
Using VASP at NERSC

VASP Hands-on Training
June 30, 2020

Zhengji Zhao
NERSC User Engagement Group

Outline

● Getting started with VASP at NERSC
● How to run VASP on Cori
● Best practices
● Running VASP with variable-time job scripts
● Summary

2

Outline

Getting Started with VASP at NERSC

VASP Access at NERSC
● Confirm your VASP license to access the pre-compiled VASP binaries

at NERSC
○ Instructions: https://docs.nersc.gov/applications/vasp/#access

○ Note the email address change: licensing@vasp.at
● VASP access is controlled by unix groups

○ vasp5 for VASP 5
○ vasp6 for VASP 6
○ Type the “groups” command to check if you have access

● No need to confirm licenses if you build your own

4

Available VASP Modules on Cori
● Type “module avail vasp” to see the available VASP modules

5

Build Type Pure MPI MPI+OpenMP Comment

Standard Distributions vasp/5.4.4-hsw(default)
vasp/5.4.4-knl

vasp/20181030-hsw,
vasp/20181030-knl
vasp/6.1.0-hsw, vasp/6.1.0-knl

Builds with the third party codes,
Wannier90, VTST, BEEF,
VASPSol enabled

vasp-tpc/5.4.4-hsw(default)
vasp-tpc/5.4.4-knl

vasp-tpc/20170629-hsw
vasp-tpc/20170629-knl

Builds with NMAX_DEG=128 vasp/20170323_NMAX_DEG=128-hsw
vasp/20170323_NMAX_DEG=128-knl

An MPI wrapper for VASP to
bundle many similar VASP jobs

mvasp/5.4.4-hsw
mvasp/5.4.4-knl

Click here for more
details

*) -hsw: optimized build for Haswell; -knl: optimized build for KNL; tpc stands for third party codes

Using VASP Modules
● Type “module show vasp/<version-str>” to see what a module does

6

cori08:~> module show vasp

/usr/common/software/modulefiles/vasp/5.4.4-hsw:

module-whatis VASP: Vienna Ab-initio Simulation Package

Access to the vasp suite is allowed only for research groups with existing
licenses for VASP. If you have a VASP license please email

 licensing@vasp.at and CC: vasp_licensing@nersc.gov

with the information on which research group your license derives from.
The PI of the group as well as the institution and license number will help
speed the process.

setenv PSEUDOPOTENTIAL_DIR /global/common/sw/cray/cnl7/haswell/vasp/pseudopotentials
setenv VDW_KERNAL_DIR /global/common/sw/cray/cnl7/haswell/vasp/vdw_kernal
setenv NO_STOP_MESSAGE 1
setenv MPICH_NO_BUFFER_ALIAS_CHECK 1
prepend-path PATH /global/common/sw/cray/cnl7/haswell/vasp/vtstscripts/r933
prepend-path PATH /global/common/sw/cray/cnl7/haswell/vasp/5.4.4/intel/18.0.1.163/w5vq7o2/bin

Using VASP Modules (Cont.)
● Type “ls –l <bin directory>” to see available VASP binaries

● Type “module load vasp” to access VASP binaries

● VTST scripts (UT Austin), pseudo potential files, and makefiles are
available (check the installation directories)

7

cori08:~> ls -l /global/common/sw/cray/cnl7/haswell/vasp/5.4.4/intel/18.0.1.163/w5vq7o2/bin
total 450600
-rwxr-xr-x 1 zz217 nstaff 156475624 Jul 24 2019 vasp_gam
-rwxr-xr-x 1 zz217 nstaff 152500944 Jul 24 2019 vasp_ncl
-rwxr-xr-x 1 zz217 nstaff 152433416 Jul 24 2019 vasp_std

cori08:~> module load vasp

cori08:~> which vasp_std
/global/common/sw/cray/cnl7/haswell/vasp/5.4.4/intel/18.0.1.163/w5vq7o2/bin/vasp_std

vasp_gam: the Gamma point only version
vasp_ncl: the non-collinear version
vasp_std: the standard kpoint version

Running VASP on Cori

Cori System Configuration

● The memory available for user applications is 87GB (out of 96GB) per
KNL node, and 118GB (out of 128GB) per Haswell node

9

Core Core
System # of cores/

CPUs per node
of CPUs
per core

of sockets
per node

Clock Speed
(GHz)

Memory/node Memory/core

Cori KNL
(9688 nodes)

68/272 4 1 1.4 96 GB DDR4
@2400 MHz; 16GB
MCDRAM as cache

1.4 GB DDR
325 MB
MCDRAM

Cori Haswell
(2388 nodes)

32/64 2 2 2.3 128 GB DDR4
@2133 MHz

4.0 GB

Terminology: Cori Haswell Node Has 2 Sockets, 32 Cores and 64 CPUs

Terminology: Cori KNL Node Has 1 Socket, 68 Cores, and 272 CPUs

For optimal performance:
● Placing 1 task or thread per core for VASP

○ Hyperthreading does not help VASP performance in most cases
● Evenly divide the available cores/CPUs on the node over the MPI tasks

