Using VASP at

NERSC

Zhengji Zhao
VASP Training Webinar.
NEeRS ’
yesg/ e June 29, 2018, Berkeley CA
FR, U.S. DEPARTMENT OF Office of ”r:”r 0

ENERGY science




VASP used more than 15% of Cori machine time last year
(6/27/17 — 6/26/2018)

Cori Machine Hours Breakdown by Applications

Processes as a percentage of 100% of total machine hours (82933051 hours).

XGC1

mii‘;.“f”/\\

o/

-7p

hitos://my.nersc.gov/application usage page.php



https://my.nersc.gov/application_usage_page.php

Outline

* VASP access at NERSC

* Available VASP modules
 Running VASP on Cori and Edison
* Performance of Hybrid VASP

* Best practices



VASP Access at NERSC

~
U.S. DEPARTMENT OF 1 ~ A
Office of m|

ENERGY Science -4-




All users who want to access the VASP binaries provided at
NERSC need to confirm their licenses.

 VASP is open to the users who have licenses by themselves.

* Instructions on how to confirm VASP licenses is available at
it/ eers/sof olication </ aterale <cien e /yaenitoc anchor 2
* Also available in the vasp modules (type module show vasp)

22217@cori®5:~> module show vasp

/usr/common/software/modulefiles/vasp/5.4.4-hsw:

module-whatis VASP: Vienna Ab-initio Simulation Package

Access to the vasp suite is allowed only for research groups with existing
licenses for VASP. If you have a VASP license please email

vasp.Materialphysik@univie.ac.at and CC: vasp_licensing@nersc.gov

with the information on which research group your license derives from.
The PI of the group as well as the institution and license number will help
speed the process.

setenv PSEUDOPOTENTIAL_DIR /global/common/sw/cray/cnlé/haswell/vasp/pseudopotentials
setenv VDW_KERNAL_DIR /global/common/sw/cray/cnlé/haswell/vasp/vdw_kernal

setenv NO_STOP_MESSAGE 1

setenv MPICH_NO_BUFFER_ALIAS_CHECK 1

prepend-path PATH /global/common/sw/cray/cnlé/haswell/vasp/vtstscripts/r933

prepend-path PATH /global/common/sw/cray/cnlé/haswell/vasp/5.4.4/intel/17.0.2.174/4bqi2i1/bin


http://www.nersc.gov/users/software/applications/materials-science/vasp

How to check if you have the VASP access or not

* Usually it takes a few business days to confirm a VASP
license.
— The license owner (Pl) must register you under his/her license.
— Each individual user needs to confirm, no group (repo) access

 VASP access is controlled by a Unix file group vasp5.

— Type the “groups” command on Cori or Edison, if you do not see
“vasp5” in your group list, then you don’t have the VASP access at
NERSC.

— Attempting to run VASP would run into the following error:

fbench@nid00126:~> module load vasp
fbench@nid00126:~> srun -n 4 -c 16 --cpu_bind=cores vasp_std

srun: fatal: Can not execute vasp_std
Aborted



The precompiled VASP binaries are available via modules.

: 4d YEARS module avail vasp #to see the available modules
FOREFRON module show vasp # to see what vasp modules do

module load vasp #to access the VASP binaries

~
U.S. DEPARTMENT OF 1 A
Office of 1L

ENERGY Science -7-

N7 O
LR
A7 3
7 @ 5/
2 4
DS G




Available vasp modules on Cori

 Type “module avail vasp” to see the available VASP modules

Standard distribution VASP with third party codes (tpc)
(Wannier90,VTST,BEEF,VASPSol)

vasp/20171017-hsw
I B2 0]o1<l0 i (Ll vasp/20171017-knl
VASP
vasp/20170629-hsw
vasp/20170629-knl

vasp/5.4.4-hsw (default)
Pure MPI
VASP vasp/5.4.4-knl

vasp/5.4.1-hsw

vasp/5.4.1-knl
e To be removed modules:

vasp/5.4.4 vasp/5.3.5
vasp/5.4.1 vasp/5.4.1_vtst
vasp/5.4.1-cce vasp/5.4.1_vtst-gcc
vasp/5.4.1-gcc vasp-tpc/5.4.1

vasp-tpc/20170629-hsw (experimental)
vasp-tpc/20170629-knl (experimental)

