Using Cray Systems with Knights Landing processors

Kevin Thomas
Cray Inc.

Outline

e Part 1
e Background
e Node Comparison
e How to use

o Part 2
e Strategies
e Best Known Methods
e Resources

COMPUTE STORE

ANALYZE

KNL Processor Architecture

2/12/19

2 x16
1x4

X4
bmiI : \M MCDRAM

R

PCle
Gen 3

w

Tile
Up to 36 Tiles
connected by
2D Mesh
Interconnect

& 2000
& 2000

WwrmzZ2Z>I0
wrmzZ2Z2>»I0

Package

COMPUTE STORE ANALYZE

Cray Inc.

KNL Tile Architecture

w

COMPUTE

2/12/19

STORE

Cray Inc.

ANALYZE

KNL Tile Frequencies and Turbo Mode

e Two turbo tile frequencies implemented
e “All tiles active” turbo, +100 MHz
e “Single tile active” turbo, +200 MHz
e Two below-base frequencies
e Heavy AVX instructions, -200 MHz
e Under some conditions -100 MHz also possible

e Xeon Phi 7250 tile frequencies

1.6 G
1.5G
1.4 G
1.3G
1.2G

z single tile turbo
z all tiles turbo

Z base frequency
Z

z AVX

COMPUTE STORE ANALYZE

Xeon Phi “Knights Landing” Compatibility

e Runs existing Xeon x86 64-bit executables
e Linux commands
e ISV applications
e Applications built for Xeon processors

e Existing Xeon-targeted libraries will work
e Iflibrary is not a critical compute component, recompiling not needed
e Intel 16 MKL has AVX-512 support enabled at run time

e Xeon executables can take advantage of all KNL features
e Except AVX-512 (requires recompiling)
e Except moving selected data to MCDRAM (requires source changes)
e Optimal instruction selection and organization is different

e Recompiling will probably improve performance
e HPGMG-FV - High-Performance Geometric Multi-Grid benchmark

e Run on 64 KNL nodes, 64 cores per node, quad/cache
e CCE 8.5, craype-sandybridge: 1.264 billion DOF/s
e CCE 8.5, craype-haswell: 1.447 billion DOF/s
e CCE 8.5, craype-mic-knl: 1.866 billion DOF/s

COMPUTE STORE ANALYZE

2/12/19 Cray Inc.

Acronym and Terminology Reference «

e DDR - Double Data Rate
e Refers to the 6 channels of DDR4-2400 DIMM main memory |
e MCDRAM - Multi-Channel DRAM \
e High-bandwidth on-package memory
e MCDRAM Cache
e MCDRAM configured as a last-level memory-side cache
e Flat MCDRAM
¢ MCDRAM configured as addressable memory
e User-visible as a NUMA node with memory but no cpus
e EDC - Embedded DRAM Controller
e Interface to MCDRAM, 8 controllers per processor
e Tile - Alogic block including two cores sharing an L2 cache
e Includes an on-chip mesh interface and CHA
e CHA - Caching Home Agent
e Per-tile block which manages cache coherence (L2 and MCDRAM)
e MC or IMC - Integrated (DDR) Memory Controller
e OPIO - On-Package /O
e Interface from KNL processor to MCDRAM
e HBM - High Bandwidth Memory
e HBM is a memory hardware technology developed by AMD and partners
e Sometimes used informally to refer to flat MCDRAM on KNL
e VPU - Vector Processing Unit
e AVX-512 SIMD execution unit, 2 per core
e SNC - Sub-NUMA Cluster
e Processor mode which divides memory capacity and bandwidth into 2 or 4 NUMA nodes per memory type
e Also divides the cores and MCDRAM cache among the DDR NUMA nodes

COMPUTE STORE ANALYZE

2/12/19 Cray Inc. @

v
C Ry
v

Core to Core: Comparing Xeon Phi to Xeon o

Knights How KNL compares
Landlng

Number of cores
Core frequency
Serial scalar rate
L1 cache size

L1 load bandwidth
L1 load rate

L2 cache size

L2 bandwidth

L3 cache size

2.3 10 3.6 GHz
Lorenz=3048
32KB

2X 32 bytes

7 billion/sec
256KB

64 bytes/cyc
2.5 MB/core

1410 1.6

874

32KB

2X 64 bytes

3 billion/sec

1MB/2 cores

64 bytes/cyc
N/A

Cray Inc.

