VASP Tutorial: A bit of surface science

University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria

Setting up a VASP calculation

VASP requires 4 input files to run a calculation:

- INCAR
- POSCAR
- KPOINTS
- POTCAR

I: <u>The INCAR file</u>

The INCAR file contains the input parameters that steer the calculation:

- The default values set by VASP itself are a clever choice for most standard calculations
- These standard settings may be modified to specify:
 - What kind of calculation you want to do: SCF calculation, DOS, dielectric properties, ...
 - Basic inputs concering the required precision, the requested level of convergence, ...

For a list of all INCAR-tags have a look at:

- The VASP manual: <u>http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html</u> Index: <u>http://cms.mpi.univie.ac.at/vasp/vasp/Index.html</u>
- The VASP wiki: <u>http://cms.mpi.univie.ac.at/wiki/index.php/Main_page</u> INCAR-tags: <u>http://cms.mpi.univie.ac.at/wiki/index.php/Category:INCAR</u>

II: The POSCAR file

In the POSCAR file you specify the structure (Bravais lattice and basis):

fcc: Ni	Header (comment)
3.53	Overall scaling constant
0.5 0.5 0.0 0.0 0.5 0.5 0.5 0.0 0.5	Bravais matrix
Ni	Name(s) of atomic type(s)
1	Number of atoms (of each type)
Selective Dynamics	(optional: selective dynamics)
Cartesian	Cartesian or Direct coordinates
0 0 0 (T T T)	positions of the atoms

III: The KPOINTS file

In the KPOINTS file you specify the points VASP will use to sample the first Brillouin zone in reciprocal space

Automatic mesh	Header (comment)			
0	$N_k=0$: automatic mesh generation			
G (M)	$m{\Gamma}$ -centered (G) mesh or Monkhorst-Pack (M) grid			
4 4 4	# of subdivisions N_i along $ec{b}_i$			
0. 0. 0.	Optionally shift the mesh (s_i)			

IV: The POTCAR file

The POTCAR file has to contain the PAW datasets for all atomic types you have specified in your POSCAR file:

VASP comes with a library of PAW datasets, (one or more) for most elements of the periodic table:

- Each individual PAW data set starts with a descriptive section, specifying amongst other things:
 - Parameters that were required to generate the dataset:
 - Number of valence electrons
 - Atomic mass
 - Default energy cutoffs
- When your unit cell contains more than one type of atom you have to concatenate the corresponding PAW datasets in the same order as you have specified the different atomic types in your POSCAR file.
- You should not mix PAW datasets generated with different exchange-correlation functionals.

OUTPUT files

OUTCAR

- detailed output of a VASP run, including:
 - a summary of the input parameters
 - information about the individual electronic steps: total energy, Kohn-Sham eigenvalues, Fermi-energy.
 - stress tensors
 - forces in the atoms
 - local charges, magnetic moments
 - dielectric properties
 - ... and a great many things more ...
- The amount of output written onto OUTCAR can be chosen by means of the NWRITE-tag in the INCAR file.

OSZICAR & stdout

- give a short summary of the self-consistency-cycle
 - chosen SCF algorithm
 - convergence of energy and charge density
 - free energies, total magnetic moment of the cell

OUTPUT files

CONTCAR & XDATCAR

- CONTCAR: updated geometry data *at the end of a run*
 - lattice parameter
 - Bravais matrix
 - ionic positions
 - velocities
- the format of the CONTCAR is the same as for POSCAR: It can be directly be used for a continuation run (copy CONTCAR to POSCAR)
- XDATCAR: updated ionic positions of each ionic step

DOSCAR, CHGCAR & WAVECAR

- DOSCAR: total DOS and integrated DOS, (local partial DOS)
- CHGCAR: the charge density
- WAVECAR: plane wave coefficients of the orbitals. Can be used to restart from a previous run

Documentation

- The VASP manual (<u>http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html</u>) Index: <u>http://cms.mpi.univie.ac.at/vasp/vasp/Index.html</u>
- The VASP wiki (<u>http://cms.mpi.univie.ac.at/wiki/index.php/Main_page</u>) INCAR-tags: <u>http://cms.mpi.univie.ac.at/wiki/index.php/Category:INCAR</u>

