OpenMP* and Threading Building
Blocks Task Graphs: unraveling the
spaghetti with Intel® Advisor — Flow
Graph Analyzer

Vasanth Tovinkere | Architect, Flow Graph Analyzer

Intel® Corporation

0oTo %0l
"]U1 L
0 0, ﬂ
O'I‘ 0 0
0 uL¥ o
11, (0] [
v 1
0 1 ’]O ; 1
eee 1 0 NTIO,{‘ % -'3001“

What will be covered today

Task-based parallelism and task graphs
* Challenges

Overview of Intel® Advisor - Flow Graph Analyzer (FGA)

Walking through a sample

Summary

Task-based parallelism and
task graphs

Task-based parallelism

Advantages of task-based parallelism
* Makes parallelization efficient for irregular and runtime dependent execution
* Promotes higher level thinking
* Improves load balancing
Tasks with dependencies
* Fall into two categories: explicit and implicit

* Extends the expressiveness of task-based parallel programming

e Reduces need for global synchronization mechanism such as task barriers

Applications often contain multiple levels of parallelism

Task Parallelism/ Message
Passing

Asynchronous task graphs (implicit vs. explicit)

OpenMP*

Hello World
task task
#pragma omp parallel
{

#pragma omp single

std::string s;

{
#pragma omp task depend(out: s
{ Implicit dependency
s = “Hello *; derived from the
cout << s; depend clause, in this
b case the variable ‘s’
#pragma omp task depend(out: s)
s = “World!\n”;
cout << s;
¥
}

Implicit

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Threading Building Blocks (TBB)

task task

graph g;
continue_node<continue_msg> h(g,
[1(C continue_msg &) {
cout << “Hello “;

s

Explicit dependency
expressed through the
make_edge() call

continue_node<continue_msg> w(g,
[1(C continue_msg &) {
cout << “World!\n‘“;

s

make_edge(h, w);
h.try_put(continue_msg());
g.wait_for_all();

Explicit

A=

Software

Challenges with asynchronous task graphs

Creating implicit or explicit task graphs programmatically is easy
e Determining what was created is hard in many cases
New programming paradigm
Allows you to stream data through the graph, which makes debugging challenging

Graph algorithms can be latency-bound or throughput-bound

Parallelism is unstructured in certain types of graphs, so performance analysis can be
challenging

Overview of intel® Advisor
— flow graph analyzer (FGA)

Intel® Advisor — Flow Graph Analyzer

Toolbar supporting basic file and edition operations, visualization and analytics
Flow Graph Analyzer 2019 1.1.17840

pnnl_sim.graphml

General health of the
graph displayed as a

tree-map o
; for visualizing

graphs

The area of the squares
represent the CPU time Debug Output | Statistics | Analytics Report | Execution Trace Views
taken by a node as a > Il B ™2 Thread View
percentage of the]
application run and the : S £ Port Information
color indicates the : - nput Ports
concurrency observed : L R A e L B e T i Boiame Lzl

Concurrency Overview

input_port_0

when that node was
active

<

Output Ports

Port # t Name Data Type
ws interactions
ta

T o— /A ('ntel') 9
ECODVI’iEht © 2018, Intel Corporation. All rights reserved. o o u

*Other names and brands may be claimed as the property of others. (w) {1 Software

Overview of intel® Advisor
— flow graph analyzer

Workflows and Ul features

Workflows: Create, Debug, Visualize and Analyze
Design mode

* Allows you to create a graph topology interactively

* Validate the graph and explore what-if scenarios

* Add C/C++ code to the node body

* Export C++ code using Threading Building Blocks (TBB) flow graph API
Analysis mode

* Compile your application (with tracing enabled)

e Capture execution traces during the application run

* Visualize/analyze in Flow Graph Analyzer

Overview of intel® Advisor
— flow graph analyzer

Creating Asynchronous Task-graphs

Intel® Advisor — Flow Graph Analyzer (Design mode)
Graph Creation

Flow Graph Analyzer 2019 1.1.17840

ail @)