A lot more cores (4X)

Lower frequency (2X)

3.5X slower

Same

Higher per cycle (2X)

Same per cycle, but lower clock
Much larger (2X per core)
Same per cycle, but lower clock
Many kernels bandwidth limited

Node to Node: Comparing Xeon Phi to Xeon

mm Knlghts Landing | How KNL compares

Number of cores
DDR

MCDRAM

Memory Bandwidth
FP Peak (vector)
FP Peak (scalar)
Instruction Peak
Package Power

8 channels

N/A
~120 GB/s
~1.2 TF/s
294 GF/s
387 Ginst/s
270 W

6 channels

8 channels, 16 GB
490 GB/s

~2.6 TF/s

326 GF/s

190 Ginst/s

215 W

Cray Inc.

More cores (2X)

25% less bandwidth, capacity

Unique feature
MCDRAM rate (4X)
Higher peak (2X)
Slightly higher

Half peak rate

Less power

KNL Memory Modes

2/12/19

e Also known as MCDRAM configuration
e Memory Mode describes how MCDRAM is used

e As memory-side cache, as addressable memory, or some of both
e Cache Mode
e All MCDRAM configured as direct-mapped cache

e Flat Mode

e All MCDRAM configured as addressable memory
e Only mode latency-optimized for DDR
e Cores are associated with DDR NUMA node
e Hybrid Mode
o MCDRAM split between addressable and cache
e Allowed ratios are: 75%:25% or 50%:50% (aka split and equal)

e Configured at node boot time

COMPUTE STORE ANALYZE

Cray Inc.

KNL Memory Modes

Flat

MCDRAM

MCDRAM is NUMA node 1

DDR is NUMA node 0

Cache

MCDRAM acts as memory-
side cache for DDR

DDR is NUMA node 0

Hybrid

Part of MCDRAM is cache,
part is NUMA node 1

DDR is NUMA node 0

COMPUTE

2/12/19

STORE

Cray Inc.

ANALYZE

KNL Cluster Modes

2/12/19

e Also known as NUMA configuration

e Cluster Mode sets cache coherency configuration
e Each tile has a caching home agent (CHA)

e Quadrant Mode

e CHAs divided into 4 groups with locality to memory controllers
e Each page of memory striped over all CHAs

e Also Hemisphere mode to divide tiles into halves

e And AlltoAll mode, with no locality between CHAs and memory

e Sub-NUMA Clustering (SNC) mode

e SNC2, Memory and tiles are divided into NUMA domains
e 2 NUMA nodes for each addressable memory type (DDR4, MCDRAM)

e Tiles (cores) divided between the DDR domains
e MCDRAM cache also partitioned

e Also SNC4 mode to divide memory into quarters
e Configured at node boot time

COMPUTE STORE ANALYZE

Cray Inc.

In Quadrant mode, all tiles are in NUMA node 0

PCle
Gen 3

w

Tile
Up to 36 Tiles
connected by

2D -NMesh
Interconnect

' S SRS
MCDRAM‘ MCDIIAM‘ Package MCDRAM MCDRAM

& 2000

WwrmzZ2Z>I0

COMPUTE | STORE | ANALYZE

2/12/19 Cray Inc.

With SNC2, tiles are split between NUMA nodes

2/12/19

2 XIJ X4 |
MCDRAM 1xal omi \\ucnmm m
A | I d

& 2000

WwrmzZ2Z>I0

Up to 36 .iles
connected by

2D IMlesh
Interconnect

A

\m\ S

L] I 5

COMPUTE

| STORE | ANALYZE

Cray Inc.

