
Introduction to OpenMP

Yun (Helen) He
Cray XE6 Workshop
February 7-8, 2011

Outline

•  About OpenMP
•  Parallel Regions
•  Using OpenMP on Hopper
•  Worksharing Constructs
•  Synchronization
•  Data Scope
•  Tasks
•  Hands-on Exercises

2

What is OpenMP

•  OpenMP is an industry standard API of C/C++
and Fortran for shared memory parallel
programming.
–  OpenMP Architecture Review Board

•  Major compiler vendors: PGI, Cray, Intel, Oracle, HP,
Fujitsu, Microsoft, AMD, IBM, NEC, Texas Instrument, …

•  Research institutions: cOMPunity, DOE/NASA Labs,
Universities…

–  Current standard: 3.0, released in 2008.
–  3.1 draft just came out today for public comment.

3

OpenMP Components

•  Compiler Directives and Clauses
–  Interpreted when OpenMP compiler option is

turned on.
–  Each directive applies to the succeeding

structured block.
•  Runtime Libraries
•  Environment Variables

4

OpenMP Programming Model

•  Fork and Join Model
–  Master thread only for all serial regions.
–  Master thread forks new threads at the beginning of

parallel regions.
–  Multiple threads share work in parallel.
–  Threads join at the end of the parallel regions.

•  Each thread works on global shared and its own
private variables.

•  Threads synchronize implicitly by reading and
writing shared variables.

5

Serial vs. OpenMP

6

Serial:
void main ()
{
 double x(256);
 for (int i=0; i<256; i++)
 {
 some_work(x[i]);
 }
}

OpenMP:
#include “omp.h”
Void main ()
{
 double x(256);
#pragma omp parallel for
 for (int i=0; i<256; i++)
 {
 some_work(x[i]);
 }
}

OpenMP is not just parallelizing loops!
It offers a lot more ….

7

 Advantages of OpenMP

•  Simple programming model
–  Data decomposition and communication handled by

compiler directives
•  Single source code for serial and parallel codes
•  No major overwrite of the serial code
•  Portable implementation
•  Progressive parallelization

–  Start from most critical or time consuming part of the
code

8

OpenMP vs. MPI

–  Pure MPI Pro:
•  Portable to distributed and

shared memory machines.
•  Scales beyond one node
•  No data placement problem

–  Pure MPI Con:
•  Difficult to develop and

debug
•  High latency, low

bandwidth
•  Explicit communication
•  Large granularity
•  Difficult load balancing

–  Pure OpenMP Pro:
•  Easy to implement parallelism
•  Low latency, high bandwidth
•  Implicit Communication
•  Coarse and fine granularity
•  Dynamic load balancing

–  Pure OpenMP Con:
•  Only on shared memory

machines
•  Scale within one node
•  Possible data placement

problem
•  No specific thread order

OpenMP Basic Syntax

•  Fortran: case insensitive
–  Add: use omp_lib or include “omp_lib.h”
–  Fixed format

•  Sentinel directive [clauses]
•  Sentinel could be: !$OMP, *$OMP, c$OMP

–  Free format
•  !$OMP directive [clauses]

•  C/C++: case sensitive
•  Add: #include “omp.h”
•  #pragma omp directive [clauses] newline

9

Compiler Directives

•  Parallel Directive
–  Fortran: PARALLEL … END PARALLEL
–  C/C++: parallel

•  Worksharing Constructs
–  Fortran: DO … END DO, WORKSHARE
–  C/C++: for
–  Both: sections

•  Synchronization
–  master, single, ordered, flush, atomic

•  Tasking
–  task, taskwait

10

Clauses

•  private (list), shared (list)
•  firstprivate (list), lastprivate (list)
•  reduction (operator: list)
•  schedule (method [, chunk_size])
•  nowait
•  if (scalar_expression)
•  num_thread (num)
•  threadprivate(list), copyin (list)
•  ordered
•  collapse (n)
•  tie, untie
•  And more …

11

Runtime Libraries

•  Number of threads: omp_{set,get}_num_threads
•  Thread ID: omp_get_thread_num
•  Scheduling: omp_{set,get}_dynamic
•  Nested parallelism: omp_in_parallel
•  Locking: omp_{init,set,unset}_lock
•  Active levels: omp_get_thread_limit
•  Wallclock Timer: omp_get_wtime