A bit of surface science

Examples:

Ni(100):

- surface relaxation
- surface energy
- LDOS
- surface bandstructure

Ni(111)

- clean surface
- CO adsorption
- LDOS
- workfunction (change)
- frequencies

STM of graphite and graphene

POSCAR:

fcc (100) surface	Header (comment)
3.53	Ni lattice constant
.50000 .50000 .00000 50000 .50000 .00000 .00000 .00000 5.00000	lattice vector a(1) lattice vector a(2) lattice vector a(3)
5	Number of atoms
Selective Dynamics	Switch on "selective dynamics"
Cartesian	Positions in cartesian coordinates
.00000.00000F F F.00000.50000.500000F F F.00000.000001.00000F F F.00000.500001.50000T T T.00000.000002.00000T T T	positions of the atoms, and the specfications whether or not they are allowed to move during the relaxation.

- A $p(1 \times 1)$ surface cell: 1 Ni atom per layer
- 5 Ni layers
- first two layers (on one side) are relaxed
- $3 \times 3.53 = 10.59$ Å vacuum

POTCAR: Ni GGA PAW potential

INCAR:

SYTEM = clean Ni(100) surface	Name of the calculation
ISTART = 0 $ICHARG = 2$	initial wave functions: random numbers initial charge density: overlapping atoms
ENCUT = 270	cutoff energy 270 eV (from POTCAR)
ALGO = Fast EDIFF = 1E-6	use RMM-DIIS for electronic optimization electronic convergence: energy change < 10 ⁻⁶ eV
ISMEAR = 2 SIGMA = 0.2	$2^{ m nd}$ order Methfessel-Paxton smearing (metal!) smearing width $\sigma=0.2$ eV
ISPIN = 2 MAGMOM = 5*1	spin-polarized calculation initial magnetic moment on each Ni = 1 μ_B
IBRION = 1 $NSW = 100$ $POTIM = 0.8$	ionic relaxation

KPOINTS:

K-Points	Header (comment)		
0	$N_k=0$: automatic mesh generation		
Monkhorst-Pack	Monkhorst-Pack grid		
9 9 1	# of subdivisions N_i along $ec{b}_i$ (odd: centered on $oldsymbol{\Gamma}$)		
0. 0. 0.	Optionally shift the mesh (s_i)		

- 15 **k**-points in the IBZ
- 1 **k**-point along the *z*-direction!

Forces in the first and last step of the relaxation (in OUTCAR)

POSITION			TOTAL-FORCE	E (eV/Angst)	
0.00000	0.00000	0.0000	0.000000	0.000000	0.391783
0.00000 0.00000	1.76500 0.00000	1.76500 3.53000	0.000000 0.000000	0.000000 0.000000	-0.397182 0.005392
0.00000	1.76500	5.29500	-0.000000	-0.000000	0.390888
0.00000	0.00000	7.06000	0.000000	0.000000	-0.390881
total drift:			0.00000	-0.00000	0.016601

POSITION			TOTAL-FORCH	E (eV/Angst)	
0.00000	0.00000	0.00000	-0.000000	0.000000	0.396242
0.00000	1.76500	1.76500	0.00000	0.00000	-0.394948
0.00000	0.0000	3.53000	0.00000	-0.000000	0.000021
0.00000	1.76500	5.30249	0.00000	0.00000	-0.000262
0.00000	0.00000	6.98837	-0.000000	-0.000000	-0.001054
total drift:			0.000000	-0.000000	0.000212

- Energy changes during relaxation from -25.556 eV to -25.572 eV $\implies E^{\text{rel}} = -16 \text{ meV}$
- Surface energy:

 $\sigma = \frac{1}{2} \left(E_{\text{surf}} - N_{\text{atoms}} \times E_{\text{bulk}} \right)$

Energy Convergence

- Surface energy of unrelaxed surface: $\Rightarrow \sigma^{\text{unrel}} = \frac{1}{2} (-25.556 - 5 \times (-5.458)) = 0.867 \text{ eV}$
- $\sigma = \sigma^{\text{unrel}} + E^{\text{rel}} = 0.867 0.016 = 0.851 \text{ eV}$

N.B.: you will find the setup for the calculation of the "bulk" energy in the Nil00clean rel/bulk subdirectory.