vasp-tpc/5.4.4-hsw (default)
vasp-tpc/5.4.4-knl
vasp-tpc/5.4.1-hsw
vasp-tpc/5.4.1-knl

vasp/5.3.5 vtst
vasp/20170323 NMAX_DEG=128-hsw

vasp/20170323_NMAX_DEG=128-knl



Available vasp modules on Edison

Standard distribution VASP with third party codes (tpc)
incorporated

vasp/5.4.4 (default) vasp-tpc/5.4.4

Pu\I;gSI\F’)IPI vasp/5.4.1 vasp-tpc/5.4.1

vasp/5.3.5 vasp-tpc/5.4.4.NMAX_DEG=128

* Type module show vasp to see what vasp modules do

zz217@cori@3:~> module show vasp

/usr/common/software/modulefiles/vasp/5.4.4-hsw:

setenv PSEUDOPOTENTIAL DIR /global/common/sw/cray/cnl6/haswell/vasp/pseudopotentials

setenv VDW_KERNAL_DIR /global/common/sw/cray/cnle/haswell/vasp/vdw_kernal

setenv NO_STOP_MESSAGE 1

setenv MPICH NO_BUFFER_ALIAS CHECK 1

prepend-path PATH /global/common/sw/cray/cnl6e/haswell/vasp/vtstscripts/r933

prepend-path PATH /global/common/sw/cray/cnl6e/haswell/vasp/5.4.4/intel/17.0.2.174/4bqi2il/bin




 Typels -l to see the available VASP binaries

2221{@§85322:~> 1s -1 /global/common/sw/cray/cnl6/haswell/vasp/5.4.4/intel/17.0.2.174/4bqi2il/bin
tota

—rwxrwxr-x 1 swowner swowner 110751840 Feb 10 14:59 vasp_gam

—rwxrwxr-x 1 swowner swowner 111592800 Feb 10 14:59 vasp _ncl

—rwxrwxr-x 1 swowner swowner 111541384 Feb 10 14:59 vasp_std

zz217@cori@3:~>

* Do module load vasp to access the VASP binaries

zz217@cori@3:~> module load vasp

zz217@cori@3:~> which vase std

/global/common/sw/cray/cnl6/haswell/vasp/5.4.4/intel/17.0.2.174/4bqi2il/bin/vasp_std

* The VTST Scripts are made available, as well as pseudo files
and makefiles for users who want to build VASP by
themselves

-10-



Notes

* The hybrid MPI+OpenMP VASP does not use NCORE/NPAR
for multi-thread runs. The code sets NCORE =1 internally if
any NCORE !=1 is encountered.

* However, when only 1 thread per task is used
(OMP_NUM_THREADS=1), then the NCORE/NPAR values
that users provided in the INCAR files are honored.

* The hybrid VASP + third party contributed code builds are
experimental, meaning they may not work with all cases. If
you run into any issues, please run with
OMP_NUM_THREADS=1, this seems to as well as the Pure
MPI verion +TPC.

-11 -



Running VASP on Cori and
Edison

PAENTOp

~
U.S. DEPARTMENT OF 1 ~ A
Office of .|.|

ENERGY Science -12-




System Configurations

System # of cores/ # of sockets | Clock Speed | Memory /node Memory/core
CPUs per node | per node (GHz)

Cori KNL 68/272 96 GB DDR4 @2400 MHz 1.4 GB DDR

(9688 nodes) 16GB MCDRAM as cache 325 MB MCDRAM
Cori Haswell  32/64 2 2.3 128 GB DDR4 @2133 4.0GB

(2388 nodes) MHz

Edison 24/48 2 2.4 64 GB DDR3 @1866 MHz  2.67 GB

(5586 nodes)

Machine charge factors:

Edison:48
Cori Haswell: 80
Cori KNL: 96

-13-



Running interactive VASP jobs on Cori

* The interactive QOS allows a quick access to the compute
nodes up to 4 hours and 64 nodes. The run limit is 1.