Properties
Graph Properties Node P

Property Name | Value
Global
Graphm... n1
Node T
function, Plugin
contin

multifunction_node

Interactive Canvas

Port Information
nput Ports

Port# Port Name

Output | Statistics | Analytics =y Code Generation

Node - _ | Total
Name Time (ps
<
hello 0 1 1 Output Ports
1 1
Port # Port Name
output_port_|

TBB:Buffering No..>

TBB:Split/Join N...
TBB:Miscellaneo... ™\

] intel)

: . . /p (Intel 13
D(_:ogyrlght © 2018, Intel Corporation. All rights reserved. o o u
*Other names and brands may be claimed as the property of others. (w) {1 Software

Intel® Advisor — Flow Graph Analyzer (Design mode

Serialization

GraphML* file format — uses extensions

hello_world.graphml X

namespace= all
namespace: 1
namespace 1

11

ge" fo
edgedefault="

">continue_node
6">none
">tbb

">hello
key="d12">[](continue_msg &
data_type: n "inp
data_type="

id="n2"
">continue_node
6">none
">tbb

data_type="

erated from the graph

hello_world_stubs.cpp ®

attr.name="ope
attr.name="s
attr.type:

attr.type="strin build_and_run_hello_world_go() {

graph hello_world_ge;

continue_node< continue_msg > hello(hello_world_g@, ©,[](continue_msg &) { cout << "Hello
continue_node< continue_msg > world(hello_world g@, ©,[](continue _msg &) { cout << "World

#if
hello _world g@.set_name(“hello_world_g8");
hello.set_name("h 0");
world.set_name(" d");
#endif
cout &1t;&1t; “Hello “; }
' make_edge(hello, world);
hello world g@.wait_for_all();
eturn 0;

main(i argc, *argv[]) {
g n build_and_run_hello_world_go();

“World!\n“; }
t" offset:
tput™ offset="0"

target="n2" source="nl1" targetoffset="0" targetport="input_port 8" - souricq

d34">edge_3

right © 2018, Intel Corporation. All rights reserved.

7 G

*Other names and brands may be claimed as the property of others.

O Software

14

Challenges With asynchronous task graphs

v" New programming paradigm

Intel® Advisor — Flow Graph Analyzer (Design mode)
Compiling and collecting traces

Path must be updated so fgtrun.bat and fgt2xml.exe can be run from the command line

>cl hello_world.cpp /02 /DTBB_USE_THREADING_TOOLS ... /link tbb.lib /OUT:hello_world.exe ‘

>set FGT_ROOT=<installation-directory>\fga\fgt

>set INTEL_LIBITTNOTIFY64=<installation-directory>\fga\fgt\windows\bin\intel64\<vc-version>\fgt.dll ‘

>hello_world.exe ‘

Traces are saved to a unique directory fgt <date> <time>

>fgt2xml.exe <name-for-the-trace-data-file>

Automatically converts the latest timestamped directory s

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Overview of intel® Advisor
— flow graph analyzer

Understanding Graph Execution

- Flow Graph Analyzer 2019 1.1.17840 . .
= “hello” node in all views that

Edit Layouts Analytics Offload Actions Help

Ct+ PNG o dff i f i .
BE DG 5 O ii g Jh Q < af @ @%@ o{’f@’ {i} represent different information

{View | Analysis View |4 » | i@ hello_world_nonnested_1.graphml Properties Shows trace information for the
Graph Properties | Node Propegie® y case when 1 message is sent to
Property Name | Value the “hello” node.

. |

hello_world_stubs.cpp ®

1
1
1
£0) 1
1
1
4

R —— t build_and_run_hello_world_gé() {
graph hello_world g@;
continue_node< continue_msg > hello(hello_world_ge, o, continue_msg &) { cout <K

continue_node< continue_msg > world(hello_world_g@, o, t continue_msg &) { cout <«
Debug Output | Statistics | Analytics Report_ge#®Xecution Trace Views [= i

L
» II . e Ihe®Sd View ¥ |~l'

1 hello Norld ge set name(
: hello.set_name(" 0");
| world.set_name(" I H
Ike-‘u‘.if

Concurrency Overview

make_edge(hello, world);
for(int- i =-0; i < 1; ++i)

hello.try_ put(continue_msg());
hello_world_g@.wait_for_all();
return 0;

| S /A (intel -
right © 2018, Intel Corporation. All rights reserved. o o
*Other names and brands may be claimed as the property of others. (w) {1 Software

Examining the trace data: correlation

Flow Graph Analyzer 2019 1.1.17840
“hello” node in all views that
represent different information.
e Shows trace information for the
T case when 25 messages are sent
Glo to the “hello” node.