Final geometry from CONTCAR (or OUTCAR) file:

```
fcc (100) surface
  3.5300000000000
   0.5000000000000000
                  0.5000000000000000
                                  0.00000000000000000
  -0.5000000000000000
                  0.5000000000000000
                                  0.0000000000000000
   0.00000000000000000
                  0.00000000000000000
                                  5.0000000000000000
  Ni
   5
Selective dynamics
Direct
 0.0000000000000000
               F
                                               F
                                                 F
 F
                                                 F
                                            ਜ
 F
                                                 F
                                            F
 0.500000000000000 0.5000000000000 0.3004245271852446
                                            Т
                                               Т
                                                 Т
 Т
                                               Т
                                                 Т
 0.0000000E+00 0.000000E+00 0.000000E+00
 0.0000000E+00 0.0000000E+00 0.0000000E+00
 0.0000000E+00
            0.0000000E+00 0.0000000E+00
            0.0000000E+00 0.0000000E+00
 0.0000000E+00
 0.0000000E+00
            0.0000000E+00 0.0000000E+00
```

• Inward/outward relaxation of the surface layers: $\Delta d_{54} = ((0.3959 - 0.3004) - 0.1)/0.1 \times 100 = -4.5\%$ $\Delta d_{43} = ((0.3004 - 0.2000) - 0.1)/0.1 \times 100 = +0.4\%$

Start p4	lvasp:>	⊳p4v	[vasprun.xml]	Possibly	~	p4va	sp Stru	icture		- + >
Step 1.)	Show	struc	ture	"replicate" cells						
S	tep 2.)	Sele	ct "initial" or "final" po	ositions						
File Edit S	Structure I	Electron	p4v.py ic Convergerice Database MD	- + × Help						
n	System:	clean	Ni(100) surface (vasprun.xml)	\$						
New	Selection:			S O						
T Okten	<u>Į×</u> ⊧_y	<u>, в'</u>]	Structure ster Initial positions	∮ 9peed: 1 ♦						
	<u>,</u> <u>R</u>	Ŀ								
Show	<u> </u>	₿ [™]	Isosurface							
	f		Isosurface of:	Update						
Control			Subtract:	Select						
Build		<u>}</u> ,1	Downsample: 2 2							
(e ⁻)	۶	۶	draw as points			•	•	•	•	e 1
DOS+bands	67									
STM	18	à	Cell replication	oheres and Arrows 1.0 phere size:		*				
		\bowtie	3Ar	rrows type: None		•				~
Commit	Ø	Þ	dir. 2	1.0		•				•
	*	EXT.	dir. 3							
			ОК							

INCAR:

SYTEM = clean Ni(100) surface	Name of the calculation
ENCUT = 270	cutoff energy 270 eV (from POTCAR)
ALGO = Normal	use block-Davidson for electronic minimization
ISMEAR = -5	Tetrahedron method with Blöchl corrections
ISPIN = 2 MAGMOM = 5 * 1	spin-polarized calculation initial magnetic moment on each Ni = 1 μ_B
LORBIT = 11	LM-decomposed site resolved density of states

N.B.: we want to use the optimized structure from <u>Ni100clean_rel</u>:

Normally this would mean copying NilOoclean_rel/CONTCAR to POSCAR in the directory where you want to run <u>NilOoclean_LDOS</u>.