— It either allocates the requested nodes in less than 5 minutes or it
cancels the job.

z7217@corid3:/global/cscratchl/sd/zz217/Pd04> salloc -N4 -C knl —q interactive -t 4:00:00
salloc: Granted job allocation 13460931

2z217@nid@2305: /global/cscratchl/sd/zz217/Pd04> module load vasp/20171017-knl
2z217@n1d02305: /global/cscratchl/sd/zz217/Pd04> export OMP_NUM_THREADS=4
zz217@ni1d02305: /global/cscratchl/sd/zz217/Pd04> srun -n64 —c1l6 —cpu_bind=cores vasp_std
000 PPPP EEEEEN NM M PPPP
0O OP PE NN NMMMMP P
O OPPPP EEEEENNNMMM PPPP — VERSION

P
O OFP E N NNM MP
000 P EEEEEN NM MP

running 64 mpi-ranks, with 4 threads/ zz217@corill:~> sacct —j 13460931 —o reserved,start,submit
distrk: each k—point on 64 cores, 1 ¢ Reserved Start Submit

distr: one band on 1 cores, 64 groupg 0. 0000 2018-96-28T23:31:07 2018-06-28T23:31:07

* No interactive QOS available on Edison. Use the debug QOS.

-14 -



Sample job script to run the hybrid MPI+0penMP VASP

with 8 threads per MPI task on Cori KNL nodes

#!/bin/bash -
HSBATCH —N 1 Core 0 Core 1
#SBATCH —q regular | |

0 68 | 1

#SBATCH -t 2:00:00 —
#SBATCH -C knl

Core 2

Rank O

#SBATCH —L SCRATCH

module load vasp/20171017-knl
export OMP_NUM_THREADS=8

srun —n8 —c32 --cpu_bind=cores vasp_std

The above script requests 1 KNL node for two hours using the
regular QOS and using the scratch file system.

The hybrid VASP will run with 8 threads per MPI task using 64
cores out of available 68 cores. The srun command line options,

—c32 --cpu_bind=cores, together with the two OpenMP

environment variables set inside the vasp/20171017-knl module,

OMP_PROC_BIND=spread and OMP_PLACES=threads, allows

optimal process/thread affinity. .

Core 60

Core 61

60 |12l 61 [ 150 | FGoHT 120 I 15, |
196|264|197|265||198|266-—

Rank 8

[ 6o I-_-T
136|204|137|205 ||138|206-£

Core 62

Process/thread affinity outcome

Core 63

Core 64 Core 65 Core 66 Core 67
64 132 | 65 133 66 134 | 67 135
200 | 268 | 201 | 269 202 | 270 | 203 | 271

Thread 0 Thread 1
Thread 2 Thread 3
Thread 4 - Thread 5
Thread 6 - - Thread 7




Sample job script to pure MPI VASP on Cori KNL nodes

#!/bin/bash -

#SBATCH -N 1
#SBATCH —q regular

#SBATCH -t 2:00:00
#SBATCH -C knl
#SBATCH —L SCRATCH

module load vasp

srun —n64 —c4 --cpu_bind=cores vasp_std

Process affinity outcome

Core0 Corel Core2 Core 3
0 |68 1 |59 3 |70 4 |71
— Rank O —T— Rank1 —3 [~ Rank 2 —T— Rank 3 —
136 | 204 | 13/ | 205 138 | 206 | 139 | 207
Core 60 Core 61 Core 62 Core 63
60N | 128 | 61 | 129 62 | 130 | 62 | 121
— Rank 60—— Rank 61— — Rank 62— Rank 63—
196 | 264 | 197 | 265 198 | 266 | 199 | 267
Core 64 Core 65 Core 66 Core 67
64 132 | 65 133 66 134 | 67 135
200 | 268 | 201 | 269 202 | 270 | 203 | 271

This job script requests 1 KNL node in the quad,cache mode. The
srun command launches 64 MPI tasks on the node, allocating 4

CPUs per task, and binds processes to cores. The resulting task
placement is shown in the right figure. The Rank O will be pinned
to CoreQ, Rank1 to Corel, ..., Rank63 will be pinned to Core63.
Each MPI task may move within the 4 CPUs in the cores.

-16 -

Each 2x2 box above is a core with 4 CPUs

(hardware threads). The numbers shown in

each CPU box is the CPU ids. The last 4 cores

are not used in this example. The cores 4-59
were not be shown.