•  thread private
•  call function twice, use difference between end time

and start time
•  And more …

12

Environment Variables

•  OMP_NUM_THREADS
•  OMP_SCHEDULE
•  OMP_STACKSIZE
•  OMP_DYNAMIC
•  OMP_NESTED
•  OMP_WAIT_POLICY
•  OMP_ACTIVE_LEVELS
•  OMP_THREAD_LIMIT
•  And more …

13

The parallel Directive

14

C/C++:
#pragma omp parallel private(thid)
{
 thid = omp_get_thread_num();
 printf(“I am thread %d\n”, thid);
}

FORTRAN:
!$OMP PARALLEL PRIVATE(id)
 id = omp_get_thread_num()
 write (*,*) “I am thread”, id
!$OMP END PARALLEL

•  The parallel directive forms a team of threads for
parallel execution.

•  Each thread executes within the OpenMP parallel
region.

A Simple Hello_World
OpenMP Program

15

FORTRAN:

Program main
use omp_lib (or: include “omp_lib.h”)
integer :: id, nthreads
!$OMP PARALLEL PRIVATE(id)
 id = omp_get_thread_num()
 write (*,*) ”Hello World from thread", id
!$OMP BARRIER
 if (id == 0) then
 nthreads = omp_get_num_threads()
 write (*,*) "Total threads=",nthreads
 end if
!$OMP END PARALLEL
End program

C/C++:

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
int main () {
 int tid, nthreads;
#pragma omp parallel private(tid)
 {
 tid = omp_get_thread_num();
 printf(”Hello World from thread %d\n", tid);
#pragma omp barrier
 if (tid == 0) {
 nthreads = omp_get_num_threads();
 printf(”Total threads= %d\n",nthreads);
 }
 }
}

Compile OpenMP on Hopper

•  Use compiler wrappers:
–  ftn for Fortran codes
–  cc for C codes, CC for C++ codes

•  Portland Group Compilers
–  Add compiler option “-mp=nonuma”
–  % ftn –mp=nonuma mycode.f90
–  Supports OpenMP 3.0 from pgi/8.0

•  Pathscale Compilers
–  % module swap PrgEnv-pgi PrgEnv-pathscale
–  Add compiler option “-mp”
–  % ftn –mp=nonuma mycode.f90

16

Compile OpenMP on Hopper (2)

•  GNU Compilers
–  % module swap PrgEnv-pgi PrgEnv-gnu
–  Add compiler option “-fopenmp”
–  % ftn –fopenmp mycode.f90
–  Supports OpenMP 3.0 from gcc/4.4

•  Cray Compilers
–  % module swap PrgEnv-pgi PrgEnv-cray
–  No additional compiler option needed
–  % ftn mycode.f90
–  Supports OpenMP 3.0

17

Run OpenMP on Hopper

•  Each Hopper node has 4 NUMA nodes, each with 6 UMA
cores.

•  Pure OpenMP code could use up to 24 threads per node.
•  Interactive batch jobs:

–  Pure OpenMP example, using 6 OpenMP threads:
–  % qsub –I –V –q interactive –lmppwidth=24
–  wait for a new shell
–  % cd $PBS_O_WORKDIR
–  setenv OMP_NUM_THREADS 6
–  setenv PSC_OMP_AFFINITY FALSE (note: for Pathscale only)
–  % aprun –n 1 –N 1 –d 6 ./mycode.exe

18

Run OpenMP on Hopper (2)

•  Run batch jobs:
–  Prepare a batch script first
–  % qsub myscript

•  Notice to use for pathscale:
–  setenv PSC_OMP_AFFINITY FALSE

19

Sample batch script:
(pure OpenMP example,
Using 6 OpenMP threads)

#PBS -q debug
#PBS -l mppwidth=24
#PBS -l walltime=00:10:00
#PBS -j eo
#PBS –V
cd $PBS_O_WORKDIR
setenv OMP_NUM_THREADS 6