In this case, however, that has already been taken care of, and the POSCAR file in <u>Ni100clean_LDOS</u> is the correct one.

total cha # of ion	rge s	p	d	tot
1 2 3 4 5	0.466 0.490 0.494 0.500 0.478	0.326 0.481 0.482 0.501 0.346	8.314 8.333 8.338 8.350 8.345	9.106 9.304 9.313 9.351 9.169
tot	2.427	2.135	41.681	46.244
<pre>magnetiza # of ion</pre>	tion (x) s	р	d	tot
1 2 3 4 5	-0.003 -0.008 -0.008 -0.008 -0.004	-0.019 -0.024 -0.024 -0.024 -0.024	0.725 0.613 0.611 0.605 0.703	0.703 0.582 0.579 0.573 0.680
tot	-0.030	-0.111	3.257	3.116

- At the end of the OUTCAR file information on local charge and magnetization is given.
- Instead of LORBIT=11, one might use LORBIT=1 and set RWIGS appropriately.
- As is clearly shown, the local magnetic moments at the surface are enhanced.
 - The central layers behave "bulk"-like.

Local Density of States

- surface up 'bulk up 'build cown surface down -10,0 -8,0 -4,0 -2,0 0,0 2,0 4,0 6,0 0,8 -6.0 10,0
- Projection onto surface and bulk layers.
- Each spin component is plotted separately.
- Band narrowing at the surface.
- Exchange splitting is larger at the surface.

INCAR:

SYTEM = clean Ni(100) surface	Name of the calculation
ENCUT = 270	cutoff energy 270 eV (from POTCAR)
ALGO = Normal	use block-Davidson for electronic minimization
ISMEAR = 2 SIGMA = 0.2	2 nd order Methfessel-Paxton smearing (metal!) smearing width $\sigma=0.2$ eV
ISPIN = 2 MAGMOM = 5 * 1	spin-polarized calculation initial magnetic moment on each Ni = 1 μ_B
LORBIT = 11	LM-decomposed site resolved density of states
ICHARG = 11	Read initial charge from CHGCAR (ICHARG=1), and keep it fixed (ICHARG=ICHARG+10) during the subsequent calculation

N.B.: You need to copy the self-consistent charge density (CHGCAR) from <u>Ni100clean_LDOS</u> to the directory where you want to run <u>Ni100clean_band</u>.

You need to do this: if VASP can not read the CHGCAR file, the run will terminate.

Ni(100) surface bandstructure (ex.: <u>Ni100clean band</u>)

KPOINTS:

band-str	ucture G	-X-M-G
.00000	.00000	1
.00000	.00000	1
.00000	.00000	1
.00000	.00000	1
.00000	.00000	1
.12500	.00000	1
.25000	.00000	1
.37500	.00000	1
.50000	.00000	1
.37500	.00000	1
.25000	.00000	1
.12500	.00000	1
.00000	.00000	1
	band-str .00000 .00000 .00000 .00000 .00000 .12500 .37500 .50000 .37500 .25000 .12500 .12500 .00000	band-structure G .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .12500 .00000 .37500 .00000 .37500 .00000 .25000 .00000 .00000 .00000

- 13 **k**-points along $\overline{\Gamma} \overline{X} \overline{M} \overline{\Gamma}$
- Explicitly specfied, in reciprocal coordinates
- All points with weight 1

Ni(100) surface bandstructure (ex.: <u>Ni100clean band</u>)

```
...
Static calculation
charge density remains constant during run
```

spin polarized calculation

Bandstructure (projected)

- status message in OUTCAR on actual job:
 - \Rightarrow non-selfconsistent calc.
- Bandstructure consist mainly of bulk-like bands.
- Dots mark localization at surface layer.

Ni(100) surface bandstructure (ex.: Ni100clean band)

p4vasp - ElectronicControlApplet - + ×							
Atom selection: 5							
Description:							
Line:	5 spin down	*					
Symbol:	default 🖕 default	A V					
symbol size:	2.0						
Ald new line Remove line Change line Spin: up O down both invert y-axis							
Orbital selection:							
Select all	Deselect all 🔲 s						
Select p	Deselect p 🛛 px 🗳 py 🗳 pz						
Select d	Deselect d 🛛 dxy 🖾 dyz 🖾 dxz 🖾 dx2 🖾 dx2						
Select f	Deselect f 🗵 f1 🗵 f2 🗵 f3 🗵 f4 🗵 f5						
	🖾 f6 🔳 f7						

Place pointer over atom, and press space to select/deselect.