NUMA and MCDRAM Configuration

2/12/19

e Node configuration selected by user
e If no configuration specified, any node is allocated

e Managed by the workload manager
e If enabled, WLM can initiate node reconfiguration
e Some or all of the nodes reserved for the job may be rebooted
e About 20 minutes delay before job starts execution

e NUMA configuration
e {a2a, hemi, quad, snc2, snc4}
e MCDRAM configuration
e {cache, equal, split, flat}
e equal is 50% cache, split is 25% cache

COMPUTE STORE ANALYZE

Cray Inc.

SLURM Node Configuration

e Selected by --constraint option (or -C)
e On sbatch, salloc, or srun
e --constraint={numa},{mcdram}
e Normally specified together, but not required
e --constraint=quad,cache
e Other syntax is also allowed
e See --constraint in the sbatch man page

e sinfo with active features output shows configurations

$ sinfo -o "%$D %t %b"

NODES STATE ACTIVE FEATURES
4 alloc# quad, flat

152 idle cache,quad

e alloc# means “allocated but rebooting”
e Job time limit does not begin until nodes are rebooted

Cray Inc.

SLURM CPU Affinity (1)

e Default CPU affinity depends upon run options
e “auto binding”
e Depends upon --ntasks-per-node and --cpus-per-task

e Enabled if ntasks-per-node * cpus-per-task equals

e Nnumber of sockets
e number of cores
e Nnumber of threads

e Otherwise, no cpu affinity is set
e --cpu_bind can be used to set cpu affinity

Recommended for Cori

--cpu_bind=cores (task affinity to hardware cores)
--cpu_bind=threads (task affinity to hardware threads)
For KNL, 4 hardware threads per core

COMPUTE STORE ANALYZE

2/12/19 Cray Inc.

SLURM CPU Affinity (2) s Tt

e SLURM does not provide CPU affinity for software threads
e SLURM sets a cpu mask for each process (MPI rank)
e By default, threads can float among the cpus in the mask
e This is similar to “aprun -d XX -cc depth”

e Use OMP_PROC_BIND and OMP_PLACES
e OMP_PROC_BIND={true,close,spread}
e OMP_PLACES={cores,threads}
e OMP_PLACES=cores for behavior like “aprun -j 1 -cc cpu”
e OMP_PLACES=threads for “aprun - {2,3,4} -cc cpu”
e For OMP_NUM_THREADS > 4 and --hint=multithread

e Use --cpus-per-task to get all threads of cores needed
e e.g., use --cpus-per-task=8 and OMP_NUM_ THREADS=4
for 2 cores, 2 threads per core
e Set OMP_PROC_BIND=true

COMPUTE STORE ANALYZE

2/12/19 Cray Inc.

Compilers

e With Cray PE: module load craype-mic-knl
e Targets KNL instruction set
o AVX-512
e Will only run on KNL nodes

e Without craype-mic-knl, use compiler flags for KNL
o Intel: -xMIC-AVX512
e CCE: -h cpu=mic-knl
e GCC: -march=knl

e Intel 16 has KNL support

e Intel 17 has additional KNL enhancements

e CCE 8.5 has initial KNL support

e CCE 8.6 has enhancements

e -march=knl was introduced with GCC 5.1

Vectorize for best performance

2/12/19

e Take advantage of AVX-512

e 8 results per instruction versus 1 result per instruction

e Helps compensate for low core frequency
e More work each cycle with vectorized code

e Helps compensate for low instruction dispatch width
e 2 instructions/cycle

e Vectorization techniques the same as Xeon
e Use CCE loopmark listing or compiler messages
e -rm (Fortran) or -h list=m (C)
e -h msgs
e Use Intel compiler reporting
e -qopt-report
e -qopt-report-phase=vec
e Vectorization helps if data is accessible

e Contiguous memory access (stride-1)
e Cache block for L2

COMPUTE STORE ANALYZE

Cray Inc.