Graphm

NodeT.

h Properties | Node Properties

Plugin
Node N.

Node W

Execution Trace Views Interacting with the canvas

Concurrency Overview O Clicking on a node on the canvas
can highlight the corresponding
node’s tasks in the timeline. This
is turned OFF by default.

Port Information

Port Name

input_port_

Port Name
output_port_0

— A (ined |1

ECODVI’iEht © 2018, Intel Corporation. All rights reserved. o o u
*Other names and brands may be claimed as the property of others. (w) {1 Software

Examining the trace data through Trace Playback

Flow Graph Analyzer 2019 1.1.17840 Playback of execution traces to see

how data is flowing through the
graph.
& hello_world4.graphml
Node Properties = Ec

Statistics Analytics Report Execution Ti
[Thread View

Concurrency Overview

— A (inted | 2

ECODVI’iEht © 2018, Intel Corporation. All rights reserved. o o u
*Other names and brands may be claimed as the property of others. (w) {1 Software

Examining the trace data: node view

Flow Graph Analyzer 2019 1.1.17840

Offload Actions

?) i B " & (q q

ail C;/ O : Node view captures all execution
traces for a given node and presents
it in a single swim-lane for the node

Properties
Graph Properties Node Propepiies

Property Name | Value

Each node swimlane is comprised of

multiple swimlanes representing the

threads which executed an instance
Exeguief Trace Views of the node.

Debug Output Statistics

> Il n

Analytic
=

Concurrency Overview

oncurrency

—hello
P —
€ vorld b i i o o e e e
< | E— E—
5 tbb_flow_graph(p
1

— . A (@) | o

ECODVI’iEht © 2018, Intel Corporation. All rights reserved. o o
*Other names and brands may be claimed as the property of others. (w) {1 Software

Challenges With asynchronous task graphs

v" New programming paradigm

v Allows you to stream data through the graph, which makes debugging challenging

Examining the trace data with data analysis

File Edit Layouts Analytics Offlc

bERE RO

1

Analysis View (4 » i@ hello_world4.graphm|

Debug Output | Statistics | Analytics Report

> ll . | e Thread View

Flow Graph Analyzer 2019 1.1.17840

Execution Trace Views

Concurrency Overview

Thread 2
Thread 3

Over-time D

Time

right © 2018, Intel Corporation. All rights reserved.

©

Properties

How do we know which instance of
the Hello task is in response to which

input message?

Graph Properties | Node Properties = E4/»

Property Name
Global
Graphm
Node T
Plugin
Node N.

Initial Pr

Input Ports

Port #

(]
Output Ports

Port #

Value

Helps answer the following
questions:

Are the tasks operating on data
retiring in order?

Are they out of order?

Port Information

Port Name Data Typ

input_port_0 continue_msg

Port Name Data Type

output_port_0 continue_msg

o o = 2

*Other names and brands may be claimed as the property of others.

0

=

Software

23

Examining the trace data with data analysis, cont.

Harder to track the data in dependency graphs as the Data ID cannot be propagated
from one node to the next

e continue_node requires an input of type continue_msg

continue_node<continue_msg> hello(hello_world_g@, [](continue_msg &) {
cout << “Hello “;

)

continue_node<continue_msg> world((hello_world_g@,[](continue_msg &) {
cout << “World!\n“;

s

We are going to convert the Hello World example to use function_node instead so we
can send the ID from one node to the next

function_node< > hello(hello world g8, @, [=](
B;
function node< > world(hello world go, @, [

})s

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Examining the trace data with data analysis, cont.