#uncomment this line for pathscale
#setenv PSC_OMP_AFFINITY FALSE

aprun –n 1 -N 1 –d 6 ./mycode.exe

First Hands-on Exercise

20

Compile and Run:
% cd openmp
% ftn –mp=nonuma –o hello_world hello_world.f90
(or % cc –mp=nonuma –o hello_world hello_world.c)
% qsub –V –I –q interactive –lmppwidth=24
…
% cd $PBS_O_WORKDIR
% setenv OMP_NUM_THREADS 6 (for csh/tcsh)
 (or % export OMP_NUM_THREADS=6 for bash/ksh)
% aprun –n 1 –N 1 –d 6 ./hello_world

Sample Output: (no specific order)
 Hello World from thread 0
 Hello World from thread 2
 Hello World from thread 4
 Hello World from thread 3
 Hello World from thread 5
 Hello World from thread 1
 Total threads= 6

Get the Source Codes:
% cp –r /project/projecdirs/training/XE6-feb-2011/openmp .

Loop Parallelism

21

C/C++:
#pragma omp parallel [clauses]
{ …
 #pragma omp for [clauses]
 {
 for (int i=0; i<1000; i++) {
 a[i] = b[i] + c[i];
 }
 }
…}

FORTRAN:
!$OMP PARALLEL [Clauses]
 …
!$OMP DO [Clauses]
 do i = 1, 1000
 a (i) = b(i) + c(i)
 enddo
!$OMP END DO [NOWAIT]
 …
!$OMP PARALLEL

•  Threads share the work in loop parallelism.
•  For example, using 4 threads under the default “static”

scheduling, in Fortran:
–  thread 1 has i=1-250
–  thread 2 has i=251-500, etc.

Combined Parallel Worksharing
Constructs

22

C/C++:
#pragma omp parallel for
 for (int i=0; i<1000; i++) {
 a[i] = b[i] + c[i];
 }

FORTRAN:
!$OMP PARALLEL DO
 do i = 1, 1000
 a (i) = b(i) + c(i)
 enddo
!$OMP PARALLEL END DO

FORTRAN only:
INTEGER N, M
PARAMETER (N=100)
REAL A(N,N), B(N,N), C(N,N), D(N,N)
!$OMP PARALLEL WORKSHARE
 C = A + B
 M = 1
 D= A * B
!$OMP PARALLEL END WORKSHARE

FORTRAN example:
!$OMP PARALLEL SECTIONS
!$OMP SECTION
 do i = 1, 1000
 c (i) = a(i) + b(i)
 enddo
!$OMP SECTION
 do i = 1, 1000
 d(i) = a(i) * b(i)
 enddo
!$OMP PARALLEL END SECTIONS

23

The schedule Clause

•  Static: Loops are divided into #thrds partitions.
•  Guided: Loops are divided into progressively

smaller chunks until the chunk size is 1.
•  Dynamic, #chunk: Loops are divided into chunks

containing #chunk iterations.
•  Auto: The compiler (or runtime system) decides

what to use.
•  Runtime: Use OMP_SCHEDULE environment

variable to determine at run time.

Second Hands-on Exercise

24

Sample codes: schedule.f90

-- Experiment with different number of threads.
-- Run this example multiple times.

% ftn –mp=nonuma –o schedule schedule.f90
% qsub –V –I –q debug –lmppwidth=24
…
% cd $PBS_O_WORKDIR
% setenv OMP_NUM_THREADS 3
% aprun –n 1 –N 1 –d 4 ./schedule
% setenv OMP_NUM_THREADS 6
…

-- Compare scheduling results with different scheduling algorithm.
-- Results change with dynamic schedule at different runs.

Third Hands-on Exercise

25

Sample code: sections.f90

-- Experiment with different number of threads.
-- Run this example multiple times.

% ftn –mp=nonuma –o sections.f90
% qsub –V –I –q debug –lmppwidth=24
…
% cd $PBS_O_WORKDIR
% setenv OMP_NUM_THREADS 3
% aprun –n 1 –N 1 –d 3 ./sections
% setenv OMP_NUM_THREADS 5
% aprun –n 1 –N 1 –d 5 ./sections

-- What happens when more sections than threads?
-- What happens when more threads than sections?

Loop Parallelism:
ordered and collapse

26

FORTRAN example:
!$OMP DO ORDERED
 do i = 1, 1000
 a (i) = b(i) + c(i)
 enddo
!$OMP END DO

•  ordered specifies the parallel loop to be executed in the
order of the loop iterations.

