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calculations can be performed incorrectly

 Convergence with wavefunction cutoff, bands, dielectric 
cutoff, BZ sampling

 Bad mean field

 Physics missing in standard approximations

 Incorrect screening charge in plasmon pole model
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Convergence in particular has led to many erroneous and 
problematic conclusions

 Wrong numbers

 Incorrect understanding of the physics of system under 
study

 Proposals to go beyond GW formalism
 Sometimes valid, often not
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In ZnO, using too small of a screened cutoff led to gaps 
that were too small and under-binding of d-electrons 

 Proposed that you need self-consistent GW to correct 
these failings

 But if you converge calculations, the underbinding of d-
electrons disappears

 We are seeing same pattern in other transition metals
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In MoS
2
 you also have very slow convergence of QP 

gaps with bands and screened cutoff, especially at M

 Different k-points converge at different rates with respect 
to the number of bands and dielectric cutoff

 Slow and non-uniform convergence : big effect on optical 
properties
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In MoS
2
 very k-point sampling (72x72) is needed for 

converged absorbance spectrum 

 One feature missing for 6x6 sampling!
 Interesting excitonic physics

 By having incorrect spectrum also 

missed interesting electron-phonon 

interaction effect

 Need detailed understanding for fundamental and applied 
purposes 



  

Bad mean field



  

In LDA, Ge is a metal and LUMO of silane is poorly 
represented

 



  

In LDA, Ge is a metal and LUMO of silane is poorly 
represented

 Ge : cannot define occupations properly to perform GW 
calculations without “hack”

 



  

In LDA, Ge is a metal and LUMO of silane is poorly 
represented

 Ge : cannot define occupations properly to perform GW 
calculations without “hack”

 LUMO : Mean-field wavefunction is poor, so matrix 
element of sigma not going to be good 



  

In LDA, Ge is a metal and LUMO of silane is poorly 
represented

 Ge : cannot define occupations properly to perform GW 
calculations without “hack”

 LUMO : Mean-field wavefunction is poor, so matrix 
element of sigma not going to be good

 Solution : better mean field

– COHSEX

– Hybrid functional 



GW Starting Point

-0.6 eV

1.1 eV

0.27 eV

GW First Order GW Full Diagonalization

For a typical GW calculation, the LDA starting point is sufficient:

Notable exceptions - Silane:

M. Rohlfing  and S.G. Louie Phys. Rev. B 62 4927 (2000).



GW Starting Point (silane)

LDA LDA+GW        COHSEX     COHSEX+GW

HOMO -8.52 -12.80 - 13.2    -12.80

LUMO -0.465  1.02            .1 .29

QP gap 8.06  13.82  13.3        13.10

   LDA      COHSEX   (Σ(E=0))



  

In LDA, Ge is a metal and LUMO of silane is poorly 
represented

 Ge : cannot define occupations properly to perform GW 
calculations without “hack”

 LUMO : Mean-field wavefunction is poor, so matrix 
element of sigma not going to be good

 Solution : better mean field

– COHSEX

– Hybrid functional

 Better mean field : GW gives semiconducting Ge, better 
describes silane LUMO 
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Developing new mean fields is very active 
area of research

 If mean field is completely terrible, self-energy calculated 
will not be right

– Hybrids

– LDA+DMFT 



  



  

Na



  

Na



  

The bandwidth of sodium is not given correctly by GW in 

the RPA/LTH approximation 



  

The bandwidth of sodium is not given correctly by GW in 

the RPA/LTH approximation 
 Experiment : 2.5 eV,   RPA GW = 2.9 eV



  

The bandwidth of sodium is not given correctly by GW in 

the RPA/LTH approximation 
 Experiment : 2.5 eV,   RPA GW = 2.9 eV

 Need to include exchange-correlation effects in dielectric 
response



  

The bandwidth of sodium is not given correctly by GW in 

the RPA/LTH approximation 
 Experiment : 2.5 eV,   RPA GW = 2.9 eV

 Need to include exchange-correlation effects in dielectric 
response

 Increased screening → increased electron-plasmon 
coupling → greater electron mass (~polaron) → smaller 
bandwidth



  

The bandwidth of sodium is not given correctly by GW in 

the RPA/LTH approximation 
 Experiment : 2.5 eV,   RPA GW = 2.9 eV

 Need to include exchange-correlation effects in dielectric 
response

 Increased screening → increased electron-plasmon 
coupling → greater electron mass (~polaron) → smaller 
bandwidth

 Generally bigger effect for alkali metals



BSE approximations

Removed in v. 
1.1

 Uncontrolled approximations:
 Restricted interpolation (problematic for  in metals)
 Tamm-Dancoff approximation
 Static screening
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Calculations with semicore electrons are becoming more 
common and important

 Higher accuracy

 Access to materials with shallow cores
 TMDCs, TMOs, transition metals, etc. 
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 Which charge density determines plasma frequency?

 ρ
scf

 or ρ
val
?

− It depends
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 Which charge density determines plasma frequency?

 ρ
val
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 ρ
scf
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For many new and exciting materials, these issues do 
need to be considered

 Careful convergence with respect to all parameters crucial
 Interdependence!

 Best possible mean-field sometimes must be considered

 Sometimes new approximations and physics needed
 Tamm-Dancoff, spin-fluctuations, exchange correlation screening, 

full-frequency, etc. 

 Semicore electrons often important



  

“Problem areas” can be understood by physically 
analyzing underlying approximations

 Convergence : high bands have high g-vectors ↔ 
contribute to high energy, short wavelength screening

 Mean-field : LDA overbinds 

 Semicore electrons : how to close to fermi level?
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Be careful with convergence!

1.  Calculate the dielectric matrix with “infinite” number of 
empty states and g-vectors, test error in QP gaps as you 
vary number of bands used in CH summation

 

2. Test error as you vary the number of g-vectors in your 
dielectric matrix while using an infinite number of empty 
states and and infinite number of bands in CH summation

3. Test error as you vary the number of empty states used in 
dielectric matrix while using an infinite number of g-vectors 
and an infinite number of bands in the CH summation 



Be careful with convergence!, BSE edition

 There are 4 convergence parameters in a typical BSE 
calculation:

 # of k-points in the fine grid

 # of bands in the fine grid

 # of k-points in the coarse grid

 # of bands in the coarse grid
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