Flow Graph Analyzer 2019 1.1.17840

File Edit Layouts Analytics Offload Actions Help

Data tracking using an experimental

bR ZT @ i 6 Q< 1@ & <% <6 Q) feature will allow you to track which

jview | Analysis View | «/»| | & hw_fn id_nn_25.graphml Properties task instance is for which inputs.

: Graph Properties Node Properties
hw_fn_id_nn_25.graphml

Property Name Value
g
¥ Global
!Elij 2 . We changed our graph to use a
function_node instead of a
continue_node
We have a source_node that
streams 25 messages/data
Debug Output | Statistics | Analytics Report | Execution Trace Views through the graph
> Il B 5 B colorsypata ~ . We modified the graph to emit
the data id from the node
source to hello and hello to
world.
We add an user event API to tell
the tool which data we are

processing in each node.

Concurrenty=Gwacy,

Concurrency

Time

Thread 0 1 source:FGA:DATAID: source:FGAZDATAID:21 [
T Y S RS TR

Thread 3

Time Over-time D.

I A (inted | s

D(_:ogyright 2018, Intel Corporation. All rights reserved. o o u
*Other names and brands may be claimed as the property of others. (w) {1 Software

Examining the trace data with data analysis, cont.

Flow Graph Analyzer 2019 1.1.17840
ob [0 [ord SEiD i - — ‘ Data tracking using an experimental

m r T n -C L 72\ LT Lo oL 5 . .
o = & Z G vd & ol Q\ v il P Q) I <% <g U, feature will allow you to track which
task instance is for which inputs

& hw_fn_id_nn_25.graphm| Properties
Graph Properties Node Properties

Property Name | Value

Statistics for the graph is organized
by data operated on and can be seen
in Data Analysis tab under Statistics

Begin
Time (clks

o @D | o

E:Convriﬁmt © 2018, Intel Corporation. All rights reserved. o o
O Software

*Other names and brands may be claimed as the property of others. (w)

Challenges with asynchronous task graphs

v" New programming paradigm

v Allows you to stream data through the graph, which makes debugging challenging

v Graph algorithms can be latency-bound or throughput-bound

Walking through an
Example

Understanding the performance

A simulation example

Goes through multiple time steps
Graph is created once programmatically and executed for each time step
* A message is sent to the graph to trigger each time step

* Wait for the graph to process the message (current time step) before the next time
step is triggered

* Implemented as a dependency graph using TBB continue_node

Measured performance shows some performance scaling w.r.t serial implementation

Example: performance analysis

Flow Graph Analyzer 2019 1.1.17840
File Edit Layouts Analytics Offload Actions Help A complex graph was created

BErRRU G B8 QS @ GERE 1w|:1IC AR

| View Analysis View |4 » = pnnl_sim.graphml Properties
Graph Properties Node Properties

- ‘ Graph has 1319 nodes and 3066

Property Name Value

v pnnl sim edges.

¥ Global

General health of the graph with a
mix of red, yellow and green

Debug Output Statistics Analytics Report | Execution Trace Views

> . W Thread View ~ Concurrency observed over time

E Concurrency Overview ranges from good concurrency where
all cores are kept busy to very few
kept busy

Graph Legend Keyboard/Mouse Shortcuts
ow (< 4.00 Left Click Move/drag viewport
Wheel Up
Wheel Down Z

Concurrency

What do the colors mean?

— A (inted | 5

D(_:ogyright 2018, Intel Corporation. All rights reserved. o o
*Other names and brands may be claimed as the property of others. (w) {1 Software

Challenges with asynchronous task graphs

v Creating implicit or explicit task-graphs programmatically is easy
v' Determining what was created is hard in many cases
v" New programming paradigm

v Allows you to stream data through the graph, which makes debugging challenging

v Graph algorithms can be latency-bound or throughput-bound

Example: identifying problem areas

- Flow Graph Analyzer 2019 1.1.17840
File Edit Layouts Analytics Offload Actions Help What was run and how much was

BEBRG T B QEul @ CEGT0 5@ R

Analysis View |4 »| @ pnnl_sim.graphml Properties

A Graph Properties Node Properties E|Y|»
ponl_sim

—————— 5 ; ; Property Name Value
' : : iy
1
1
1
1
1
1

= il Run captures 11 time steps
v Global
Nodes

Edges

L i M8 : i At Appears to have one node that
: : 20 consumes a lot of CPU time.