Cori KNL Queue Policy

12

5

Cori KNL Queue Policy (Cont.)
● interactive QOS - for interactive testing

○ Can use up to 64 nodes for 4 hours
○ Starts jobs immediately or cancels in 5 minutes

● flex QOS - for checkpoint/restart capable jobs
○ Must use sbatch’s --time-min 2 hours or less and --time > 2 hours

○ Can use up to 256 KNL nodes for 48 hours
○ Get a 75% charging discount and a faster queue turnaround

● regular QOS
○ Jobs that use 1024+ nodes on Cori KNL get a 50% charging discount and a higher

scheduling priority

● Two job aging policy
○ Only two jobs per QOS per user accrue priority in the queue 13

Running VASP Interactively on Cori

● The interactive QOS allows quick access to compute nodes

14

cori03:/global/cscratch1/sd/zz217/PdO4> salloc -N4 -C knl -q interactive -t 4:00:00
salloc: Granted job allocation 13460931

nid02305:/global/cscratch1/sd/zz217/PdO4> module load vasp/20181030-knl
nid02305:/global/cscratch1/sd/zz217/PdO4> export OMP_NUM_THREADS=4

zz217@nid02305:/global/cscratch1/sd/zz217/PdO4> srun -n64 -c16 --cpu-bind=cores vasp_std
 --
 OOO PPPP EEEEE N N M M PPPP
 O O P P E NN N MM MM P P
 O O PPPP EEEEE N N N M M M PPPP -- VERSION
 O O P E N NN M M P
 OOO P EEEEE N N M M P
 --
 running 64 mpi-ranks, with 4 threads/rank
 …

Example: using the interactive QOS

Sample Job Scripts to Run Pure MPI VASP Jobs

Cori KNL:
#!/bin/bash -l
#SBATCH –N 1
#SBATCH -C knl
#SBATCH –q regular
#SBATCH –t 6:00:00

module load vasp/5.4.4-knl
srun –n64 -c4 --cpu-bind=cores vasp_std

15

Cori Haswell:
#!/bin/bash -l
#SBATCH –N 1
#SBATCH -C haswell
#SBATCH –q regular
#SBATCH –t 6:00:00

module load vasp #or module load vasp/5.4.4-hsw
srun –n32 –c2 --cpu-bind=cores vasp_std

1 node 1 node

● Launch 1 task per core for optimal performance
○ i.e., place 1 task every 4 CPUs (1 core) on KNL; Place 1 task every 2 CPUs (1 core) on Haswell

● Use the “-c <ncpus>” option to evenly divide the node’s available CPUs over the MPI
tasks

○ -c, --cpus-per-task=<ncpus> request that ncpus be allocated per task (or process)

● Use the “--cpu-bind=cores” option to bind tasks to CPUs
● Submit the batch script with sbatch, e.g., sbatch run.slurm

Sample Job Scripts to Run Pure MPI VASP Jobs (Cont.)

16

of Nodes Srun command line Comment

KNL nnodes srun –n <ntasks> -c <ncpus> --cpu-bind=cores vasp_std
ntasks = nnodes * (256/ncpus)
where ncpus=4 is recommended for optimal performance (it can be 4,
2 or 1)

● Place 1 MPI task
per Core (4 CPUs)

● Using 64 cores (256
CPUs) out of 68
(272 CPUs)
available per KNL
node

1 srun –n64 -c4 --cpu-bind=cores vasp_std

2 srun –n128 -c4 --cpu-bind=cores vasp_std

4 srun –n256 -c4 --cpu-bind=cores vasp_std

Haswell nnodes srun -n <nnodes*64/ncpus> -c <ncpus> --cpu-bind=cores vasp_std
where ncpus=2 is recommended

● Place 1 MPI task
per Core (2 CPUs)

● There are 64 CPUs
per Haswell node1 srun –n32 –c2 --cpu-bind=cores vasp_std

2 srun –n64–c2 --cpu-bind=cores vasp_std

4 srun –n128 –c2 --cpu-bind=cores vasp_std

Sample Job Scripts to Run Hybrid MPI + OpenMP VASP Jobs
Cori KNL:
#!/bin/bash -l
#SBATCH –N 1
#SBATCH –q regular
#SBATCH –t 6:00:00
#SBATCH -C knl

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

launching 1 task every 4 cores (16 CPUs)
srun –n16 –c16 --cpu-bind=cores vasp_std

17

Cori Haswell:
#!/bin/bash -l
#SBATCH –N 1
#SBATCH –q regular
#SBATCH –t 6:00:00
#SBATCH -C haswell

module load vasp/20181030-hsw
export OMP_NUM_THREADS=4

launching 1 task every 4 cores (8 CPUs)
srun –n8 –c8 --cpu-bind=cores vasp_std

● Launch 1 thread per core for optimal performance
○ i.e., place 1 task every 4 cores (16 CPUs) when running 4 OpenMP threads per MPI task on KNL
○ Place 1 task every 4 cores (8 CPUs) when running 4 OpenMP threads per MPI task on Haswell

● Total number of tasks ntasks
○ For KNL using 64 cores (256 CPUs) out of 68 (272 CPUs) available
○ 64 cores / 4 cores/task = 16 tasks on KNL; 32 cores/ 4 cores/task = 8 tasks on Haswell

● Use the “-c <ncpus>” option to evenly divide the node’s CPUs over the MPI tasks
○ ncpus=16 for KNL; ncpus=8 for Haswell

● Use the --cpu-bind=cores option to bind tasks to CPUs

Sample Job Scripts to Run Hybrid MPI + OpenMP VASP Jobs (Cont.)