Sample job script to run the hybrid MPI+0penMP VASP
with 4 threads per MPI task on Cori Haswell nodes

#1/bin/bash -| Process/thread affinity outcome
SR = Core0 Core1l Core2 Core3 Core4 Core5 Core6 Core?7
#SBATCH —q regular

o 11 1> Tz [a Ic Ta 15
#SBATCH —t 2:00:00 — Rank 0 —— Rank 2 —

32 |33 |34 |35

36 |37 |38 |39

#SBATCH -C haswell

Core8 Core9 Core 10 Core 11

Core12Core13Core 14 Core15 Socket 0

#SBATCH —L SCRATCH |
8 9

module load vasp/20171017-hsw

40 |41 |42 |43

|1n |11 12 |12 I1A |15

Rank 4 — Rank

a4 |45 |46 |47

6 —

export OMP_NUM_THREADS=4

srun —n8 —c8 --cpu_bind=cores vasp_std

Socket 1

The above script requests 1 Haswell nodes for two hours using
the regular QOS and using the scratch file system. The hybrid

VASP will run with 4 threads per MPI task. The srun command
line options, —c8 --cpu_bind=cores, together with the two
OpenMP environment variables set inside the vasp/20171017-
hsw module, OMP_PROC_BIND=spread and
OMP_PLACES=threads, allows optimal process/thread affinity.

-17 -

Core 16Core 17 Core 18 Core 19

16 |17 |18 |1q
| — Rank 1 —

Core 20Core 21 Core 22 Core 23
20 | 21 | 29 | 23
— Rank 3 —

48 |49 |50 |51

52 |53 |54 |55

Core 24Core 25 Core 26 Core 27

Core 28Core 29 Core 30 Core 31

24 |7l; |76 |77
— Rank 5 —

28 |-m I:n |q1
— Rank 7 —

56 |57 |58 |59

60 |61 |62 |63

Thread O

Thread 1

Thread 2

Thread 3




Sample job script to pure MPI VASP on Cori Haswell nodes

Process affinity outcome

#!/bin/bash -
#SBATCH -N 1 Core0 Corel Core2 Core3 Core4 Core5 Core6 Core7
#SBATCH —q regular 0 1 2 3 a 5 6 7

~ RO T R2 T R4 T R6 T R8 T R10 T/ R12 1 R14-
#SBATCH —t 2:00:00 32 33 34 35 3b 3/ 38 39
#SBATCH -C hawell Core8 Core9 Core 10 Core 11 Core 12Core 13Core 14 Core 15 Socket 0
#SBATCH —L SCRATCH 2 ) 10 |11 |12 [13 |14 | 15

- R161 R18 -1 R201 R22+ R24 1 R26+ R28 T R301

40 |41 |42 |43 |44 |45 |a6 | a7

module load vasp
Core 16Core 17 Core 18 Core 19 Core 20Core 21 Core 22 Core 23

— _ - i = 16 17 18 19 20 21 22 pXx]
srun —n32 —c2 --cpu_bind=cores vasp_std IRl Bt M S B [ S R R S

#or srun —n 32 vasp_std 48 (49 |50 |51 |52 |53 |54 |55
- Socket 1

Core 24Core 25 Core 26 Core 27 Core 28Core 29 Core 30 Core 31

This job script requests 1 haswell node for 2 hours. The srun 24 |25 |26 |27 |28 |29 |30 |31

command launches 32 MPI tasks on the node, allocating 2 CPUs 1 R17 T/ R19 1/ R21 T R23 T R251 R27 1 R29T R31
. . 56 57 58 59 ol 6l 62 63

per task, and binds processes to cores. The resulting task

placement is shown in the right figure. The Rank O will be pinned Each 2x1 box above is a core with 2 CPUs

to CoreQ, Rank1 to Corel, ..., Rank31 will be pinned to Core31. (hardware threads). The numbers shown in

Each MPI task may move within the 2 CPUs in the cores. each CPU box is the CPU ids.