This node also has an observed
concurrency that is poor when it
executes

Debug Output | Statistics Analytics Report | Execution

Graph

. Node Fammee P ey -4 L
Ly Name :‘ccim -I"U ST Time (ls) Durstion clks) : Clicking on the node takes you to the

node in the graph visualization

pnnl_sim
continue_ 1 10

continue_..

1

. = 1
continue_... 0 1
’]

1

You can also sort on the appropriate
column in the statistics table.

continue_....

continue_..
cont -
continue_..

continu

[cletelezeielelelelelelelel

continue ...

] intel)

: . _ /p (Intel 32
D(_:ogynght 2018, Intel Corporation. All rights reserved. o o u
*Other names and brands may be claimed as the property of others. (w) {1 Software

Example: identifying problem areas, cont.

Flow Graph Analyzer 2019 1.1.17840
File Edit Layouts Analytics Offload Actions Help CIiCking on the node takes you to the

0

bERE RO E i © b @ <% 4 & & g &3 &8 1 (® node in the graph visualization
view | Analysis View 4 » i@ pnnl_sim.graphml Properties .
- = 1. To see all tasks belonging to
Graph Properties Node Properties . . .
po_smgraphml povl_sm e e Tvaue this node in the execution

‘ trace, you will have to enable

e ue_node this interaction.
Plugin Click on the Show/Hide tasks

Node N. i

N S button
- N : Now select the node in the

DFS Hie.. 3
Debug Output Statistics Analytics Report Execution Trace Views
ebug Outpu atistic nalyti por ; C as

Initial Pr
> Il . O Thread View ¥

When this node is executing, the
resource utilization is very poor.

1
1
J
o
J

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Port Information 1. Improving the performance of

Input Ports this one node will substantially
T ET— improve the performance of
Thread 6 the graph.

Thread 7
Thread 8
Thread 9
Thread 10
Thread 11

4

Over-time Data

Output Ports

Port # Port Name Data Type
0 output_port_0 nt

Thread 12

Thread 13

Thread 14

Thread 15

— A (ined |5

right © 2018, Intel Corporation. All rights reserved. o o
*Other names and brands may be claimed as the property of others. (w) {1 Software

Example: critical path

Flow Graph Analyzer 2019 1.1.17840 .
Analysis features

File Edit Layouts Analytics Of

BB RGO Sail 1@ 14 iC
(& # 7 G <4l 1@ 1. Critical Path
Properties 2. Rule-check

Graph Properties Node Properties

Analysis View 4 » | i pnnl_sim.graphml

Property Name Value

Critical Path

; . : : Computes the Critical Path(s) for the
] R : graph using the execution trace
> Il - information

Thread 0

Thread 1

Thread 2
Thread 3

Thread 4

Thread 5
Thread 6
Thread 7

Thread 8

)ver-time Data

Thread 9
Thread 10
Thread 11
Thread 12
Thread 13

Thread 14
Thread 15

| o (inte. "
right © 2018, Intel Corporation. All rights reserved. o o u
*Other names and brands may be claimed as the property of others. (w) {1 Software

We found the problem
Node: Fix it!

What else can we look at?