•  collapse (n) collapse the n nested loops into 1, then
schedule work for each thread accordingly.

FORTRAN example:
!$OMP DO COLLAPSE (2)
 do i = 1, 1000
 do j = 1, 100
 a(i,j) = b(i,j) + c(i,j)
 enddo
 enddo
!$OMP END DO

27

Loop-based vs. SPMD

 Loop-based:
 !$OMP PARALLEL DO PRIVATE(i)
 !$OMP& SHARED(a,b,n)
 do I =1, n
 a(i) = a(i) + b(i)
 enddo
 !$OMP END PARALLEL DO

 SPMD (Single Program Multiple Data):
 !$OMP PARALLEL DO PRIVATE(start, end, i)
 !$OMP& SHARED(a,b)
 num_thrds = omp_get_num_threads()
 thrd_id = omp_get_thread_num()
 start = n * thrd_id/num_thrds + 1
 end = n * (thrd_num+1)/num_thrds
 do i = start, end
 a(i) = a(i) + b(i)
 enddo
 !$OMP END PARALLEL DO

SPMD code normally gives better performance than loop-
based code, but is more difficult to implement:

•  Less thread synchronization.
•  Less cache misses.
•  More compiler optimizations.

The reduction Clause

28

C/C++ example:
 int i;
#pragma omp parallel reduction(*:i)
 {
 i=omp_get_num_threads();
 }
 printf(”result=%d\n”,i);

•  Syntax: Reduction (operator : list).
•  Reduces list of variables into one, using operator.
•  Reduced variables must be shared variables.
•  Allowed Operators:

–  Arithmetic: + - * / # add, subtract, multiply, divide
–  Fortran intrinsic: max min
–  Bitwise: & | ^ # and, or, xor
–  Logical: && || # and, or

Fortran example:
 sum = 0.0
!$OMP parallel reduction (+: sum)
 do i =1, n
 sum = sum + x(i)
 enddo
!$OMP end do
!$OMP end parallel

Synchronization: the barrier
Directive

29

C/C++:
#pragma omp parallel
{ … some work;
 #pragma omp barrier
 … some other work;
}

FORTRAN:
!$OMP PARALLEL
 do i = 1, n
 a(i) = b(i) + c(i)
 enddo
!$OMP BARRIER
 do i = 1, n
 e(i) = a(i) * d(i)
 enddo
!$OMP END PARALLEL

•  Every thread waits until all threads arrive at the barrier.
•  Barrier makes sure all the shared variables are (explicitly)

synchronized.

Synchronization: the critical
Directive

30

C/C++:
#pragma omp parallel shared (x)
{
#pragma omp critical
 {
 x = x +1.0;
 }
}

FORTRAN:
!$OMP PARALLEL SHARED (x)
 … some work …
!$OMP CRITICAL [name]
 x = x + 1.0
!$OMP END CRITICAL
 … some other work …
!$OMP END PARALLEL

•  Each thread executes the critical region one at a time.
•  Multiple critical regions with no name are considered as

one critical region: single thread execution at a time.

Synchronization: the master and
single Directives

31

C/C++:
#pragma omp master
{
 … some work …
}

FORTRAN:
!$OMP MASTER
 … some work …
!$OMP END MASTER

•  Master region:
–  Only the master threads executes the MASTER region.
–  No implicit barrier at the end of the MASTER region.

•  Single region:
–  First thread arrives the SINGLE region executes this region.
–  All threads wait: implicit barrier at end of the SINGLE region.

C/C++:
#pragma omp single
{
 … some work …
}

FORTRAN:
!$OMP SINGLE
 … some work …
!$OMP END SINGLE

Synchronization: the atomic and
flush Directives

32

•  Atomic:
–  Only applies to the immediate following statement.
–  Atomic memory update: avoids simultaneous updates from

multiple threads to the same memory location.
•  Flush:

–  Makes sure a thread’s temporary view to be consistent with the
memory.

–  Applies to all thread visible variables if no var_list is provided.

C/C++:
#pragma omp atomic
 … some memory update …

FORTRAN:
!$OMP ATOMIC
 … some memory update …

FORTRAN:
!$OMP FLUSH [(var_list)]

C/C++:
#pragma omp flush [(var_list)]

Thread Safety

•  In general, IO operations, general OS functionality,
common library functions may not be thread safe.
They should be performed by one thread only or
serialized.