-18 -



Sample job script to run pure MPI VASP on Edison

Process affinity outcome

#!/bin/bash -
#SBATCH -N 1 Core0 Corel Core2 Core3 Core4 Core5
#SBATCH —q regular 0 1 2 3 a 5
©~ RO T R2 T R4 T R6 T R8 T R10-
#SBATCH —t 2:00:00 ol ol L L L
#SBATCH —L SCRATCH Core6 Core7 Core8 Core9 Core10Core1l  Socket 0
A 7 R 9 10 11
m le | Vv - R121 R14-{ R16 R18 R20+ R22 -
odule load vasp 30 [31 [32 |33 (34 |35
: 12 14 16Core 17
srun —n24 —c2 --cpu_bind=cores vasp_std Core 12Core 13 Core 14 Core 15 Core 10Core
#or srun —n 24 vasp_std 12 (A3 | 14 15| 16 ( 17
P_ ~ R1 T R3 1 R5 1 R7Z + R9 T R1l-
36 37 338 39 40 41
Socket 1
Core 24Core 25 Core 26 Core 27 Core 28Core 29
This job script requests 1 Edison node for 2 hours. The srun 18 |19 |20 |21 |22 |23
command launches 24 MPI tasks on the node, allocating 2 CPUs - R13 1 R151 R17 T R19 1 R21 T R23
) ) 42 | 43 44 | 45 | 4b | 47
per task, and binds processes to cores. The resulting task

placement is shown in the right figure. The Rank O will be pinned
to Core0, Rank1 to Corel2, ..., Rank23 will be pinned to Core23.

Each MPI task may move within the 2 CPUs in the cores.

-19-

Each 2x1 box above is a core with 2 CPUs

(hardware threads). The numbers shown in

each CPU box is the CPU ids.



Performance of Hybrid VASP on
Cori

bl | Jverws

PFOREFRONT

~
=2, U.S. DEPARTMENT OF i g A
Office of 1L

: ENERGY science -20- EE;;XLAB




Selected 6 benchmarks cover representative VASP workloads, exercising
different code paths, ionic constituent and problem sizes

Electrons (Ions) 3288 (348) 266 (64) 1064 (98) 1020 (255) 315 (105) 1644(174)
Functional DFT DFT VDW HSE HSE DFT
Algo RMM (VeryFast) BD+RMM (Fast) RMM (VeryFast) CG (Damped) CG (Damped) RMM (VeryFast)
NEML(NELMDL) 5 (3) 8 (0) 10 (5) 3(0) 10 (5) 10 (4)
NBANDS 2048 192 640 640 256 1024
FFT grids 80x120x54 70x70x70 70x70x210 80x80x80 48x48x48 80x60x54
160x240x108 140x140x140 120x120x350 160x160x160 96x96x96 160x120x108
NPLWYV 518400 343000 1029000 512000 110592 259200
IRMAX 1445 4177 3797 1579 1847 1445
IRDMAX 3515 17249 50841 4998 2358 3515
LMDIM 18 18 18 18 8 18

KPOINTS 111 444 331 111 111 111



VASP versions, compilers and libraries used

 MPI+OpenMP hybrid version (last commit date
4/13/2017) was used in the most of the tests, some
earlier versions, e.g., 3/23/2017 was used in some
of the tests as well.

« CDT 17.03 (cray-mpich/7.5.3, cray-libsci/16.11.1,
fftw/ 3.4.6.6)

* Intel compiler and MKL from 2017 Update 1 + ELPA
(version 2016.005)

 Coriruns CLE 6.3 Update 4, and SLURM 2017.02.



LOOP Time (sec)

VASP Performance on Cori (KNL and Haswell processors) and Edison (lvy Bridge processors)
Test case: Si256_HSE; all runs used 8 nodes; 2M hugepages used except where noted

500
' VASP 5.4.1, MPI only
i Optimized MP1/OpenMP hybrid code

400
350 1
W
150 A
100 -
50 -
0 - T T T

450

w

o

o
I

N

Ul

o
I

N

o

o
I

Edison (192; 96,4)  Cori Haswell (256;64,8) Cori KNL (192;128,8) Cori KNL(128,8), Cori KNL (128,8) Cori KNL (128,8) Cori KNL (128,8)
Quad,Cache Quad,Flat, used DDR Quad,Cache, compiled Quad,Flat Quad,Cache,No
only with -xCORE-AVX2 Hugepages

System (MPI tasks for VASP 5.4.1; MPI tasks, OpenMP threads per MPI task for optimized code)/Other info

The optimized MPI/OpenMP hybrid code performs about 3x
faster (HSE) than the MPI only code on Cori KNL nodes.