18Job script generator: https://my.nersc.gov/script_generator.php

of KNL
Nodes

OMP_NUM_
THREADS Srun command line Comment

nnodes nthreads #SBATCH -N nnodes
module load vasp/20181030-knl
export OMP_NUM_THREADS=nthreads

srun –n <ntasks> -c <ncpus> --cpu-bind=cores vasp_std
where ncpus = 4 * nthreads; ntasks = nnodes * (256/ncpus)

● Place 1 thread per
core for optimal
performance

● Usws 64 cores
(256 CPUs) out of
68 (272 CPUs)
available per KNL
node

● OMP_NUM_THRE
ADS=4, or 8 is
recommended

● Hyper-Threading is
not recommended
for most VASP jobs

1 4 srun –n16 –c16 --cpu-bind=cores vasp_std

1 8 srun –n8 –c32 --cpu-bind=cores vasp_std

2 4 srun –n32 –c16 --cpu-bind=cores vasp_std

2 8 srun –n16 –c32 --cpu-bind=cores vasp_std

4 4 srun –n64 -c16 --cpu-bind=cores vasp_std

4 8 srun –n32 –c32 --cpu-bind=cores vasp_std

A Few Useful Commands

● Commonly used Slurm commands:
○ sbatch, salloc, scancel, srun, squeue, sinfo, sqs, scontrol,

sacct (check man page)

○ sinfo --format=‘%F %b’ for available features of nodes, or sinfo
--format=‘%C %b’

○ scontrol show node <nid> for node info

● ssh_job <jobid> to ssh to the head compute nodes of your
running jobs
○ you can then run your favorite commands to monitor your running jobs, e.g., the

top command

19

Best Practices

To Get Through the Queue Faster

● Be aware of the two job aging policy
○ Only two jobs per QOS per user accrue priority in the queue

● Bundle jobs to get improved throughput
○ Multiple sruns + job resizing
○ Use the mvasp modules to bundle many similar VASP jobs

■ Can get a 50% large job charging discount if using more than 1024 nodes

● Run VASP jobs on Cori KNL
○ More nodes and a shorter queue backlog

● Use variable-time job scripts to improve the queue turnaround
○ Automatically makes use of the backfill opportunity
○ If used with the flex QOS, you get a 75% charging discount

21

Bundle Jobs with Multiple Sruns

● Sample job script bundling multiple VASP jobs

● The number of sruns in the job script should be small
○ Slurm is not good at handling multiple sruns in a single job script
○ Nodes with earlier completed jobs will be idle

#!/bin/bash
#SBATCH --qos=debug
#SBATCH --nodes=5
#SBATCH --time=30:00
#SBATCH --constraint=knl

module load vasp/5.4.4-knl

#Assume 5 VASP jobs in run1, run2, …, run5 directories
for j in {1..5}; do
 cd run$j
 srun -N 1 -n 64 -c 4 --cpu_bind=cores vasp_std &
 cd ..
done

wait

22

Bundle Jobs with Multiple Sruns + Job Resizing
● Release the nodes as soon as the

job running on them completes
while the rest of the jobs are still
running

● You should not release the batch
host (head node)

● Make the longest job run on the
head node (the first job)

● You can modify this script for your
needs, e.g., running each job
instance on multiple nodes

#!/bin/bash
#SBATCH -J job_resizing
#SBATCH -q debug
#SBATCH -N 5
#SBATCH -t 30:00
#SBATCH -C knl

module load vasp/5.4.4-knl
nodelist="`scontrol show hostname`"

#cd to each run directory, and launch srun on each node
for node in $nodelist ;do
 cd run$j
 ../run_jobstep.sh $node &
 cd ..
done

wait

cat run_jobstep.sh
#!/bin/bash
mynode=$1
srun -N1 -w $mynode -n64 -c4 --cpu-bind=cores -o %x-%J-${mynode}.out vasp_std

#release $mynode from nodelist if $mynode is not the batch host (head node) or it is not the last
remaining node
batchHost=`scontrol show hostname |head -1`
if [[$mynode != $batchHost]]; then
 nodelist=`squeue -h -j $SLURM_JOB_ID -o %N`
 remaining_nodelist=`scontrol show hostname $nodelist |grep -v $mynode`
 if [[-n $remaining_nodelist]]; then
 scontrol update job $SLURM_JOB_ID Nodelist="`echo
$remaining_nodelist`"
 fi
fi 23

Sample job script to bundle VASP jobs with job resizing

Running Many VASP Jobs Simultaneously with a VASP Wrapper

● An MPI wrapper for VASP 5.4.4 is available on Cori
● To use it, do

○ module load mvasp
○ run the “gen_joblist.sh” script to generate the job list file, joblist.in

○ Sample output is available here
○ The one downside: a single job failure causes all jobs to fail