•  Avoid race condition in OpenMP program.
–  Race condition: Multiple threads are updating the

same shared variable simultaneously.
–  Use “critical” directive
–  Use “atomic” directive
–  Use “reduction” directive

33

Fourth Hands-on Exercise

34

Sample codes: pi.c, pi_omp_wrong.c,
 pi_omp1.c, pi_omp2.c, pi_omp3.c

-- Understand different versions of calculating pi.
-- Understand the race condition in pi_omp_wrong.c
-- Run multiple times with different number of threads

% qsub pi.pbs

Or:
% ftn –mp=nonuma –o pi_omp3.f90
% qsub –V –I –q debug –lmppwidth=24
…
% cd $PBS_O_WORKDIR
% setenv OMP_NUM_THREADS 16
% aprun –n 1 –N 1 –d 16 ./pi_omp3

-- Race condition generates different results.
-- Needs critical or atomic for memory updates.
-- Reduction is an efficient solution.

Data Scope

•  Most variables are shared by default:
–  Fortran: common blocks, SAVE variables, module variables
–  C/C++: file scope variables, static
–  Both: dynamically allocated variables

•  Some variables are private by default:
–  Certain loop indexes
–  Stack variables in subroutines or functions called from

parallel regions
–  Automatic (local) variables within a statement block

35

Data Sharing: the firstprivate
Clause

36

FORTRAN Example:

PROGRAM MAIN
 USE OMP_LIB
 INTEGER I
 I = 1
!$OMP PARALLEL FIRSTPRIVATE(I) &
!$OMP PRIVATE(tid)
 I = I + 2 ! I=3
 tid = OMP_GET_THREAD_NUM()
 if (tid ==1) PRINT *, I ! I=3
!$OMP END PARALLEL
 PRINT *, I ! I=1
END PROGRAM

•  Declares the variables in
the list private

•  Initializes the variables in
the list with the value
when they first enter the
construct.

 Data Sharing: the lastprivate
Clause

37

FORTRAN example:

Program main
Real A(100)
!$OMP parallel shared (A) &
!$OMP do lastprivate(i)
DO I = 1, 100
 A(I) = I + 1
ENDDO
!$OMP end do
!$OMP end parallel
 PRINT*, I ! I=101
end program

•  Declares the variables
in the list private

•  Updates the variables
in the list with the value
when they last exit the
construct.

Data Sharing: the threadprivate
and copyin Clauses

•  A threadprivate variable has
its own copies of the global
variables and common
blocks.

•  A threadprivate variable has
its scope across multiple
parallel regions, unlike a
private variable.

•  The copyin clause: copies
the threadprivate variables
from master thread to each
local thread.

38

FORTRAN Example:
PROGRAM main
 use OMP_LIB
 INTEGER tid, K
 COMMON /T/K
!$OMP THREADPRIVATE(/T/)
 K = 1

!$OMP PARALLEL PRIVATE(tid) COPYIN(/T/)
 PRINT *, "thread ", tid, ” ,K= ", K
 tid = omp_get_thread_num()
 K = tid + K
 PRINT *, "thread ", tid, “ ,K= ", K
!$OMP END PARALLEL

!$OMP PARALLEL PRIVATE(tid)
 tid = omp_get_thread_num()
 PRINT *, "thread ", tid, ” ,K= ", K
!$OMP END PARALLEL
 END PROGRAM main

Tasking: the task and taskwait
Directives

39

OpenMP:
int fib (int n) {
 int x,y;
 if (n < 2) return n;
#pragma omp task shared (x)
 x = fib (n – 1);
#pragma omp task shared (y)
 y = fib (n – 2);
#pragma omp taskwait
 return x+y;
}

Serial:
int fib (int n)
{
 int x, y;
 if (n < 2) return n;
 x = fib (n – 1);
 y = fib (n – 2);
 return x+y;
}

•  Major OpenMP 3.0 addition. Flexible and powerful.
•  The task directive defines an explicit task.
•  Threads share work from all tasks in the task pool.
•  The taskwait directive makes sure all child tasks created

for the current task finish.