-23-




Hybrid VASP performs best with 4 or 8 OpenMP threads/task

KNL,Cache vs Haswell (Hugepages2M, 1 Thread/Core,Pd0O2)
I

120 I KNL
[ ]Haswell

100 - .

o]
o
T
]
|

LOOP+ Time (sec)
3
I
|

LN
o
I
|

20 - .

0 | |
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

1 node 2 nodes 4 nodes 8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes



Hybrid VASP performs best with 4 or 8 OpenMP threads/task

KNL,Cache vs Haswell (Hugepages2M, 1 Thread/Core,Si256_hse

[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
2500 - _ n I <KNL |
i [ IHaswell
2000 _
)
()]
21500 - .
(O]
£ )
|_
+
(a
O 1000 | -
@)
1
500 - -

1 2 4 816 1 2 4 816 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

1 node 2 nodes 4 nodes 8 nodes 16 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes



Hyper-Threading helps HSE workloads (arguably), but not other
workloads in the parallel scaling regions on KNL

Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,PdO4)
I I I I I I I I I

| [
I 1 Thread/Core
I 2 Threads/Core
120 -
100 | -
)
o)
L 80 | -
)
S
l_
+ | -
& 6o
@)
@)
|
40 F B
20 _
0
4 8 4 8 4 8 4 8

1 node 2 nodes 4 nodes 8 nodes 16 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes



Hyper-Threading helps HSE workloads (arguably), but not other
workloads in the parallel scaling regions on KNL

Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,Si256_hse)
I I I I I I I I | I I
1500 B 1 Thread/Core | |

I 2 Threads/Core

S”HH _
4 8 4 8

4 8 4 8 4 8

—
o
o
o

LOOP+ Time (sec)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes



Best Practices

~
U.S. DEPARTMENT OF 1 ~ A
Office of .|.|

ENERGY Science -28-




Best practices

* On the KNL nodes, the hybrid MPI+OpenMP VASP is strongly
recommended as it could outperform the pure MPI code by
2-3 times, depending on the workload (code paths).

* For the hybrid version, 4 or 8 OpenMP threads per MPI task
is recommended.

* Using 1 hardware thread per core is recommended in

general. However, hyper-threading could help the VASP
performance with the HSE workloads, especially when
running at a smaller node count.

* Using 64 cores out of 68 available were recommended.

-29-



Best practices — continued

* The performance benefit from using MCDRAM is significant,
so using more nodes to fit your data into the MCDARAM
cache could be beneficial.

* A reference number when choosing the number of MPI tasks
to use for a given system is 1/8 - 1/4 of the atoms in the
system (assuming using eight threads/tasks) for a single k-
point calculation.

* For pure MPI code, 1 core/atom is a good reference when
selecting how many cores to use for your VASP jobs.

-30-



Best practices — continued

* Use the K-point parallel when your systems have many k-
points (KPAR) as long as the memory fits

 Use the gamma point only VASP binary when system
contains only Gamma point.

-31-



Sy d| | YEARS

DFOREFRONT

~
U.S. DEPARTMENT OF 1 ~ A
Office of .|.|

ENERGY Science -32-




VASP makefiles are available in the VASP installation directories
for the standard VASP distributions.

« Makefiles are available in the VASP installation directories for the
standard VASP distributions.

swowner@cori@2:~> module show vasp

/usr/common/software/modulefiles/vasp/5.4.4-hsw:

setenv PSEUDOPOTENTIAL DIR /global/common/sw/cray/cnl6/haswell/vasp/pseudopotentials

setenv VDW_KERNAL _DIR /global/common/sw/cray/cnl6/haswell/vasp/vdw_kernal

setenv NO_STOP_MESSAGE 1

setenv MPICH NO BUFFER ALIAS CHECK 1

prepend—path PATH /global/common/sw/cray/cnl6/haswell/vasp/vtstscripts/ro33

prepend-path PATH /global/common/sw/cray/cnl6/haswell/vasp/5.4.4/intel/17.0.2.174/4bgi2il/bin

swow?eg@cor102 :~> 1s -1 /global/common/sw/cray/cnl6/haswell/vasp/5.4.4/intel/17.0.2.174/4bqi2il
tota

drwxrwx— 2 swowner vaspb 512 Feb 10 14:59 bin

—rw—r—r— 1 swowner swowner 1687 Feb 10 14:31 makefile.include

swowner@cori@2:~>

#move the makefile.include to your VASP source tree, e.g., vasp.5.4.4,
and then cd to that directory and type make all

 The source code of the hybrid MPI+OpenMP version may not be
available to all users. If you need the makefile for the hybrid VASP,
please let us know. (email to consult@nersc.gov)

-33-



Acknowledgement

* Martijn Marsman (martijn.marsman@univie.ac.at), Florian
Wende (wende@zib.de), and Jeongnim Kim

(jeongnim.kim@intel.com)
* Steve Leak at NERSC

Thank you!