The selection should appear in the Electronic Control applet above

INCAR:

SYTEM = clean Ni(100) surface	Name of the calculation
ISTART = 0 $ICHARG = 2$	initial wave functions: random numbers initial charge density: overlapping atoms
ENCUT = 270	cutoff energy 270 eV (from POTCAR)
ALGO = Fast EDIFF = 1E-6	use RMM-DIIS for electronic optimization electronic convergence: energy change < 10 ⁻⁶ eV
ISMEAR = 2 SIGMA = 0.2	$2^{ m nd}$ order Methfessel-Paxton smearing (metal!) smearing width $\sigma=0.2$ eV
IBRION = 1 NSW = 100 POTIM = 0.8	ionic relaxation

- Essentially the same INCAR file as used in <u>Ni100clean_rel</u>.
- Spin polarization neglected.

POSCAR:

Ni - (111)		Header (comment)				
3.53		Ni lattice constant				
.70710678 .000000 .000000 -0.35355339 0.6123724 .000000 .000000 .000000 5.196152		lattice vector a(1) lattice vector a(2) lattice vector a(3)				
5				Number of atoms		
selective dynamics				Switch on "selective dynamics"		
direct				Positions in cartesian coordinates		
.00000000 .00000000 .00000000 .33333333 .66666667 .11111111	F F	F F	F F	positions of the atoms, and the specfications whether or not they		
.66666667 .333333333 .22222222	F.	F.	F.	are allowed to move during the		
.00000000 .00000000 .33333333 T T T			Т	relaxation.		
.33333333 .66666667 .4444444	Т	Т	Т			

Similar setup as for (100) surface:

- again 5 layers, 2 relaxed
- $(1 .444) \times 5.196 \times 3.53 \approx 10.2$ Å of vacuum

Geometry and surface energy:

POSITION			TOTAL-FORCE	E (eV/Angst)	
0.00000 -0.00000 1.24804 0.00000 -0.00000	0.00000 1.44112 0.72056 -0.00000 1.44112	0.00000 2.03805 4.07609 6.09140 8.09550	$\begin{array}{c} 0.000000\\ 0.000000\\ -0.000000\\ 0.000000\\ -0.000000\\ -0.000000\\ \end{array}$	-0.000000 -0.000000 0.000000 0.000000 0.000000	0.179780 -0.064012 -0.116688 0.000253 0.000667
total drift:			-0.000032	0.000002	-0.018784

- Forces at the beginning already rather small
 ⇒ small relaxations for compact surfaces
- For surface energy we need non-spin-polarized bulk nickel as reference: the setup for the calculation of the "bulk" energy you'll find in the *Ni111clean_rel/bulk* subdirectory.

$$\sigma^{\text{unrel}} = \frac{1}{2} (-25.737 - 5 \times (-5.407)) = 0.649$$

• (111) surface more stable than the (100) surface

CO@Ni(111) (ex.: <u>COonNi111 rel</u>)

POSCAR:

Ni - (111)					
3.53					
.707106	578 .00000	00000.0000	0		
-0.353553	339 0.61237	.00000	0		
.000000	.00000	0 5.19615	24		
511					
selective	dynamics				
direct	-				
.00000000	.00000000	.00000000	F	F	F
.33333333	.66666667	.11111111	F	F	F
.66666667	.33333333	.22222222	F	F	F
.00000000	.00000000	.33333333	Т	Т	Т
.33333333	.66666667	.44444444	Т	Т	Т
.33333333	.66666667	.54029062	Т	Т	Т
.33333333	.66666667	.60298866	Т	Т	Т

CO molecule put above surface atom \Rightarrow "on-top":

- $z_c = (.540 .444) \times 5.196 \times 3.53 \approx 1.76 \text{ Å}$
- $z_{CO} = (.603 .540) \times 5.196 \times 3.53 \approx 1.16 \text{ Å}$

- Compared to previous examples, we now have two additional atomic types (C & O) ⇒ change POTCAR!
- Concatenate nickel, carbon, and oxygen PAW datasets.