Strategies For Using High-Bandwidth MCDRAM

e If 16 GB is big enough
e Configure as flat, use default MCDRAM
e numactl --membind=1

e If data touched within key loops is known, < 16 GB

e Configure flat, use default DDR and memkind for MCDRAM
e hbw _malloc / hbw_free

o Forlntel: 'DIR$ ATTRIBUTES FASTMEM

o For CCE: IDIR$ MEMORY(BANDWIDTH)

e Or try numactl --preferred=1

e Otherwise
e Configure as cache
e Can do both and configure as equal or split
e With equal and split, memory bandwidth is reduced

Cray Inc.

Using numactl to use MCDRAM

e To get all memory allocated in MCDRAM, use numactl
e Configure MCDRAM as flat

e MCDRAM will be NUMA node 1
e Per-node memory limit is 16 GB (MCDRAM size)
e Run using numactl

srun -n 320 --ntasks-per-node=64 numactl --membind=1 a.out

e To use MCDRAM first, but overflow into DDR
e Configure flat as above
o Use --preferred=1 instead of --membind=1

e Per node memory limit includes all memory (MCDRAM+DDR)
e Often does not help much

e Only first allocations will be to MCDRAM

e Later allocations will overflow into DDR

Cray Inc.

Memory Allocation Examples

Allocate from DDR

fv =

float

*fv;

(float *)malloc(sizeof (float) * 1000);

Allocate from MCDRAM

fv =

float

*fv;

(float *)hbw malloc(sizeof (float) * 1000);

Allocate arrays from MCDRAM & DDR in Intel Fortran

C

IDIRS

Declare arrays to be dynamic

REAL, ALLOCATABLE :: A(:), B(:), C(:)
ATTRIBUTES FASTMEM :: A

NSIZE=1024

allocate array ‘A’ from MCDRAM
ALLOCATE (A (NSIZE))

Allocate arrays that will come from DDR

ALLOCATE (B(NSIZE), C(NSIZE))

Cray Inc.

CCE Memory Allocation Examples

Allocate from MCDRAM in CCE C

#pragma memory (bandwidth)
float *fv = (float *)malloc(sizeof (float) * 1000);

Allocate from MCDRAM in CCE C++

#pragma memory (bandwidth)
float *fv = new float[1000];

Allocate arrays from MCDRAM & DDR in CCE Fortran

c Declare arrays to be dynamic
REAL, ALLOCATABLE :: A(:), B(:), C(:)
NSIZE=1024

c

c allocate array ‘A’ from MCDRAM

IDIR$ MEMORY (BANDWIDTH)
ALLOCATE (A (NSIZE))

c Allocate arrays that will come from DDR

ALLOCATE (B(NSIZE), C(NSIZE))

Cray Inc.

MCDRAM as Cache - Cache Conflicts RS TSR

e Direct mapped cache, DDR is 6 times larger
e 6 DDR pages map to the same locations in MCDRAM cache
e Two physical pages which conflict will cause
thrashing

e Performance impact depends upon how often this occurs

e Conflicts cause cache misses, lower performance
e Performance limited by DDR, not MCDRAM cache bandwidth
e Most often seen when using a large number of nodes
e Chance of any node having a conflict increases

e Physical pages assigned independently on each node
e A page sorting feature in the OS reduces randomness

COMPUTE STORE ANALYZE

2/12/19 Cray Inc. @

Alternative MCDRAM Strategies - Reverse NUMA Binding .

e Makes MCDRAM default, but places selected arrays in DDR

e Works when a few large arrays are not part of the main compute
e Add hbwmalloc calls or directives on data to be placed into DDR
e Configure MCDRAM as flat
e export MEMKIND HBW_ NODES=0
e Launch program using “numactl --membind=1"
e Can be combined with the autohbw strategy as “reverse autohbw”