Thread Affinity

•  Thread affinity: forces each thread to run on a
specific subset of processors, to take advantage of
local process state.

•  Current OpenMP standard has no specification for
thread affinity.

•  On Cray XE6, there is aprun command option “-cc”:
–  -cc cpu (default): Each PE’s thread is constrained to the

CPU closest to the PE.
–  -cc numa_node: Each PE’s thread is constrained to the

same NUMA node CPUs.
–  -cc none: Each thread is not binded to a specific CPU.

40

OMP_STACKSIZE

•  OMP_STACKSIZE defines the private stack space
each thread has.

•  Default value is implementation dependent, and is
usually quite small.

•  Behavior is undefined if run out of space, mostly
segmentation fault.

•  To change, set OMP_STACKSIZE to n (B,K,M,G)
bytes. For example:

 setenv OMP_STACKSIZE 16M

41

Fifth Hands-on Exercise

42

Sample codes: jacobi_serial.f90 and jacobi_omp.f90

-- Check the OpenMP features used in the real code.
-- Understand code speedup.

% qsub jacobi.pbs

Or:
% ftn –mp=nonuma –o jacobi_omp.f90
% qsub –V –I –q debug –lmppwidth=24
…
% cd $PBS_O_WORKDIR
% setenv OMP_NUM_THREADS 6
% aprun –n 1 –N 1 –d 6 ./jacobi_omp
% setenv OMP_NUM_THREADS 12
% aprun –n 1 –N 1 –d 12 ./jacobi_omp

-- Why not perfect speedup?

Performance Results

•  Why not perfect speedup?
–  Serial code sections not parallelized
–  Thread creation and synchronization overhead
–  Memory bandwidth
–  Memory access with cache coherence
–  Load balancing
–  Not enough work for each thread

43

Jacobi
OpenMP

Execution
Time (sec) Speedup

Execution
Time (sec)

(larger input)

Speedup
(larger input)

1 thread 21.7 1 668 1
2 threads 11.1 1.96 337 1.98
4 threads 6.0 3.62 171 3.91
6 threads 4.3 5.05 116 5.76

12 threads 2.7 8.03 60 11.13
24 threads 1.8 12.05 36 18.56

General Programming Tips
•  Start from an optimized serial version.
•  Gradually add OpenMP, check progress, add barriers.
•  Decide which loop to parallelize. Better to parallelize outer

loop. Decide whether loop permutation, fusion, exchange
or collapse is needed.

•  Use different OpenMP task scheduling options.
•  Adjust environment variables.
•  Choose between loop-based or SPMD.
•  Minimize shared, maximize private, minimize barriers.
•  Minimize parallel constructs, if possible use combined

constructs.
•  Take advantage of debugging tools: totalview, DDT, etc.

44

More OpenMP Examples

•  On NERSC machines: Franklin, Hopper2, and
Carver:
–  % module load training
–  % cd $EXAMPLES/OpenMP/tutorial

•  Try to understand, compile and run available
examples.
–  Examples prepared by Richard Gerber, Mike Stewart,

and Helen He
•  Have fun!

45

Further References

•  OpenMP 3.0 specification, and Fortran, C/C++ Summary cards.
http://openmp.org/wp/openmp-specifications/

•  IWOMP2010 OpenMP Tutorial. Rudd van der Pas.
http://www.compunity.org/training/tutorials/3%20Overview_OpenMP.pdf

•  Shared Memory Programming with OpenMP. Barbara Chapman, at UCB
2010 Par Lab Boot Camp.
http://parlab.eecs.berkeley.edu/sites/all/parlab/files/openmp-berkeley-
chapman-slides_0.pdf

•  SC08 OpenMP Tutorial. Tim Mattson and Larry Meadows.
www.openmp.org/mp-documents/omp-hands-on-SC08.pdf

•  Using OpenMP. Barbara Chapman, Gabrielle Jost, and Rudd van der Pas.
Cambridge, MA: MIT Press, 2008.

•  LLNL OpenMP Tutorial. Blaise Barney.
 http://computing.llnl.gov/tutorials/openMP

•  NERSC OpenMP Tutorial. Richard Gerber and Mike Stewart.
http://www.nersc.gov/nusers/help/tutorials/openmp

46

