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80 Years of World Leading Team Science at Lawrence
_Berkeley National Lab
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Managed and operated by UC for the U.S. Department of Energy
~250 University of California faculty on staff at LBNL

4200 Employees, ~$820M/year Budget

13 Nobel Prizes

63 members of the National Academy of Sciences
(~3% of the Academy)

18 members of the National Academy of Engineering,
2 of the Institute of Medicine



World-Class User Facilities Underpin
Today’s Berkeley Lab
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Over 7,000 visiting scientists (~2/3 from universities) use Berkeley Lab research facilities each
year




Berkeley Lab Science Focus Areas
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Computing is Essential for Science Programs
in All Areas of the Lab
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Computing Sciences at Berkeley Lab

NERSC Facility Computational Research

Computational
Science
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ESnet is a Unique Instrument for Data-Intensive
Science

ESnet designed for large data
. — Connects 40 DOE sites to 140 networks
b\ — Growing 2x commercial networks
— 50% of traffic is from “big data”
J Unique capabilities:
— First 100G continental scale network
— Dark fiber could support 1 terabit
— Services based on science:
* Bandwidth reservations (OSCARS)
e Performance monitoring (perfSONAR)

* Endpoint features (ScienceDMZ and Data
Transfer nodes)

e Research testbeds (dark fiber)
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UC’s Computational Research and Theory (CRT) Facility

* Unique energy efficient design from weather / hillside
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— Collaborative space for 300
— $124M UC Project (up S12M)
— $20M DOE Project

— 100 MW at Berkeley Lab and
space for 2 exascale systems

* But “efficiency” is complicated
— Biggest factor in efficiency is utilization (90%)
— Race-to-halt is often best

* If we measure productivity by publications... ... e
— NERSC in 2010 has 450 publications per MW-year M IEVZANZAY 7
mss ,

* Next best: application performance per Watt
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W ENERGY science 8 j




The Future of High Performance
Scientific Computing

Kathy Yelick

Associate Laboratory Director for Computing Sciences
Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley
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2013 Computing with 1993 Technology
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Life of Scientist, 2033
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No personal/departmental computers
Travel replaced by telepresence

Lecturers teach millions of students
Theorems proven online (Polymath)

Users never login to NERSC systems
Computers “intuit” what jobs should be run
No users visit other user facilities

What does this mean for big, team science?

Office of
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The Influence of World Politics on HPC

Comprehenswe
Test ban treaty

Petascale Computing for Small
Number of Hero Simulations

Computing

' Office of
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Data-Intensive Computing is Growing in Science

¥

Commercial “Big Data” ‘
Growth in Sequencers,

CCDs, etc.

Data Analysis

Future Performance from
Exascale Technology

Computing

' Office of
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More Science Requires More Computing

£E 8, U.S. DEPARTMENT OF
@ ENERGY

Science at Scale

Petascale to Exascale Simulations

Science through Volume

Thousands to Millions of Simulations

Science in Data
Petabytes to Exabytes of Data

Office of
Science



Science at Scale

e Climate at NERSC dates back to 1990s

« Many IPCC 4th Assessment Report (AR4) simulations
run at NERSC

 PCM database first truly public climate database
* AR5" runs completed, AR6™ runs being planned

* NERSC hosts climate collaborations from NCAR, Scripps,
LBNL, LLNL, NOAA, PNL, NASA, IGES/COLA, ORNL, State
of CA, and many universities.

* Cloud resolution, quantifying uncertainty,
etc. will drive climate to exascale platforms

2011 Scientific Computing
— New math, science, systems support, data analytics HPC Innovation Award
necessary along the way NERSC and U. Colorado’s Gil

Compo honored for an
“International study that has
enabled much more detailed
and longer (100 years) record

*2013 release **2017/18 release gﬁg%ig‘g’fuaigiﬂto improve

~
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Science through Volume: Large Numbers of
Simulations for Materials

NER

 Tens of thousands of simulations are used to screen related
materials for use in battery design and other domains

* Goal: cut in half the 18 year from design to manufacturing

Capacity (mAh/g)
0 50 100 150 200 250 300 350 400
Today’ s batteries
2

55

)
N
n

Voltage (V

Interesting materials...
Materials Project, Gerd Ceder Pl (MIT): website has a database materials from

simulations, e.qg., over 20,000 potential battery materials.