-34-


mailto:martijn.marsman@univie.ac.at
mailto:wende@zib.de
mailto:jeongnim.kim@intel.com

The following 5 slides are from Martijn Marshman’s

or | training slides
Y YEARS & ’

U.S. DEPARTMENT OF Office of

EN ERGY Science I EE;;XLAB

ENTOR
B
&/ &
¢ @ 4
2 <
NS Gl



http://www.vasp.at/vasp-workshop/lectures/VASP_lecture_HPC.pdf

Distribution of work and data

2 MPI-ranks, NCORE=1

#1 49 Distribute work and data “over-orbitals

e Default

! 2 e NCORE=1

3 4 (or equivalently: NPAR = #-of-MPI-ranks)
 KPAR=1

5 6

The Kohn-Sham equation:
1
(=38 Vet (1) + Vir(r) + Vie 1) ) k(1) = et (r)

 Orbital index n




Distribution of work and data

2 MPI-ranks, NCORE=1

#1 49 Distribute work and data “over-orbitals

e Default
1 2 e NCORE=1
3 4 (or equivalently: NPAR = #-of-MPI-ranks)
 KPAR=1
5 6
2 MPIl-ranks, NCORE=2
41 40 Distribution work and data “over-plane-waves”

* NCORE = #-of-MPI-ranks
(or equivalently: NPAR = 1)
2  KPAR=1




Distribution of work and data

2 MPI-ranks, NCORE=1 4 MPI-ranks, NCORE=2

#1 #2 #1 #2 #3 #4
1 2 1 2
3 4 3 4
5 6 5 6

2 MPIl-ranks, NCORE=2

Combinations of “over-orbitals” and
“over-plane-wave” distributions are
allowed as well

#1 #2




Distribution of work and data

Additionally work may be distributed “over-k-points”

KPAR =n (n>1)

m = (#-of-MPIl-ranks / n) must be an integer

Work is distributed in a round-robin fashion over groups of m MPI-ranks
Data is duplicated!

(~5 A+ Vesa (1) Var0) + Vi) (1) = it

Orbital index n, k-point index k

#1

8 MPIl-ranks, KPAR=2, NCORE=2
k-point 1 k-point 2

#2 #3 #4 #5 #6 #7 #8




2 MPl-ranks, NCORE=1 W,,> or H [W_> 4 MPl-ranks, NCORE=2

#1 =2 = =2 #3 S
1 2 1 2
3 4 3 3
5 6 5 6
/ R . \I
serial FFT {W_} MPI communication parallel FFT (¥}
' '
1 1
2 2
3 3
B B
5 5
3 3

Com= W IHIV >

Each MPI-rank contracts over its subset of G-vector
followed by a global sum of C__ over all MPl-ranks




Process/Thread affinity

~
U.S. DEPARTMENT OF 1 ~ A
Office of m|

ENERGY Science -41-




Using srun’s --cpu_bind option and OpenMP environment
variables to achieve desired process/thread affinity

e Use srun --cpu_bind to bind tasks to CPUs
— Often needs to work with the —c option of srun to evenly spread MPI tasks
on the CPUs on the nodes
— The srun —c <n> (or --cpus-per-task=n) allocates (reserves) n number of
CPUs per task (process)

— --cpu_bind=[{verbose,quiet},]type, type: cores, threads, map_cpu:<list of
CPUs>, mask_cpu:<list of masks>, none, ...
* Use OpenMP envs, OMP_PROC_BIND and OMP_PLACES to fine
pin each thread to a subset of CPUs allocated to the host task

— Different compilers may have different default values for them. The
following are recommended, which yield a more compatible thread

affinity among Intel, GNU and Cray compilers:
OMP_PROC_BIND=true # Specifying threads may not be moved between CPUs