Cray Inc. O

Alternative MCDRAM Strategies (2) - Autohbw «

e Place allocations into MCDRAM without source changes
e Selected by allocation size
export AUTO HBW _SIZE=min_size[:max_size]
e Run the program with MCDRAM configured as flat
e Can be combined with reverse NUMA binding

e Cori: module load autohbm
e On other systems, build memkind from source
https://github.com/memkind/memkind

e Link with autohbw:
-L SMEMKIND _DIR/memkind/lib -WI,--whole-archive -lautohbw -WI,--no-whole-archive

e For prelinked dynamic executables, use LD PRELOAD
export LD_ PRELOAD=$MEMKIND _DIR/lib/libautohbw.so

https://github.com/memkind/memkind/blob/dev/autohbw/autohbow README

Cray Inc. O

With CCE OpenMP, try wait policy passive

e Many programs run faster with OpenMP and 2-way HT
o export OMP_NUM_ THREADS=2
e srun --ntasks-per-node=64 -c 4 --cpu-bind=cores

e With active wait policy, worker threads spin-wait when idle
e Spin-waiting consumes instruction issue bandwidth

e With passive wait policy, worker threads halt when idle
(after a short spin-wait)
e CCE default wait policy is active when ncores=nthreads
e CCE default wait policy is passive when ncores<nthreads
e Intel default wait policy is passive

e To reduce issue bottleneck, set passive wait policy

e export OMP_WAIT POLICY=passive

e May also increase OpenMP parallel overhead due to thread wakeup
time when executing many small parallel regions

COMPUTE STORE ANALYZE

2/12/19 Cray Inc.

SLURM CPU affinity recipes for OpenMP RS S

e export OMP_NUM_THREADS=xx
e export OMP_PROC_BIND=true ¥
e export OMP_PLACES=threads

e srun -n yyy -c¢ xx --threads-per-core=1 a.out
e For one thread per core, xx OpenMP threads per process

e Same environment settings can be used on ALPS systems
e Useful when “aprun -cc depth” is used.

Cray Inc. O

Use Core Specialization

e MPI synchronization time can rise due to OS noise
e Sync time is time until the last process enters the collective
e Usually when a large number of nodes is used

e May show up as large times for collectives
e MPI _Allreduce

e To reduce OS noise by 50%, use core specialization
e Impact on collective calls even larger than 50%

e Core specialization reserves hardware to handle OS work
e Highest numbered available cpu is selected first

e SLURM: srun --thread-spec=1
e Can also set SLURM_THREAD SPEC=1

COMPUTE STORE ANALYZE

2/12/19 Cray Inc.

For best performance, avoid dynamic linking

e Dynamically linked executables usually run slower
e More overhead for library calls
e Not all libraries are performance-critical
e Dynamic linking penalty mainly impacts
e Calls of short duration
e Which occur frequently

e Use of memkind requires dynamic linking
e Work-around is to build a local static memkind library
e Consider static linking for these types of libraries
e Compiler runtime (intrinsics, pattern-matched code)
e Math libraries
e OpenMP runtime
e Memory allocation (if occurs frequently)
e MPI (if many small messages or if latency is important)

COMPUTE STORE ANALYZE

2/12/19 Cray Inc.

KNL Features and Usage Summary

e More cores - 68 per processor

e Wider SIMD instructions - AVX-512

¢ 4 hardware threads per core

e L2 cache is shared between two cores

e Can execute Xeon programs

e High-bandwidth memory - MCDRAM

e MCDRAM is often used as a 16GB cache

-
v

C Ry ||
v

e
L

Using Cray Systems with Knights Landing
processors

Questions?

Bonus Slide - Additional Resources o N

Using Cori - from the November 2016 NESAP Hackathon
https://www.nersc.gov/assets/Uploads/Using-Cori-20161129-NESAP-HACKATHON.pdf

Cori Intel Xeon Phi Nodes
http://www.nersc.gov/users/computational-systems/cori/cori-intel-xeon-phi-nodes/

Example batch scripts for Cori KNL Nodes
https://www.nersc.gov/users/computational-systems/cori/running-jobs/example-batch-scripts-for-knl/

PRACE Best Practice Guide — Knights Landing, January 2017
http://www.prace-ri.eu/best-practice-quide-knights-landing-january-2017/