#!/bin/bash
#SBATCH -J test_mvasp
#SBATCH -N 512
#SBATCH -C knl
#SBATCH -q debug
#SBATCH -o %x-%j.out
#SBATCH -t 30:00

module load mvasp/5.4.4-knl

#run 512 VASP jobs simultaneously each running vasp_std with 1 KNL node (64 processes)
sbcast --compress=lz4 `which mvasp_std` /tmp/mvasp_std
srun -n 32768 -c4 --cpu-bind=cores /tmp/mvasp_std

24

Sample job script to bundle VASP jobs with the MPI wrapper for VASP

Parallel Efficiency Considerations

● Running VASP beyond its parallel scaling region may have very
limited benefits (even if not running into errors)
○ Not charging efficient
○ For very small jobs, consider the shared QOS

● 1 rank/atom is a good reference when choosing the number of
processes to run your VASP jobs
○ To find the most efficient NCORE/NPAR and NSIM values for your jobs, you need

to do your own benchmarking
○ Use KPAR if your system contains many kpoints

25

Performance Considerations
● For small DFT calculations, you may see better performance with the

pure MPI VASP on Haswell
● For HSE workloads and VDW calculations, it may be beneficial to run

the hybrid MPI+OpenMP VASP on KNL
○ However, running VASP on Cori KNL is recommended for better queue turnaround

● Running the hybrid MPI + OpenMP VASP on Cori KNL is recommended
○ 4 or 8 OpenMP threads per MPI task is recommended
○ Hyperthreads are not recommended with most VASP jobs (except occasionally HSE)
○ Use 64 cores out of 68 on KNL in most cases
○ Note that NCORE /=1 is not supported in the hybrid VASP

26

Performance Considerations (Cont.): Process/Thread Affinity

● Slurm imposes CPU bindings (auto-binding) only for limited use cases
○ For example, when MPI tasks per node x CPUs per task = the total number of

CPUs allocated per node (e.g., 68x4=272 on KNL)

● Always use srun’s --cpu-bind and -c options explicitly to achieve optimal
process/thread affinity (as in the sample job scripts)
○ -c is used to evenly divide the node’s available CPUs over the MPI tasks
○ --cpu-bind is used to pin processes to CPUs
○ Use OMP environment variables to fine control thread affinity

■ export OMP_PROC_BIND=true
■ export OMP_PLACES=threads
■ These two envs are set in the hybrid MPI+OpenMP VASP modules

● The Job script generator is helpful
27

Performance Considerations (Cont.):

● Do not run production VASP jobs from your /global/homes directory
○ Use the scratch file system (cscratch1) and community file system (cfs)
○ The Burst Buffer offers the best I/O performance if needed

● For large VASP jobs, copy the vasp binaries to /tmp (memory) and
launch them from there

sbcast --compress=lz4 `which vasp_std` /tmp/vasp_std
srun -n 4096 -c4 --cpu-bind=cores /tmp/vasp_std

28

Running VASP with Variable-Time
Job Scripts

What are Variable-Time Job Scripts?

Variable-Time Job (VTJ) Scripts
● A VTJ script splits a long running job into multiple shorter chunks to

make use of the backfill opportunity and automates pre-empted job
resubmissions

● Are for jobs that can resume from where they left off
● Adds a few sbatch directives and bash functions in your job script

●

sbatch directives:
#SBATCH --time-min=2:00:00
#SBATCH --signal=B:USR1@<sig_time>
#SBATCH --requeue
#SBATCH --open-mode=append

Bash functions
Requeue_job – trap signals
func_trap – action upon trap
parse_job - process job info

The core of the automation is trapping signals

31

Why Use Variable-Time Job Scripts?
● Greatly improved queue turnaround
● Enables jobs of any length

○ e.g., a week or even longer, as long as the jobs can restart by themselves

● Can run with any QOS on both Cori KNL and Haswell
● With flex QOS, you get a 75% charging discount

○ Flex QOS is available on Cori KNL only

● VTJs are an important component in the C/R road map at NERSC
○ C/R is integral to many future plans at NERSC

○ Getting an early start on variable-time jobs would be helpful for you in the future

32

How Does a Variable-Time Job Work?

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 2
#SBATCH -C knl
#SBATCH -t 48:00:00

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

launching 1 task every 4 cores (16 CPUs)
srun –n32 –c16 --cpu_bind=cores vasp_std

#!/bin/bash
#SBATCH -q flex
#SBATCH –N 2
#SBATCH -C knl
#SBATCH –t 48:00:00
#SBATCH --time-min=2:00:00

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

launching 1 task every 4 cores (16 CPUs)
srun –n32 –c16 --cpu_bind=cores vasp_std

Flex QOS VASP jobsRegular QOS VASP jobs

A Regular VASP Job Script (Atomic Relaxation Jobs)

34

● You can use the flex QOS for a 75% charging discount and
a faster queue turnaround

● Manual resubmissions of the pre-terminated jobs are
required

#!/bin/bash
#SBATCH -q flex
#SBATCH –N 2
#SBATCH -C knl
#SBATCH –t 48:00:00
#SBATCH --time-min=2:00:00