Pis: Gerd Ceder, MIT and Kristin Persson, LBNL
*” U.S. DEPARTMENT OF Office Of

ENERGY Science -16-
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Joint Genome Institute (JGI) database has
billions of genes

* Metagenomics is key to DOE
* Integrated Microbial Genomes (IMG)

—Community resource for comparative genome
analysis

—From 1 to 3 billion genes in 2012

Radial Phylogenetic Tree
— Weeks to days for 100M gene sets

— Data streams over ESnet and is stored in NERSC’s data archive (tapes)

— Use dedicated JGI clusters and 20,000 — 75,000 cores on largest HPC

Iim
system (Hopper) o g /\
* Future growth from KBASE DOE Systems Eiobay
— Distributed Knowledgebase enabling predictive system. Knowledgebase  pata and
. . o PN modeling for
biology, e.g., microbes, plants, communities 9> KBASE  oreccive
= biology

— Extensible open-source software
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Computational Science has Moved through Difficult

Technology Transitions

1.E+18 = 7
Application Performance Growth
LE+1/ (Gordon Bell Prizes)
1.E+16 —r
1.E+15
1.E+14
L
3 1.E+13 S0
L
1.E+12 Attack of the
N iawj,* H?
1E+11 4 killer cellphones”:
1.E+10 The rest of the
1.E+09 - N computing WF)r|d
3 . . ” gets parallelism
1.E+08 | R e klller MICrosS T S S B L
1990 1995 2000 2005 2010 2015 2020
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NERSC is Cost Effective Relative to Clouds
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Compute Systems (1.38B hours) S181M
HPSS (17 PB) $12M
File Systems (2 PB) S3M
Total (Annual Cost) ~$200M

NERSC FY11-12
Budget S57M

These “list” prices overestimate cloud costs, but other underestimate:

 Doesn’tinclude the measured performance slowdown 2x-50x.

* No consulting staff, no account management, no software support

which is ~1/3 of NERSC’s Budget

Why? NERSC enjoys many of the cloud benefits at scale, but higher

utilization ( > 90%) and no profit.
NERSC cost/core hours dropped 10x (1000%) from 2007 to 2011
Amazon pricing dropped 15% in the same period
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Energy Efficient Computing is Key to

Performance Growth
At S1M per MW, energy costs are substantial

1 petaflop in 2010 used 3 MW
e 1 exaflop in 2018 would use 100+ MW with “Moore’s Law” scaling

1000
s . usual
= 100 - — scaling
o
3
: |
N R B B °
% 10 S E—— -
> | /S| amm=—
’ // ———————
1
2005 2010 2015 2020

This problem doesn’t change if we were to build 1000 1-Petaflop machines
instead of 1 Exasflop machine. It affects every university department cluster

EN ERG Scilgnce 20 i Wf;ﬁ
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Communication is expensive

Communication is expensive...

t. d Flops BW Latency
--- LIMe an energy Network  26% 15%
>9%  DRAM  23% = 5%
Cost components: 10000
« Bandwidth: # of words 0w 0]
= 100 - ——how
« Latency: # messages 8 —2018
]
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Strategies & &N &2

« Overlap: hide latency
« Avoid: new algorithms to reduce bandwidth (at least)

Hard to change: Latency is physics; bandwidth is money!

omputa
Research Division |
U.S. DEPARTMENT OF Ofﬁce Of Lawrence Berkeley

ENERGY Science  National Laboratory | 1/23/2013 - ngﬁB
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The Memory Swamp

Multicore didn’t cause this, but kept the bandwidth gap growing.

U.S. DEPARTMENT OF i A
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Obama for
Communication-Avoiding Algorithms

minimize communications between processors and the
memory hierarchy, by reformulating the communication patterns specified within the
algorithm.

FY 2012 Congressional Budget Request, Volume 4, FY2010 Accomplishments, Advanced Scientific Computing
Research (ASCR), pages 65-67.

But perhaps Obama
took this too seriously in
the first debate!

~
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Lessons #1: Understand communication limits

Latency is physics; bandwidth is money!

