac_xor_block

$ pwdirectives --auto --vector omp --in-place --config build/compile_commands.json
library/aria.c:mbedtls_aria_crypt_cbc

Finally, note that Codee Coding Assistant capabilities also enable automation of performance
optimizations in CI/CD pipelines and contribute to improving the maintainability of codes by
automating source code rewriting from the same original source code. For example, starting from a
single source file, Codee can automatically generate different versions using vectorization pragmas
for different compilers. For illustrative purposes, consider the following pwdirectives commands that
annotate the source code either with OpenMP SIMD pragmas, gcc SIMD pragmas or clang SIMD
pragmas. The -o flag allows us to generate the optimized version of the code in a new output file.

$ pwdirectives --auto --vector omp --config build/compile_commands.json -o library/aes_omp.c
library/aes.c:mbedtls_aes_crypt_cbc

$ pwdirectives --auto --vector gcc --config build/compile_commands.json -o library/aes_gcc.c
library/aes.c:mbedtls_aes_crypt_cbc

$ pwdirectives --auto --vector clang --config build/compile_commands.json -o library/aes_clang.c
library/aes.c:mbedtls_aes_crypt_cbc

Overall, Codee is a good complement to the compiler and enables the programmer to create
performant code. Codee supports an iterative development process, so that the performance
optimizations identified and tested can be automatically applied to the source code. This has an
impact on the maintainability and productivity of the developers.

www.codee.com Page 9 April 19, 2023

Step 7. Submitting a job to a CPU node

Pelmutter has CPU and GPU nodes. The user is expected to follow this step-by-step guide,
typically running the commands in an interactive session. Additionally, a set of scripts to do the
benchmarking using the queueing system of Perlmutter are provided.

For illustrative purposes, the user is expected to run the following sbatch command:

$ sbatch launch.sh

The script “/aunch.sh” to run a job in a CPU node is as follows *:

#!/bin/bash

#SBATCH -A ntrain8

#SBATCH --reservation=codee_dayl_cpu
#SBATCH -C cpu

#SBATCH -J Codee_MbedTLS

#SBATCH -q regular

#SBATCH -t 0:20:00

#SBATCH -N 1

#SBATCH --ntasks=1 #Indicate the maximum number of processes
#SBATCH --ntasks-per-node=1 #Indicate how many tasks per node you want to run
#SBATCH --cpus-per-task=32 #Indicate how many CPU cores per task you need

export SLURM_CPU_BIND="cores"
export OMP_NUM_THREADS=32

srun -N 1 -n 1 MbedTLS.sh

Finally, the script MbedTLS.sh to build and run all the codes is as follows (note it does not include
the generation of new code versions with Codee pwdirectives):

4 Note that the --reservation named “codee_dayT’ needs to be renamed as “codee_day2’ or as any other reservation
available to the user.

#!/bin/bash

function printRunCommand(){
Print the command
printf "\n$ $@\n"
Run the comman
$@

}

module load PrgEnv-gnu
module load codee

rm -rf build/ buildvec/
cp library/aes_original.c library/aes.c

echo
echo
echo "Build Serial"

printRunCommand "cmake -DENABLE_TESTING=On -DCMAKE_C_COMPILER=gcc -DUSE_SHARED_MBEDTLS_LIBRARY=0On
-DCMAKE_BUILD_TYPE=Release -DCMAKE_EXPORT_COMPILE_COMMANDS=1 -DMBEDTLS_FATAL_WARNINGS=0ff -B build"
printRunCommand "make -C build"

echo
echo
echo "Vectorize"

printRunCommand “"pwdirectives --auto --vector omp --in-place --config build/compile_commands.json
library/aes.c:mbedtls_aes_crypt_xts"

echo
echo
echo "Build Vectorized"

printRunCommand "cmake -DENABLE_TESTING=On -DCMAKE_C_COMPILER=gcc -DUSE_SHARED_MBEDTLS_LIBRARY=0On
-DCMAKE_BUILD_TYPE=Release -DCMAKE_EXPORT_COMPILE_COMMANDS=1 -DCMAKE_C_FLAGS=-fopenmp-simd
-DMBEDTLS_FATAL_WARNINGS=0ff -B buildVec"

printRunCommand "make -C buildVec"

echo
echo
echo "Run Serial"

printRunCommand "build/programs/test/benchmark aes_xts"

echo
echo
echo "Build Vectorized"

printRunCommand "buildVec/programs/test/benchmark aes_xts"

www.codee.com Page 1

April 19, 2023