OMP_PLACES=threads # Specifying a thread should be placed in a single CPU

— Use OMP_DISPLAY_ENV=true to display the OpenMP environment
variables set (useful when checking the default compiler behavior)

-42-



Default Slurm behavior with respect to process/thread/memory
binding

* By Slurm default, a decent CPU binding is set only when the
MPI tasks per node x CPUs per task = the total number of
CPUs allocated per node, e.g., 68x4=272

 Otherwise, Slurm does not do anything with CPU binding.
The srun’s --cpu_bind and —c options must be used explicitly
to achieve optimal process/thread affinity.

* No default memory binding is set by Slurm. Processes can
allocate memory from all NUMA nodes. The --mem_bind (or
numactl) should be used explicitly to set memory bindings.

-43-



Default Slurm behavior with respect to process/thread/memory

binding (continued)

The default distribution, the —m option of srun, is block:cyclic
on Cori.

— The cyclic distribution method distributes allocated CPUs for binding to a

given task consecutively from the same socket, and from the next
consecutive socket for the next task, in a round-robin fashion across

sockets.
The —m block:block also works. You are encouraged to
experiment with —m block:block as some applications
perform better with the block distribution.

— The block distribution method distributes allocated CPUs consecutively

from the same socket for binding to tasks, before using the next
consecutive socket.

The —m option is relevant to the KNL nodes when they are
configured in the sub-NUMA cluster modes, e.g., SNC2, SNC4,

etc. Slurm treats “NUMA nodes with CPUs” as “sockets”,
although KNL is a single socket node.

-44 -



The --cpu_bind option of srun enables CPU bindings
salloc —N 1 —p debug —C knl,quad,flat

srun—n 4 ./a.out # no CPU bidings. Tasks can move around within 68 cores/272 CPUs

srun —n 4 —cpu_bind= srun—n 4 --cpu_bind= srun—n 4 --cpu_bind=
cores ./a.out threads ./a.out map_cpu:0,204,67,271 ./a.out




The --cpu_bind option: the -c option spreads tasks (evenly) on
the CPUs on the node

salloc —N 1 —p debug —C knl,quad,flat

srun —n 4 —8 —cpu_bind=cores ./a.out  srun—n 16 —c16 —cpu_bind=cores ./a.out

Core 0 .‘—_1

First 8 cores/32
CPUS are used;
rest 60
cores/240 CPUs

stay idle Last 4 cores/16CPUs

areidle




The --cpu_bind option (continued): the —c option spread tasks
(evenly) on the CPUs on the node
salloc —N 1 —p debug —C knl,quad,flat

srun —n 4 —8 —cpu_bind=threads ./a.out srun —n 16 —c16 —cpu_bind=threads ./a.out

Core 0 .‘—_1

First 8 cores/32
CPUS are used;
rest 60
cores/240 CPUs

stay idle Last 4 cores/16CPUs

areidle




The -c option: --cpu_bind=cores vs —cpu_bind=threads

salloc —N 1 —p debug —C knl,quad,flat

srun —n 4 —c 6 —cpu_bind=cores ./a.out srun —n 4 — 6 —cpu_bind=threads ./a.out

| |

I . .

First 8 cores/32 First 6 cores/24
CPUS are used; CPUS are used;
rest 60 rest 62
cores/240 CPUs cores/248 CPUs
stayidle stayidle




Performance of Pure MPI and MP1/OpenMP Hybrid VASP on KNL
(Quad,Cache, Hybrid VASP: 2Threads/Core,Pure MPI VASP 5.4.1: 1 Thread/Core)

2500
& Pure MPI VASP 5.4.1,NCORE=1

“ Pure MPI VASP 5.4.1,NCORE=1

2000
_ Hybrid VASP, NCORE=1
(& ]
3 W Hybrid VASP,NCORE=1
< 1500
e Pure MPI VASP 5.4.1,NCORE=4
i Pure MPI VASP 5 4.1,NCORE=8
a.
& 1000
o
—

500

, 1 — — — - E. -
1 2 1 2 4 8 16
B105_HSE Si256_HSE

Number of Nodes/Test case

Hybrid VASP is about 2-3 times faster on Cori KNL nodes