CO@Ni(111) (ex.: COonNi111 rel)

Geometry

POSITION			TOTAL-FORCI	E (eV/Angst)	
0.00000	0.00000	0.00000	0.000000	-0.000000	0.174586
-0.00000	1.44112	2.03805	0.00000	-0.000000	-0.107681
1.24804	0.72056	4.07609	-0.00000	-0.000000	-0.073588
-0.00000	0.00000	6.10111	0.00000	-0.000000	-0.000361
-0.00000	1.44112	8.15449	-0.00000	-0.000000	-0.002450
-0.00000	1.44112	9.91089	0.00000	-0.000000	0.014846
-0.00000	1.44112	11.06589	-0.000000	0.000000	-0.005352
total drift:			-0.000177	-0.000361	0.013511

- Small outward relaxation of the surface due to adsorption: $\Delta d_{12} = (8.154 - 6.101)/2.038 \times 100 - 100 = 0.74\%$
- CO geometry:

 $d_{CO} = 11.066 - 9.911 = 1.155 \text{ Å}$ $z_{CNi} = 9.911 - 8.154 = 1.757 \text{ Å}$

Ni(111) with higher cutoff (ex.: Ni111clean 400eV)

- the PAW datasets for carbon and oxygen used in example <u>COonNi111_rel</u> require a plane wave energy cutoff of 400 eV (see C and O POTCAR files).
- The previous calculation of the Ni(111) clean surface was done with an energy cutoff of 270 eV
- \Rightarrow To be able to calculate the adsorption energy we need to run a single point calculation for the Ni(111) clean surface at a higher cutoff (400eV).

SYTEM = clean Ni(111) surface	Name of the calculation			
ISTART = 0 $ICHARG = 2$	initial wave functions: random numbers initial charge density: overlapping atoms			
ENMAX = 400	cutoff energy 400 eV			
ALGO = Fast EDIFF = 1E-6	use RMM-DIIS for electronic optimization electronic convergence: energy change < 10 ⁻⁶ eV			
ISMEAR = 2 SIGMA = 0.2	$2^{ m nd}$ order Methfessel-Paxton smearing (metal!) smearing width $\sigma=0.2$ eV			
LVHAR = .TRUE. # LVTOT = .TRUE.	Write electrostatic potential to LOCPOT file, needed to calculate the work function			

• Change in cutoff lowers total energy: ENCUT=270 eV: $E(\sigma \rightarrow 0) = -25.737$ ENCUT=400 eV: $E(\sigma \rightarrow 0) = -25.742$

N.B.: the setup for the calculation of " E_{CO} ", you will find in the Ni111clean_400eV/CO subdirectory

• Adsorption energy: $E_{ads} = E_{total} - E_{clean} - E_{CO}$ $E_{ads} = -40.829 + 25.742 + 14.835 = -0.252 \text{ eV}$

Ni(111) with higher cutoff (ex.: Ni111clean 400eV)

- Use p4vasp to show the planar average of the potential (LOCPOT).
- vacuum-potential $E^{\text{Vac}} = 5.45 \text{ eV}$
- Fermi-level $\varepsilon_F = 0.226 \text{ eV}$ (in OUTCAR)

•
$$\Phi = E^{\text{vac}} - \varepsilon_F = 5.22 \text{ eV}$$

Ni(111) with higher cutoff (ex.: Ni111clean 400eV)

CO@Ni(111) LDOS&Workfunction (ex.: <u>COonNi111 LDOS</u>)

INCAR:

SYSTEM = CO adsorption on Ni(111)	Name of the calculation
ENMAX = 400	cutoff energy 400 eV
ISMEAR = -5	tetrahedron method with Blöchl corrections
ALGO = Fast	use RMM-DIIS for electronic optimization
LORBIT = 11	LM-decomposed site resolved density-of-states
IDIPOL = 3 LDIPOL = .TRUE.	Enable dipole corrections in direction 3 Switch on dipole corrections to potential (=diplole layer)
LVHAR = .TRUE. #LVTOT = .TRUE.	Write Hartree part of local potential to LOCPOT Write total local potential to LOCPOT

N.B.: We want to use the optimized structure of <u>COonNi111_rel</u>: In principle this would mean copying the CONTCAR of <u>COonNi111_rel</u> to POSCAR in the directory where you want to run <u>COonNi111_LDOS</u>. This, however, has already been taken care of, and the POSCAR file in <u>COonNi111_LDOS</u> is already the correct one.