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

launching 1 task every 4 cores (16 CPUs)
srun –n32 –c16 --cpu_bind=cores vasp_std

Flex QOS VASP jobs
(manual resubmission)

What a Variable-Time Job Script looks like

#!/bin/bash
#SBATCH -q flex
#SBATCH –N 2
#SBATCH -C knl
#SBATCH -t 48:00:00

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

srun –n32 –c16 --cpu-bind=cores vasp_std

wait

 &

https://docs.nersc.gov/jobs/examples/#vasp-example

#SBATCH --comment=48:00:00
#SBATCH --time-min=02:00:00
#SBATCH --signal=B:USR1@900
#SBATCH --requeue
#SBATCH --open-mode=append

srun must execute in background and catch signal
on wait command

For automatic resubmission of pre-terminated jobs

put any commands that need to run to continue
the next job here
ckpt_vasp() {
 set -x
 restarts=`squeue -h -O restartcnt -j $SLURM_JOB_ID`
 echo checkpointing the ${restarts}-th job

 # to terminate VASP at the next ionic step
 echo LSTOP = .TRUE. > STOPCAR
 # wait until VASP to complete the current ionic step,
 # write WAVECAR file and quit
 srun_pid=`ps -fle|grep srun|head -1|awk '{print $4}’`
 wait $srun_pid

 # copy CONTCAR to POSCAR
 cp -p CONTCAR POSCAR
 set +x
}

ckpt_command=ckpt_vasp
max_timelimit=48:00:00

requeueing the job if remaining time >0
. /global/common/cori/software/variable-time-job/setup.sh
requeue_job func_trap USR1

 35

#!/bin/bash
#SBATCH -q flex
#SBATCH –N 2
#SBATCH -C knl
#SBATCH –t 48:00:00
#SBATCH --time-min=2:00:00

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

launching 1 task every 4 cores (16 CPUs)
srun –n32 –c16 --cpu_bind=cores vasp_std

Flex QOS VASP jobs
(manual resubmission)

#!/bin/bash
#SBATCH -q flex
#SBATCH –N 2
#SBATCH -C knl
#SBATCH -t 48:00:00

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

srun –n32 –c16 --cpu-bind=cores vasp_std

wait

 &

https://docs.nersc.gov/jobs/examples/#vasp-example

#SBATCH --comment=48:00:00
#SBATCH --time-min=02:00:00
#SBATCH --signal=B:USR1@900
#SBATCH --requeue
#SBATCH --open-mode=append

srun must execute in background and catch signal
on wait command

For automatic resubmission of pre-terminated jobs

put any commands that need to run to continue
the next job here
ckpt_vasp() {
 set -x
 restarts=`squeue -h -O restartcnt -j $SLURM_JOB_ID`
 echo checkpointing the ${restarts}-th job

 # to terminate VASP at the next ionic step
 echo LSTOP = .TRUE. > STOPCAR
 # wait until VASP to complete the current ionic step,
 # write WAVECAR file and quit
 srun_pid=`ps -fle|grep srun|head -1|awk '{print $4}’`
 wait $srun_pid

 # copy CONTCAR to POSCAR
 cp -p CONTCAR POSCAR
 set +x
}

ckpt_command=ckpt_vasp
max_timelimit=48:00:00

requeueing the job if remaining time >0
. /global/common/cori/software/variable-time-job/setup.sh
requeue_job func_trap USR1

 36

Explaining the VTJ Script Line-by-Line
#SBATCH --comment=48:00:00
● A flag to add comments about your job
● Specifies the desired walltime and to track the remaining walltime for the pre-terminated jobs

○ You can specify any length of time, e.g., a week or even longer

#SBATCH --time-min=02:00:00
● Specifies the minimum time for your job
● 2 hours or less for Flex QOS

#SBATCH --signal=B:USR1@<sig_time>
● Used to request that the batch system sends a user defined signal USR1 to the batch shell

(where the job is running) sig_time seconds before the job hits the wall clock limit
● sig_time should match the checkpoint overhead of your job

#SBATCH --requeue
● Specifies that the batch job should be eligible to be requeued

#SBATCH --open-mode=append
● Appends the standard output/error of the requeued job to the same standard output/error files

from the previous job
● This is optional; if not used, each requeued job creates its own standard output/error files. 37

#!/bin/bash
#SBATCH -q flex
#SBATCH –N 2
#SBATCH -C knl
#SBATCH –t 48:00:00
#SBATCH --time-min=2:00:00

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

launching 1 task every 4 cores (16 CPUs)
srun –n32 –c16 --cpu_bind=cores vasp_std

Flex QOS VASP jobs
(manual resubmission)

#!/bin/bash
#SBATCH -q flex
#SBATCH –N 2
#SBATCH -C knl
#SBATCH -t 48:00:00

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

srun –n32 –c16 --cpu-bind=cores vasp_std

wait

 &

https://docs.nersc.gov/jobs/examples/#vasp-example

#SBATCH --comment=48:00:00
#SBATCH --time-min=02:00:00
#SBATCH --signal=B:USR1@900
#SBATCH --requeue
#SBATCH --open-mode=append

srun must execute in background and catch signal
on wait command

For automatic resubmission of pre-terminated jobs

put any commands that need to run to continue
the next job here
ckpt_vasp() {
 set -x
 restarts=`squeue -h -O restartcnt -j $SLURM_JOB_ID`
 echo checkpointing the ${restarts}-th job