§ Acl. DEPARTMENT OF Office of




William’s Roofline Performance Model

256.0 Generic Machine
128.0 « Flat top is flop limit
peak DP ° Slanted is bandwidth limit

64.0 / »/a/ . X-Axis is arithmetic intensity
390 mul / add ipbalanhce of algorithm
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Autotuning Gets Kernel Performance Near Optimal

* Roofline model captures bandwidth and computation limits
* Autotuning gets kernels near the roof

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)
1024 1024 el e oo
512 512 4
256 single-precision peakl 256 DGTMM
% 128 & double-grecisian peak % 128 RULATERS s
O 64 & S SDGEMM O 64
% @Q(\v ()RTMIwave eg)r?. don % OZ7pt Stencil
32 v?‘ 32
) 7pt StenciI%/: OZ7F|’t Stencil ‘ 7pt Stencil
16 A 16 7 ) GTClpushi
/@ -GTCIpu shi somyf. |/
8 Spl\l!\i‘ I 8 '1' . 7
n ,;" / GTClchargei 4 ‘@ GTClchargei
2 v 2 ‘
Voo Vg g Yy YV, 1 2 4 8 16 32 Vo Vg g Yy YV, 1 2 4 8 16 32
Algorithmic intensity: Flops/Word Algorithmic intensity: Flops/Word

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,...
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Lessons #2: Target Higher Level Optimizations

Harder than inner loops....

Office of

§is R
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Avoiding Communication in lterative Solvers

 Consider Sparse lterative Methods for Ax=b
— Krylov Subspace Methods: GMRES, CG,...

— Can we lower the communication costs?

« Latency of communication, i.e., reduce # messages by computing
multiple reductions at once

« Bandwidth to memory hierarchy, i.e., compute Ax, A2%x, ... Akx with
one read of A

« Solve time dominated by:

— Sparse matrix-vector multiple (SPMV)

* Which even on one processor is dominated by “communication” time
to read the matrix

— Global collectives (reductions)
» Global latency-limited

Joint work with Jim Demmel,
. , Mark Hoemman, Marghoob
. U.S. DEPARTMENT OF Ofﬂce Of

a ENERGY Science 28 Mohiyuddin




Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

 Replace k iterations of y = A-x with [Ax, A%x, ..., A¥x]

A3-x © o 06 6 6 0 0 0 0 06 0 0o 0o o o
A2:x © o 06 06 0 0 0 0 0 0 0 0 0 o o
AXx @ o 06 06 0 0 0 0 0 0 0 0 0 o o

1 2 3 4 ..

* |dea: pick up part of A and x that fit in fast memory,
compute each of k products

 Example: A tridiagonal, n=32, k=3

* Works for any “well-partitioned” A

Office of
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Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, Ax, ..., A*x]

 Replace k iterations of y = A-x with [Ax, A%x, ..., A¥x]

* Sequential Algorithm
Step 1 Step 2

A3-x
A2-x
A-X

X

12 3 4. .. 32

 Example: A tridiagonal, n=32, k=3
e Saves bandwidth (one read of A&x for k steps)
e Saves latency (humber of independent read events)

Office of
Science
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Matrix Powers Kernel on a General Matrix

For implicit memory
management (caches)
uses a TSP algorithm for
layout

Joint work with Jim Demmel, Mark Hoemman,
Marghoob Mohiyuddin

[{¢

Saves communication for “well partitioned’
Serial: O(1) moves of data moves vs. O(k)
Parallel: O(log p) messages vs. O(k log p)

=B, U.S. DEPARTMENT OF Office of
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Bigger Kernel (Akx) Runs at Faster Speed
than Simpler (Ax)

7 , ,
. B Akx
0 g %ggedups on Intel Clovertown (8 core) mm SpMV
m .
Q.
Q 5
Ll
g 4 k=14
o 3.5X K ox 2.5X 26X k=19
Q 4 | 2.5X
k=4 k=4 k=3 k-4
© 1.8X 1.3X 15X 17X k=4
= > 1.3
| -
RS,
—
O 1
o
0 = —— [\ o © © © 4 © © ©
e 2 ¢ ¢ ¢ @& o 2 3 2 2
C & @~ £ o X - ' = @
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b o 32 s 8 £ 9o g
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Lessons #3: Understand Numerics
(Or work with someone who does)

Don’t be afraid to change to a “different”
right answer

Office of
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Minimizing Communication of GMRES to solve Ax=b