CO@Ni(111) LDOS&Workfunction (ex.: <u>COonNi111 LDOS</u>)

Visualisation: use p4vasp as explained for example <u>Ni100clean_LDOS</u>.

CO@Ni(111) LDOS&Workfunction (ex.: <u>COonNi111 LDOS</u>)

- Fermi-level $\varepsilon_F = 1.68 \text{ eV}$ (in OUTCAR)
- vacuum-potential at 8.24/6.77 eV:

 $\Phi_{CO} = 8.24 - 1.68 = 6.56 \text{ eV}$ $\Phi_{clean} = 6.77 - 1.68 = 5.09 \text{ eV}$

From <u>Ni111clean</u> 400eV, however: $\Phi_{clean} = 5.22 \text{ eV}$

This discrepancy is due to a too small vacuum!

Visualisation: use p4vasp as explained for example <u>Ni111clean_400eV</u>.

Due to dipole corrections

INCAR:

SYSTEM = CO on Ni (111) frequencies	
ENMAX = 400	cutoff energy 400 eV
ISMEAR = 2 SIGMA = 0.2	2 nd order Methfessel-Paxton smearing smearing width $\sigma=0.2$ eV
ALGO = Fast	use RMM-DIIS for electronic optimization
EDIFF = 1E-6	tight convergence needed to compute vibrational properties
MAXMIX = 60	(Default: MAXMIX=45) Store more mixing steps, save time but costs memory
NSW = 100	
IBRION = 5	Compute vibrational spectrum using finite differences (displacements: 0.015 Å)
NFREE = 2	Use two displacements per degree-of-freedom (i.e., a 2 nd order finite difference stencil)

POSCAR:

• Frequencies only for CO molecule, and only in the *z*-direction (*z* and (*x*, *y*) are independent).

Use the POSCAR file in <u>COonNi111 freq</u>, or copy COonNi111_rel/CONTCAR to POSCAR

Additional output in the OUTCAR file for frequency calculations via finite differences,

Finite differences progress: Degree of freedom: 1/ 2 Displacement: 1/ 2 Total: 1/ 4

- After the initial calculation for the equilibrium geometry, NFREE displacements (±POTIM) are performed for each degree of freedom; from the forces that are induced by these displacements the dynamical matrix is set up and diagonalized.
- At the end of the OUTCAR file the
 - forces,

e.g.:

- the dynamical matrix, and finally
- the eigenfrequencies and
- eigenvectors (first normalized and then mass-weighted) are listed.

Eigenvectors and eigenvalues of the dynamical matrix

1 f = 63.847137 THz	401.163391	2PiTHz 2129.711174	cm-1	264.050627	meV
X Y	Z	dx	dy	dz	
0.000000 0.000000	0.00000	0	0	0	
-0.000000 1.441116	2.038046	0	0	0	
1.248043 0.720558	4.076093	0	0	0	
0.000000 0.000000	6.101106	0	0	0	
-0.000000 1.441116	8.154488	0	0	0	
-0.000000 1.441116	9.910894	0	0	-0.781357	CO stratch
-0.000000 1.441116	11.065888	0	0	0.624084	CO SU ELLI
2 f = 12.457302 THz	78 271540	2PiTHz 415 530860	cm-1	51 519280	m≏V
X Y	7.	dx	dv	dz	IIIC V
		0		0	
-0 000000 1 441116	2 038046	0	0	0	
1 248043 0 720558	4 076093	0	0	0	
	6 101106	0	0	0	
-0 000000 1 441116	8 154488	0	0	0	
	9,910894	0	0	-0.624084	
-0 000000 1 441116	11 065888	Ũ	0	-0 781357	CO-metal

STM (ex.: Graphite STM and Graphene STM)

STM (ex.: Graphite STM and Graphene STM)