 # to terminate VASP at the next ionic step
 echo LSTOP = .TRUE. > STOPCAR
 # wait until VASP to complete the current ionic step,
 # write WAVECAR file and quit
 srun_pid=`ps -fle|grep srun|head -1|awk '{print $4}’`
 wait $srun_pid

 # copy CONTCAR to POSCAR
 cp -p CONTCAR POSCAR
 set +x
}

ckpt_command=ckpt_vasp
max_timelimit=48:00:00

requeueing the job if remaining time >0
. /global/common/cori/software/variable-time-job/setup.sh
requeue_job func_trap USR1

 38

Explaining the VTJ Script Line-by-Line (Cont.)
ckpt_command=ckpt_vasp
● The command to run to checkpoint your job (if any)
● It is run inside the function requeue_job upon receiving the USR1 signal

max_timelimit=48:00:00
● Use this to specify the max time for the requeued job
● This can be any time less than or equal to the max time limit allowed by the batch system

○ The default is 48 hours if not specified

& and wait
● To put the srun execution to the background so that srun continues to run as needed to complete

the checkpoint command (ckpt_command)

/global/common/cori/software/variable-time-job/setup.sh
● A few bash functions are defined in this setup script to automate job resubmissions

○ e.g., requeue_job and func_trap

39

#!/bin/bash
#SBATCH -q flex
#SBATCH –N 2
#SBATCH -C knl
#SBATCH –t 48:00:00
#SBATCH --time-min=2:00:00

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

launching 1 task every 4 cores (16 CPUs)
srun –n32 –c16 --cpu_bind=cores vasp_std

Flex QOS VASP jobs
(manual resubmission)

#!/bin/bash
#SBATCH -q flex
#SBATCH –N 2
#SBATCH -C knl
#SBATCH -t 48:00:00

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

srun –n32 –c16 --cpu-bind=cores vasp_std

wait

 &

https://docs.nersc.gov/jobs/examples/#vasp-example

#SBATCH --comment=48:00:00
#SBATCH --time-min=02:00:00
#SBATCH --signal=B:USR1@900
#SBATCH --requeue
#SBATCH --open-mode=append

srun must execute in background and catch signal
on wait command

For automatic resubmission of pre-terminated jobs

put any commands that need to run to continue
the next job here
ckpt_vasp() {
 set -x
 restarts=`squeue -h -O restartcnt -j $SLURM_JOB_ID`
 echo checkpointing the ${restarts}-th job

 # to terminate VASP at the next ionic step
 echo LSTOP = .TRUE. > STOPCAR
 # wait until VASP to complete the current ionic step,
 # write WAVECAR file and quit
 srun_pid=`ps -fle|grep srun|head -1|awk '{print $4}’`
 wait $srun_pid

 # copy CONTCAR to POSCAR
 cp -p CONTCAR POSCAR
 set +x
}

ckpt_command=ckpt_vasp
max_timelimit=48:00:00

requeueing the job if remaining time >0
. /global/common/cori/software/variable-time-job/setup.sh
requeue_job func_trap USR1

 40

Explaining the VTJ Script Line-by-Line (Cont.)
requeue_job

● This function traps the user-defined signal (e.g., USR1)
● Upon receiving the signal, it executes a function (e.g., func_trap below) that is provided on the

command line in the script.

func_trap
● This function contains the list of commands to be executed to initiate the checkpointing, prepares

inputs for the next job, requeues the job, and updates the remaining walltime.
func_trap() {
 $ckpt_command
 scontrol requeue ${SLURM_JOB_ID}
 scontrol update JobId=${SLURM_JOB_ID} TimeLimit=${requestTime}
}

requeue_job() {
 parse_job # calculates the remaining walltime, updates the --comment flag
 if [-n $remainingTimeSec] && [$remainingTimeSec -gt 0]; then
 commands=$1
 signal=$2
 trap $commands $signal
 fi
}

41

How Does Automatic Resubmission Work?
1. The user submits the variable-time job script.
2. The batch system looks for a backfill opportunity for the job. If it can allocate the requested number

of nodes for this job for any duration (e.g., 6 hours) between the specified minimum time (2 hours)
and the time limit (48 hours) before those nodes are used for other higher priority jobs, the job starts
execution.

3. The job runs until it receives a signal USR1 (--signal=B:USR1@900) 900 seconds before it hits
the allocated time limit (6 hours).

4. Upon receiving the signal, the func_trap function gets executed, which in turn
a. Executes the ckpt_command if specified.
b. Requeues the job and updates the remaining walltime for the requeued job.