Example: performance analysis

Flow Graph Analyzer 2019 1.1.17840
File Edit

Rule-check

S S e

Rule check

Rule-check runs registered rules
may include validation and
performance rules

g Output | Statistics

T
1
I

Consider enabling lightweight policy for small c or async nodes
Consider enabling li ight policy for small ¢ or async nodes
Consider enabling li ight policy for small ¢ or async nodes
Consider enabling li ight policy for small or async nodes
Consider enabling li ight policy for small or async nodes
Consider enabling li ight policy for small or async nodes
Consider enabling li ight policy for small or async nodes
Consider enabling lightweight policy for small ional or async nodes
Consider enabling lightweight policy for small ional or async nodes
Consider enabling lightweight policy for small ional or async nodes
Consider enabling lightweight policy for small ional or async nodes
Consider enabling lightweight policy for small ional or async nodes
Consider enabling lightweight policy for small ional or async nodes
Consider enabling lightweight policy for small ional or async nodes
Consider enabling lightweight policy for small ional or async nodes
Consider enabling lightweight policy for small ional or async nodes
Consider enabling li ight policy for small i or async nodes
Consider enabling li ight policy for small ¢ ional or async nodes
Consider enabling li ight policy for small c i or async nodes
Consider enabling li ight policy for small c i or async nodes
Consider enabling li ight policy for small c i or async nodes
Consider enabling li ight policy for small c i or async nodes
Wl Consider enabling li ight policy for small ¢ i or async nodes

| i (inteD "
ECODVI’iEht © 2018, Intel Corporation. All rights reserved. o o u
*Other names and brands may be claimed as the property of others. (w) {1 Software

Challenges with asynchronous task graphs

v Creating implicit or explicit task-graphs programmatically is easy
v' Determining what was created is hard in many cases
v" New programming paradigm
v Allows you to stream data through the graph, which makes debugging challenging

v Graph algorithms can be latency-bound or throughput-bound

v’ Parallelism is unstructured in certain types of graphs, so performance analysis can be
challenging

Nested and multi-level
parallelism

What does it look like in FGA?

Applications often contain multiple levels of parallelism

Task Parallelism/ Message
Passing

SIMD SIMD] SIMD SIMD] SIMD] SIMD] SIMD] SIMD

Fork-join parallelism: tbb::parallel_for

= Flow Graph Analyzer 2019 1.1.17840

File Edit Layouts Analytics Offload Actions Help

[& B [E F/; E;" E.\Z}G \«}Q fﬂ E X % % ii @ Ill O\ “’;‘3 i"l @ @? °§C c@% @ GC{D C»? Capturesthe execution task-graph

| view = Analysis View 4 » triangular_work_static.graphml Properties for a fork'join construct and provides
- - e I erRr—]| additional analytics that present
R . .
— information about the construct
1. Imbalance
2. Efficiency

CPU Other Scheduler
Time(%) Time(%) Time(%)
tbb_parallel_for(p1) lesults(4) 78.4727 78.4727 21.5273
[Worker Thread]
o [Worker Thread]
[Worker Thread]
[Worker Thread]

verity For Efficiency(%e) Duration (clks)

. A (inte) 1
D(_:ogyright © 2018, Intel Corporation. All rights reserved. L
*Other names and brands may be claimed as the property of others. (w) {1 Software

Layouts Analytics

1 M < al G o =
B Z @ b € | B =< a4l i @

Properties

Graph Prop

Property Name

Debug Output Statistics Analytics Report Execution Trace Vie
Graph Ni orithms

Dusationclks)

452475 0.766243

Timeline shows trace information for
the graph and any nested parallelism
that is present
Port Information
Input Ports

detect ATtEB Parallel for(thE Port # Port Name Data Type

nput_port_0 int

<
Qutput Ports

Port # Port Name

output_port_0

preprocess_function|tbb_parallel_for(tbb22762

— 4 @D |

ECODVI’iEht © 2018, Intel Corporation. All rights reserved. o o u
*Other names and brands may be claimed as the property of others. (w) {1 Software

Multi-level parallelism in OpenMP*

- Flow Graph Analyzer 2019 1.1.17840

File Edit Layouts Analytics Offload Actions Help

[é = B2 Ii & il O\ s il <7> j Double-click on the parallel region
) node to see the activity within the
= p2p_new.graphml & omp0:n0 p S)
region
Node Properties

Property Name | Value

pipeline_time = prk_wtime();

int lic (m/mec—1) * mec + 1;

int ljc (n/nc—=1) * nc + 1;

for (int iter = 0; iter<=iterations; iter++) {

for (int i i<m; i+=mc) {
for (int j=1; j<n; j+=nc) {
Debug Output | Statistics | Analytics Report | Execution Trace Views 3. O N #pragna omp task depend(in:g }d [0] ’ gri.(l [(i_m(') *0t]] \

via. o RS grid [i*n+(j—nc)],\

> Il B & Thread View ¢ grid [(i—mc)*n+(j—nc)]) \
. depend (out: grid [i*n+j])
KoncirSacy OV sweep_tile (i, MIN(m,i+mc), j, \
MIN(n, j+nc), n, grid);