Explicit Vector Programming — Best Known Methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods

Cray Inc. O

https://www.nersc.gov/assets/Uploads/Using-Cori-20161129-NESAP-HACKATHON.pdf
http://www.nersc.gov/users/computational-systems/cori/cori-intel-xeon-phi-nodes/
https://www.nersc.gov/users/computational-systems/cori/running-jobs/example-batch-scripts-for-knl/
http://www.prace-ri.eu/best-practice-guide-knights-landing-january-2017/
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods

Bonus Slide - Core Block Diagram

2/12/19

Core & VPU

Out-of-order core w/ 4 SMT threads

= VPU tightly integrated with core pipeline

= 2-wide Decode/Rename/Retire
= ROB-based renaming. 72-entry ROB & Rename

Buffers

= Up to 6-wide at execution
= Intand FP RS O00.
MEM RS inorder with OoO completion. Recycle Buffer

holds memory ops waiting for completion.

= [ntand Mem RS hold source data. FP RS does not.

2x 64B Load & 1 64B Store ports in Dcache.
15t level uTLB: 64 entries
2" level dTLB: 256 4K, 128 2M, 16 1G pages

L1 Prefetcher (IPP) and L2 Prefetcher.
46/48 PA/VA bits

Fast unaligned and cache-line split support.
Fast Gather/Scatter support

Icache

(32KB 8-way)

Fetch &
Decode

Allocate/
Rename

FP Rename Buffers

FP RF

Vector

ALUS

Integer Rename Buffer

Integer RF
3

TLBs

Dcache
(32KB 8-way)

COMPUTE

STORE

Cray Inc.

ANALYZE

Bonus Slide - Instruction Set Architecture

2/12/19

KNL ISA

E5-2600 E5-2600v3
(SNBY)

(HSW?)

CPUID bit

No TSX. Under separate

KNL implements all legacy instructions
* Legacy binary runs w/o recompilation
* KNC binary requires recompilation

KNL introduces AVX-512 Extensions
« 512-bit FP/Integer Vectors

« 32 registers, & 8 mask registers

« (Gather/Scatter

Conflict Detection: Improves Vectorization

Prefetch: Gather and Scatter Prefetch

Exponential and Reciprocal Insém

COMPUTE

STORE ANALYZE

Cray Inc.

Bonus Slide - AVX-512 Extensions

* Intel AVX-512 Prefetch

\
C Ry |
e \
e \
\

\
0 s Desrpion

Prefetch cache line into the L2 cache with intent

. T PREFETCHWT1 2
Instructions (PFI) a to write
g VGATHERPF{D,QH0,1}PS :;e/:zeti\ c\;‘eector of D/Qword indexes into the
_ < VSCATTERPF{D,QHO0,1}PS Prefetch vecto_r of D/Qword il:\dexes into the
* Intel AVX-512 Exponential L1/12 cache with intent to write
and ReC.I pro cal VEXP2{PS,PD} f;:;nh%t;t:snzl:;::;igaﬁon of 2* with maximum
Instructions (ERI) o
o~ VRCP28{PS,PD} Computes approximation of reciprocal with max
u‘-‘j : relative error of 2-2% before rounding
g Computes approximation of reciprocal square
. VRSQRT28{PS,PD t with lati f 22 befo
* Intel AVX-512 Conflict e i sl e
Detection Instructions : e
Detect duplicate values within a vector and
(C DI) 8 WECONELICTIE.) create conflict-free subsets
N
— Count the number of leading zero bits in each
2 WG element
< VPBROADCASTM{B2Q,W2D} Broadcast vector mask into vector elements
—
COMPUTE STORE ANALYZE

2/12/19

Cray Inc.

Bonus Slide - AVX-512 Extensions

AVX-512 F

KNL Xeon Phi

AVX-512
VL,BW,DQ

AVX-512 F

Skylake Xeon

COMPUTE

2/12/19

STORE

Cray Inc.

ANALYZE