5. Steps 2-4 repeat until the job runs for the desired amount of time (48 hours) or the job completes.
6. User checks the results.

func_trap() {
 $ckpt_command
 scontrol requeue ${SLURM_JOB_ID}
 scontrol update JobId=${SLURM_JOB_ID}
TimeLimit=${requestTime}
}

ckpt_vasp() {
 echo LSTOP = .TRUE. > STOPCAR
 srun_pid=`ps -fle|grep srun|head -1|awk '{print $4}’`
 wait $srun_pid
 cp -p CONTCAR POSCAR
}
ckpt_command=ckpt_vasp

42

How to Work with Variable-Time Jobs

● The sig_time should match the checkpoint-overhead of your job
○ The sample script waits for the current ionic step to complete after the signal is sent
○ The sample used 15 minutes (900 seconds) - this may not be enough for your jobs

● Check the commands inside the vasp_ckpt function and add/remove
anything you need to resume the next job, storing the intermediate
results if needed

● Note that not all VASP jobs are currently restartable
○ We are working towards getting an external C/R tool, DMTCP, to work with VASP

(target date: by the end of July)

Adjust the Sample VTJ Script for Your Jobs

44

Checking on Variable-Time Jobs
● sacct –j <jobid> -D

-D, --duplicates

If Slurm job ids are reset, some job numbers will probably appear more than once in the
accounting log file but refer to different jobs. Such jobs can be distinguished by the "submit"
time stamp in the data records.

When data for specific jobs are requested with the --jobs option, sacct returns the most recent
job with that number. This behavior can be overridden by specifying --duplicates, in which
case all records that match the selection criteria will be returned.

● sacct –j <jobid> -D -X
 -X, --allocations

 Only show statistics relevant to the job allocation itself, not taking steps into consideration.

45

Example Output of the sacct –D Command
zz217@cori08:~> sacct -j 30774616 -X -o jobid,jobname,submit,start,end,nnodes,timelimit,elapse,exit,state
 JobID JobName Submit Start End NNodes Timelimit Elapsed ExitCode State
------------ ---------- ------------------- ------------------- ------------------- -------- ---------- ---------- -------- ----------
30774616 md 2020-05-19T13:31:49 2020-05-19T14:46:16 Unknown 32 14:13:00 11:53:23 0:0 RUNNING

zz217@cori08:~> sacct -j 30774616 -X -D -o jobid,jobname,submit,start,end,nnodes,timelimit,elapse,exit,state
 JobID JobName Submit Start End NNodes Timelimit Elapsed ExitCode State
------------ ---------- ------------------- ------------------- ------------------- -------- ---------- ---------- -------- ----------
30774616 md 2020-05-15T23:01:27 2020-05-16T04:33:38 2020-05-16T07:01:51 32 2-00:00:00 02:28:13 0:0 REQUEUED
30774616 md 2020-05-16T07:03:28 2020-05-16T12:08:32 2020-05-16T14:33:37 32 2-00:00:00 02:25:05 0:0 REQUEUED
30774616 md 2020-05-16T14:34:50 2020-05-17T14:10:52 2020-05-17T19:44:05 32 2-00:00:00 05:33:13 0:0 REQUEUED
30774616 md 2020-05-17T19:45:20 2020-05-18T02:50:03 2020-05-18T05:30:10 32 2-00:00:00 02:40:07 0:0 REQUEUED
30774616 md 2020-05-18T05:31:12 2020-05-18T05:42:46 2020-05-18T10:13:47 32 2-00:00:00 04:31:01 0:0 REQUEUED
30774616 md 2020-05-18T10:14:04 2020-05-19T03:38:37 2020-05-19T08:52:46 32 2-00:00:00 05:14:09 0:0 REQUEUED
30774616 md 2020-05-19T08:54:11 2020-05-19T11:01:27 2020-05-19T13:31:28 32 2-00:00:00 02:30:01 0:0 REQUEUED
30774616 md 2020-05-19T13:31:49 2020-05-19T14:46:16 Unknown 32 14:13:00 11:50:02 0:0 RUNNING

For more details, run sacct without the –X option.
46

If Your Variable-Time Job Fails to Requeue Itself
● Check the standard error file for execution details

● Check if your job ran into any errors
○ If your job failed before the allocated time limit, the USR1 signal will not be sent so

that the job will not requeue

● Check if <sig_time> is long enough - it should equal or exceed the
checkpoint overhead time
○ If your job runs out of time while executing the ckpt_command, then the job will

not requeue

○ You can send the USR1 signal to your running job outside the job script any time if
needed using scancel -b -s USR1 <jobid>.

47

Example: Standard Error File from a Variable-Time VASP Job
zz217@cori08:/global/cscratch1/sd/zz217/vtj/flex_test/sd1-flex1> more md-30774616.err
time remaining $remainingTime: 165:39:00
next timelimit $requestTime: 172800
++ ckpt_vasp
+++ squeue -h -O restartcnt -j 30774616
++ restarts='0 '
++ echo checkpointing the 0 -th job
checkpointing the 0 -th job
++ echo LSTOP = .TRUE.
+++ ps -fle
+++ grep srun
+++ head -1
+++ awk '{print $4}'
++ srun_pid=134834
++ wait 134834
 PROFILE, used timers: 418
++ cp -p CONTCAR POSCAR
++ trap '' SIGTERM
++ scontrol requeue 30774616
slurmstepd: error: *** JOB 30774616 ON nid06740 CANCELLED AT 2020-05-16T07:01:51 DUE TO JOB REQUEUE ***
++ scontrol update JobId=30774616 TimeLimit=2880
++ trap - SIGTERM
++ echo '$?:' 0
$?: 0
++ set +x
time remaining $remainingTime: 163:23:00
next timelimit $requestTime: 172800
++ ckpt_vasp
...