« GMRES: find x in span{b,Ab,...,Akb} minimizing || Ax-b ||,

Standard GMRES Communication-avoiding GMRES
for i=1 to k W =[v, Ay, A, ..., AKv ]
w=A-v(i-1) ..SpMV [Q,R] = TSQR(W)
MGS(w, v(0),...,v(i-1)) ... “Tall Skinny QR”
update v(i), H build H from R
endfor solve LSQ problem with H

solve LSQ problem with H

Sequential case: #words moved decreases by a factor of k
Parallel case: #messages decreases by a factor of k

Office of
Science
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Matrix Powers Kernel (and TSQR) in GMRES

109 p
A a 4 a — Orlglnal GMRES ]
N a4sa CA-GMRES (Monomial basis) ||
101 A . 009 CA-GMRES (Newton basis)
A A = =
a :
. A A - . A,

A

— —
9 9
w [\

Relative norm of residual Ax — b
=
|

107°F

d 2(|)0 4(|)0 6(|)0 8(|)0 1000
lteration count

\ U.S. DEPARTMENT OF Ofﬁce of
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Communication-Avoiding
Krylov Method (GMRES)

t

Relative runtime, for best (k,t)

with floor(restart length / k)

4.5 :
Matrix powers
R | I NIRRT SN I S ———— B — kernel
= TSQR
1. | NS USRS SOSSRRUS SRCRRTRRURRI SOt —— . Block Gram-
1 Schmidt
Small dense
3.0_ .................................................................................. e - operatlons
Sparse matrix-
2.5 B . tor product
Modified
2.0 ............................................................ . - Gram'SChmidt -
15 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
k=
1.0p=

Performance on 8 core Clovertown

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,

using 8 threads and restart length 60

%aGnt 1d3pt
Sparse matrix name

shipsec
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Lessons #3: Never Waste Fast Memory

Don’t get hung up on the “owner
computes” rule.
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Beyond Domain Decomposition
2.5D Matrix Multiply on BG/P, 16K nodes / 64K cores

c = 16 copies

Matrix multiplication on 16,384 nodes of BG/P
Surprises:
 Even Matrix Multiply had room for improvement
* |dea: make copies of C matrix (as in prior 3D

algorithm, but not as many)

e Result is provably optimal in communication
Lesson: Never waste fast memory

Can we generalize for compiler writers?

<O S8p '<Z<90 qué‘
EuroPar’11 (Solomonik, Demmel)
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Deconstructing 2.5D Matrix Multiply

Solomonick & Demmel

— Pk : :
"y * Tiling the iteration space

« 2D algorithm: never chop k dim
___________ « 2.50r3D: Assume +is
T :_:_:_:_:,:_:_:,:_ﬁ}z associative; chop k, which is >
z) y replication of C matrix
= )

| <—
Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

fori
for j
for k
C[i,j] ... Ali,k] ... B[k,j] ...

Office of
Science 39




Lessons #4: Understand Theory

Lower bounds help identify optimizations.
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Traditional (Naive n?) Nbody Algorithm
us| D d ition)

p _—

* Given n particles and p processors, size M memory

* Each processor has n/p particles

* Algorithm: shift copy of particles to the left p times,
calculating all pairwise forces

* Computation cost: n?/p
« Communication cost: O(p) messages, O(n) words

IPDPS’13 paper (Driscoll, Georganas, Koanantakool, Solomonik,
Yelick)
Office of
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Communication Avoiding Version
(using a “1.5D” decomposition)

p/c —>

B TEET B R T i R pem
| I

EERT BT W Rl R R e e
| |

MR R WA MR ML WA mwan mean
| I

FEITEE ) M) M) M) M) WA M -
| I

* Divide p into c groups. Replicate particles within group.
— First row responsible for updating all by orange, second all by green,...

I

Algorithm: shift copy of n/(p*c) particles to the left

— Combine with previous data before passing further level (log steps)

Reduce across c to produce final value for each particle

Total Computation: O(n?/p); Limit: ¢ < p1/2

Total Communication: O(log(p/c) + log c) messages,

R us. eoasrucr o *(c/p+ g
© ENERGY 252 Oln*(c/p+}/c)) words NG




In theory there is no difference between theory
and practice, but in practice there is.

