
Exploiting NERSC systems
for Bioinformatics

Shane Canon
Lawrence Berkeley Lab

JGI Training
May 2, 2011

The Challenges
and some Work Arounds

•  Scheduling policies
don’t facilitate through-
put workloads

•  No local disks

•  Longer wait times

•  Restricted environment
on compute nodes

•  Limited external
network connectivity

•  Use tools like MySGE
and taskfarmer to batch
up work

•  Use Cacher if possible

•  Target large workloads
that block other work

•  Use
CRAY_ROOTFS=DSL

•  Use a tcp relay on a
front-end node

Why does NERSC not provide
better support for serial jobs?

•  DOE requires NERSC to meet certain
metrics related to job sizes.

•  Scheduling policy favor large jobs to
insure they can get run

•  Cray systems are optimized for running
parallel jobs.

3

Running high-throughput workloads can
still be done and systems like Hopper are
big enough to make this worth while.

Resources and Tools

•  Allocation: m342 4M hours
•  Magellan Serial queue (-q mag_serial)
•  Advanced reservations
•  Task Farmer (blastalltf)
•  MySGE
•  Cacher
•  Ported applications

4

Task Farmer

•  A framework for running serial codes
against a large fasta file (assumes that
order is not important)

•  Can run with an arbitrary number of
compute nodes.

•  Will automatically re-run steps after a
timeout window

•  Output is automatically aggregated to
the server

5

Architecture (Distributed Mode)

Server
(can run
anywhere) Hopper

Client
Tasks
O(3k)

Network
Relay

Cluster
Client Tasks

Output
collected at
server

KB/s avg

O(MB/s)

Architecture (Local Mode)

Hopper

Client
Tasks
O(3k)

Server

Output
collected at
server

Task Farmer Details

•  Server takes Fasta input and splits it on
the fly into small batches (default 32
sequences)

•  Clients request a batch of sequences
from server

•  Each iteration is tracked for completion
•  Output is sent back to server and

appended to the output filename

8

Running BLAST

•  Add this to your dot file….

module use --append /usr/common/tig/Modules/modulefiles!
module use --append /usr/common/jgi/Modules/modulefiles!

module load taskfarmer/1.3!

9

Example Blast Batch Job

#!/bin/sh!

#PBS -N blastp!
#PBS -q regular!
#PBS -l mppwidth=7200,mppnppn=24,walltime=1:00:00!
#PBS -A m342!
#PBS -V!

cd $PBS_O_WORKDIR !

#!
Setup task farmer!
export TF_HOME=/global/common/carver/tig/taskfarmer/stats/!
export STAGE=$TF_HOME/share/taskfarmer/stage.cacher!
export PATH=$PATH:/project/projectdirs/genomes/apps/bin:$TF_HOME/bin!

10

Example Blast Batch Job

Specify the entire path to the database. This is used by the stage script to cache!
the DB on the compute nodes. So don't just change the tfrun line.!
When you copy files to Lustre scratch, be sure to increase the stripe count to improve!
performance. Here is how...!
mkdir $SCRATCH/db!
lfs setstripe $SCRATCH/db -c -1!
cp </path/to/db/nr*> $SCRATCH/db/!
#!
export DB=/scratch/scratchdirs/canon/db/nr!

11

Example Blast Batch Job

Tweaks. You can tune the batch size so that each step takes a reasonable amount of time.!
The batch size is the number of sequences processed in each step.!
export BATCHSIZE=16!
Max expected time to process the previous number of sequences. Adjust appropriately.!
export SERVER_TIMEOUT=2700!

This can be used to monitor progress. View...!
https://portal-auth.nersc.gov/project/genomes/stats/tfs.html?source=/project/genomes/sf/

status-contigs.js!
export STATUSFILE=/project/projectdirs/genomes/www/sf/status-contigs.js!

Game time. tfrun will handle launching the compute processes.!
Merge all your inputs into one mongo file.!
tfrun blastall -i mer330.faa -o mer330.faa.blastout -d $DB -p blastp -e 10 -F "m S" -m 9!

12

Task Farmer Considerations

•  Try to determine a good estimate of
your run time

•  Adjust the timeout or batch size to
insure that enough time is allowed for
each iteration

•  Use the stage.cacher to cache DB files.
•  Reduce output as much as possible
•  Start small and dial up.

13

MySGE

•  Starts a parallel job using the system
scheduler

•  Spawns an SGE scheduler as the users
•  Uses aprun to launch SGE execution

daemons on the compute nodes (as the
user)

•  User submits to the personal SGE
scheduler to run jobs

14

Demonstration

15

MySGE Considerations

•  While the virtual private cluster is
running, your NERSC repo is getting
charged (even if the cores are idle).

•  Still need to consider I/O issues.
Launching a 1024 jobs can create a
large IO load

16

Ported Applications

Thanks to Rob Egan, Alex Copeland, and
others for starting to port applications

•  ABySS
•  Bowtie
•  BWA
•  bio-perl

17

Final Notes

•  MySGE and Taskfarmer are home-
grown and still under development
(expect bugs)

•  Hopper is currently overloaded (long
waits)

•  NERSC is looking at methods to
natively support serial jobs (stay tuned)

18