put any commands that need to run to prepare for the next job here
ckpt_vasp() {
 set -x
 #get the restart count
 restarts=`squeue -h -O restartcnt -j $SLURM_JOB_ID`
 echo checkpointing the ${restarts}-th job

 #to terminate VASP at the next ionic step
 echo LSTOP = .TRUE. > STOPCAR

 #wait until VASP to complete the current ionic step
 srun_pid=`ps -fle|grep srun|head -1|awk '{print $4}’`
 wait $srun_pid

 #prepare inputs for next job
 cp -p CONTCAR POSCAR
 set +x
}

ckpt_command=ckpt_vasp

func_trap() {
 $ckpt_command
 scontrol requeue ${SLURM_JOB_ID}
 scontrol update JobId=${SLURM_JOB_ID} TimeLimit=${requestTime}
}

48

The function executed upon receiving signal USR1

VASP checkpoint function definition

Custom Variable-Time-Job Scripts for Your Needs
● You are encouraged to customize the setup script for your needs

○ Get a local copy of
/usr/common/software/variable-time-job/setup.sh,and modify just three
core functions as needed

● If you don’t like long VTJ scripts, you can hide most of them
○ Source the setup.sh file and define the ckpt_vasp function in your shell startup

files, ~/.bashrc
○ Put some sbatch options to your ~/.slurm/defaults (your job scripts can

overwrite these defaults)

#!/bin/bash

user setting goes here
export OMP_NUM_THREADS=4
srun -n32 -c16 --cpu_bind=cores ./a.out &

requeueing the job if remaining time >0
ckpt_command=ckpt_vasp
requeue_job func_trap USR1

wait

zz217@cori04:~> cat ~/.slurm/defaults
account=nstaff
mail-type=BEGIN,END,FAIL,REQUEUE
escori:qos=xfer
cori:constraint=knl
#time-min=2:00:00
#nodes=1
#qos=interactive

49A simplified sample VTJ scriptAn example ~/.slurm/defaults file

Custom VTJ Scripts for Your Needs (Cont.)

● Efforts to make VTJ scripts more user friendly are underway (still
experimental). You may want to try out the nersc_cr/vasp module

...
#Same SBATCH directives
nersc_cr module is still experimental, log some debugging info:
export _DEBUG_RESTARTABLE=1
module load nersc_cr/vasp

options for run_with_cr:
"-cr vasp" means "use checkpoint/restart strategy that targets Vasp jobs"
(other strategies will be added eventually)
"-t 96:00:00" means "run for 96 hours in total (over however many restarts
that takes)
run_with_cr -cr vasp -t 96:00:00 srun -n 64 -c16 --cpu_bind=cores vasp_std

50

How to use the nersc_cr/vasp module

Summary

Summary

● Running VASP jobs on Cori KNL is highly recommended, as it has a
much shorter backlog and more nodes in comparison to Cori Haswell

● Using variable-time job scripts
○ Greatly improves queue turnaround
○ Offers a 75% charging discount with flex QOS on Cori KNL
○ Enables long running jobs (e.g., weeks long jobs)

● Bundle VASP jobs to get better throughput
○ Try multiple sruns with job resizing to bundle jobs
○ The mvasp module is available for bundling many similar VASP jobs

● 1 rank/atom is a good reference when choosing the number of
processes to run your VASP jobs

52

Summary (Cont.)

● Running the hybrid MPI + OpenMP VASP on Cori KNL is highly
recommended for optimal performance
○ 4 or 8 OpenMP threads per MPI task is recommended

○ Use 64 cores out of 68 on KNL in most cases

● To achieve optimal performance, explicit use of the srun’s
--cpu-bind and -c options is recommended to evenly divide the
node’s CPUs over the MPI tasks and bind tasks to CPUs

● Do not run VASP jobs from your global homes
○ Use cscratch1 and cfs instead

53

Recommended readings

● These training slides are available at
https://www.nersc.gov/users/training/events/vasp-hands-on-training-june-30-2020/

● Variable-time jobs: https://docs.nersc.gov/jobs/examples/#variable-time-jobs
● MVASP:

https://docs.nersc.gov/applications/vasp/#running-multiple-vasp-jobs-simultaneously
● Man pages of sbatch, salloc, scancel, srun, squeue, sinfo, sqs,

scontrol, sacct

54

Recommended Readings

Thank You!

Hands-on 10:30am - 12:00pm
 12:00pm - 1:00pm (Optional)

● Please post questions at here

Outline

● 250 KNL nodes are reserved for the hands-on

○ To run jobs interactively

 salloc -N 2 -C knl –t 1:00:00 -q regular --reservation=vap_vtj -A nintern

○ To run batch jobs

#SBATCH -A nintern

#SBATCH --reservation=vasp_vtj

● A sample variable-time job script is available at
○ /global/cscratch1/sd/zz217/vasp_vtj/run.slurm

57

Use the Reservation vasp_vtj and the Account nintern