}
}
#pragma omp task depend(in:grid [(lic —1)*n+(1ljc)])\

depend (out:grid [0])
grid [0*n+0] = —grid [(m—1)*n+(n—1)];

#pragma omp taskwait
pipeline_time = prk_wtime() — pipeline_time;

Thread 0
Thread

Thread 2

-

right © 2018, Intel Corporation. All rights reserved. o o
*Other names and brands may be claimed as the property of others. (w) {1 Software

Intel® Advisor — Flow graph
analyzer

Download through Intel® Advisor package

Intel® Advisor — Flow Graph Analyzer

ol ®
.. » ThisPC » 0OSDisk (C:) » Program Files (x86) » IntelSWTools » Advisor 2019

Product feature in Intel® Parallel = :

. Date modified Type Size
StUd 10 XE 2019 The| & AP 11/8/2018 12239 PM File folder status.
.. bin32 11/8/2018 12:39 PM File folder
.. bint4 11/8/2018 1239 PM File folder
. . Chay .. config 11/8/2018 12239 PM File folder
TOOI S U p pO rtS a n a |yS | S a n d d ES |gn Of 20" || documentation 11/8/2018 1239 PM File folder
. . . Build |k fga 11/8/2018 1239 PM File folder
pa ra”el app||cat|ons US“’]g OpenMP* Reles | include 11/8/201812:39 PM File folder
1. lib32 11/8/2018 1239 PM File folder
1 1 1 | lib64 11/8/201812:39PM File fold

and Threading Building Blocks choo § " S
. message 11/8/2 12:39PM File folder
.. pythonapi 12:39PM File folder
. . . I | resource 12:39PM File folder
Available for Windows*, Linux™* and

I [83 advi_vs2017-integration.vsix 12:41... Microsoft Visual S... 5,132 KB

IVI a COS * advixe-vars.bat 12:58 ... Windows Batch File TKB

ﬁ mrte-reg.msi 12:58.. Windows Installer ... 112KB

TS L supportibd 12:58... Text Document 1KB

ﬁvﬂmi-integration.msi 12:58... Windows Installer ... 1,104 KB

ﬁJ vs2015-integration.msi 12:58... Windows Installer ... 1,104 KB

Cancel

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/getting-started-with-flow-graph-analyzer

Summary

Asynchronous task-graphs improves the efficiency of irregular and runtime dependent
execution

 TBB and OpenMP* provide mechanisms to program in this manner

Flow Graph Analyzer helps you create, debug, visualize and analyze such graphs

e Critical path analysis is crucial in reducing the complexity of the analysis problem
to a handful of nodes

* Runtime specific analyses, such as the lightweight policy analysis for TBB, target
additional performance improvements

Resources

Getting started with FGA

https://software.intel.com/en-us/articles/getting-started-with-flow-graph-analyzer

Driving Code Performance with Intel® Advisor’s Flow Graph Analyzer

https://software.intel.com/en-us/download/parallel-universe-magazine-issue-30-october-2017

THE PARALLEL

UNIVERSE IWOMP 2018: Visualization of OpenMP* Task Dependencies Using Intel®
Advisor — Flow Graph Analyzer

https://link.springer.com/chapter/10.1007%2F978-3-319-98521-3_12

Driving Code Performance with

Intel® Advisor's Flow Graph Analyzer CPUs, GPUs, FPGAs: Managing the alphabet soup with Intel Threading Building
Modernize your Code with I BlOCkS

el Studio XE

Intel® Para

Enabling FPGAs for Software Developers

L= https://software.intel.com/en-us/videos/cpus-gpus-fpgas-managing-the-alphabet-soup-with-intel-
threading-building-blocks

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation
or its subsidiaries in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

TECH.

DECODED

LN
=

C —
=3
= -
= %
2
T