--Jan L. A. van de Snepscheut, Computer Scientist
or
-- Yogi Berra, Baseball player and manager

Office of
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Generalizing Communication Optimal Transformations to

Arbitrary Loop Nests
1.5D N-Body: Replicate and Reduce The same idea (rep/icate and
000000 000000 reduce) can be used on (direct)
N-Body code:
000
000 1D decomposition = “1.5D”
000

Speedup of 1.5D N-Body over 1D

Does this work in general?

e Yes, for certain loops and
array expressions

e Relies on basic result in
group theory

e Compiler work TBD

32K

# of cores

PS,B.@ Jper (Driscoll, Georganas, Koanantakool, Solom

228 S u.s. DEPARTMENT OF
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Have We Seen this Idea Before?

* These algorithms also maximize parallelism beyond
“domain decomposition”

— SIMD machine days

 Automation depends on associative operator for
updates (e.g., M. Wolfe)

* Also used for “synchronization avoidance” in
Particle-in-Cell code (Madduri, Su, Oliker, Yelick)
— Replicate and reduce optimization given p copies
— Useful on vectors / GPUs

Office of
Science 45




Lessons #5: Aggregate Communication

Pack messages to better amortize per-message
communication costs.
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Lessons #6: Overlap and Pipeline
Communication

Sometimes runs contrary to lesson #5 on
aggregation
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wnatis a FufAo rFrogramming ivioael ¢
Partitioned Global Address Space

Global Address Space: directly read/write remote data
Partitioned: data is designated as local or global

S | [t Vx5 | 7 |

) y: (|y: y: 0 \\
- N /' i |

/)]

Q
NI,
E:

g g’ g g /
O pO p1 pn

 PGAS # cache coherent shared memory
 PGAS # data parallel (heroic compilers not required)
 Affinity control through partitioning = scalability

* Multiple PGAS libraries (GA) and languages (UPC, CAF, Titanium,
X10, Chapel, Sequaia, RyGAS)

Research Division |
S ""f:‘,‘ U.S. DEPARTMENT OF Ofﬂce Of Lawrence Berkeley

1 ENERGY science National Laboratory | 1/23/2013 : E'"ERKE/_”LE\J‘J“AB
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Programming Models

Latency really matters in irregular problems: Drives

O
N
\

\
N
A
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\‘“‘ “\
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Message Passing Programming

Divide up domain in pieces

Compute one piece and exchange

PVM, MPI, and many libraries

23 U.S. DEPARTMENT OF

52 Office of
ENERGY Science

Global Address Space Programming
Each start computing

Grab whatever / whenever

UPC, CAF, X10, Chapel, Fortress, Titanium,
GA,

49
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Avoiding Synchronization in Communication

two-sided message host
. CPU
message id data payload —
ded network
one-sided put message TR
address data payload —>
memory

 Two-sided message passing (e.g., MPI) requires matching a
send with a receive to identify memory address to put data

— Wildly popular in HPC, but cumbersome in some applications
— Couples data transfer with synchronization

* Using global address space decouples synchronization
— Pay for what you need!
— Note: Global Addressing # Cache Coherent Shared memory

U.s. DEPARTMENTOF | O)ffice of  JOint work with Dan Bonachea, Paul Hargrove, Rajesh »_ < m:m ‘,ﬁl
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UPC at Scale on the MILC (QCD) App

120000

100000 —— *UPC Opt
*=MPI

UPC Naive

80000

60000

40000

Sites / Second

20000

0 I I I I I I |
512 1024 2048 4096 8192 16384 32768

Number of Cores

o i o100, Austin, Wright, Strohmaier, Shalf, Yelick (unpublished VA
@ ENERGY e 51 N
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Communication costs will also lead to under-provisioned
networks

Management of critical resources is increasingly important:
* Memory and network bandwidth limited by cost and energy

e Capacity limited at many levels: network buffers at interfaces, internal
network congestion are real and growing problems

InfiniBand - 8 byte Msg Throughput
35
30 =®=Proc —#—Hyb Pth
g Processes (BUPC) A
225
<= 20 2X
2 15 / 3X
-E Hybrid
€ 10
@ A
5 7 Pthreads Vv 5X *
0 L T T T T T T 1
4 8 12 16 20 24 28 32
Cores Active

Even at modest core counts, interface to network can be bottleneck
Office of (lancu, Khaled, Hofmeyr)
-52-
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Exascale challenges

There are many challenges facing next generation
scientific computing

* Scaling

* Synchronization,
 Dynamic system behavior

* Irregular algorithms

* Resilience

don’t forget what’s important

Location, Location, Location

Office of
Science




Communication Hurts!
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