
Hierarchical Roofline Analysis on GPUs

Charlene Yang
Lawrence Berkeley National Laboratory

SC 2019, Denver

Outline

• Hierarchical Roofline on NVIDIA GPUs
– L1, L2, HBM, System Memory

• Methodology for Roofline Data Collection
– Machine characterization: peak bandwidth and peak GFLOP/s
– Application characterization: FLOPs, bytes, runtime

• Two Examples
– GPP from BerkeleyGW, and conv2d from TensorFlow

2

This methodology
can be extended
to other GPUs,

and other
instruction types!

Goal: Construct Hierarchical Roofline
To construct a Roofline on NVIDIA GPUs
• that incorporates the full memory hierarchy

– L1, L2, HBM, System Memory (NVLINK/PCIe)

• also instruction types, data types…
– FMA/no-FMA
– FP64, FP32, FP16
– CUDA core/Tensor core
– …

3

Methodology to Collect Roofline Data

Machine Characterization

How to get the ceilings?
• compute and bandwidth

Theoretical vs Empirical

Empirical Roofline Toolkit (ERT)
• runs micro benchmarks
• More Realistic
• power constraints, etc

5

Machine Characterization

• Empirical Roofline Toolkit (ERT)
– Different than the architecture specs, MORE REALISTIC
– Reflects actual execution environment (power constraints, etc)
– Sweeps through a range of configurations, and statistically stable

o Data elements per thread
o FLOPs per data element
o Threadblocks/threads
o Trails per dataset
o etc

Empirical Roofline Toolkit (ERT). https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

job script

./ert config.txt

ert (Python)

create directories
loop over ERT_FLOPS, ERT_GPU_BLOCKS/THREADS

call driver, kernel

config.txt

ERT_FLOPS 1,2,4,8,16,32,64,128,256
ERT_GPU_BLOCKS 80,160,320,640,1280,2560
ERT_GPU_THREADS 64,128,256,512,1024
ERT_MEMORY_MAX 1073741824
ERT_WORKING_SET_MIN 128
ERT_TRIALS_MIN 1
...

Driver.c (uses some Macros from config.txt)

initialize MPI, CUDA
loop over dataset sizes <= ERT_MEMORY_MAX

loop over trial sizes >= ERT_TRIALS_MIN
cudaMemcpy
start timer
call kernel
end timer

Kernel.c

loop over ntrails
distribute dataset on threads and each

computes ERT_FLOPS

Kernel.h

ERT_FLOPS=1: a = b + c
ERT_FLOPS=2: a = a x b + c

job script
• submit the job and run it

config script
• set up ranges of parameters

Driver.c
• setup
• call kernels
• loop over parameters

Kernel.c
• actual compute
• customizable

ERT Configuration

Empirical Roofline Toolkit (ERT). https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

• ERT can’t detect all the ceilings yet - IN DEVELOPMENT!

• Theoretical compute ceilings on V100:
– FP64 FMA: 80 SMs x 32 FP64 cores x 1.53 GHz x 2 = 7.83 TFLOP/s
– FP64 No-FMA: 80 SMs x 32 FP64 cores x 1.53 GHz = 3.92 TFLOP/s

• Theoretical memory bandwidths on V100:
– HBM: 900 GB/s
– L2: ~4.1 TB/s

Bad News:
• you may never achieve 7.8 TFLOP/s
Good News:
• you may be closer to the ceiling than you think

Machine Characterization

10%

10%

Voltar at UOregon

8

Require three raw measurements:
• Runtime
• FLOPs
• Bytes (on each cache level)
to calculate AI and GFLOP/s:

Application Characterization

Performance	=	
𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs

Runtime
		

Arithmetic	Intensity	=	
𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs

𝒏𝒗𝒑𝒓𝒐𝒇	Data	Movement

(y: GFLOP/s)

(x: FLOPs/Byte)

9

Where to put these dots?

Application Characterization

Currently the methodology is based on nvprof

But we are working with NVIDIA on an Nsight-based
methodology!!

10

Application Characterization
• Runtime:

– Time per invocation of a kernel
nvprof --print-gpu-trace ./application

– Average time over multiple invocations
nvprof --print-gpu-summary ./application

• FLOPs:
– CUDA Core: Predication aware and complex-operation aware (such as divides)

nvprof --kernels ‘kernel_name’ --metrics ‘flop_count_xx’

./application e.g. flop_count_{dp/dp_add/dp_mul/dp_fma, sp*, hp*}

– Tensor Core: (more details later)
--metrics tensor_precision_fu_utilization

0-10 integer range, 0-0, 10-125TFLOP/s; multiply by run time -> FLOPs
11

Application Characterization
• Bytes for different cache levels in order to construct hierarchical Roofline:

– Bytes = (read transactions + write transactions) x transaction size
– nvprof --kernels ‘kernel_name’ --metrics ‘metric_name’

./application

• Note: surface and texture transactions are ignored here for HPC applications

Level Metrics Transaction
Size

First Level Cache*

gld_transactions, gst_transactions,
atomic_transactions, local_load_transactions,
local_store_transactions, shared_load_transactions,
shared_store_transactions

32B

Second Level Cache l2_read_transactions, l2_write_transactions 32B
Device Memory dram_read_transactions, dram_write_transactions 32B
System Memory system_read_transactions, system_write_transactions 32B

12

Example Output

[cjyang@voltar source]$ nvprof --kernels "1:7:smooth_kernel:1" --metrics
flop_count_dp --metrics gld_transactions --metrics gst_transactions --
metrics l2_read_transactions --metrics l2_write_transactions --metrics
dram_read_transactions --metrics dram_write_transactions --metrics
sysmem_read_bytes --metrics sysmem_write_bytes ./hpgmg-fv-fp 5 8

• Export to CSV: --csv -o nvprof.out

13

context : stream : kernel : invocation

Plot Roofline with Python

• Calculate Arithmetic Intensity and GFLOP/s performance
– x coordinate: Arithmetic Intensity
– y coordinate: GFLOP/s performance

• Plot Roofline with Python Matplotlib
– Example scripts:
– https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting
– Tweak as needed for more complex Rooflines

Performance	=	
𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs

Runtime
		, Arithmetic	Intensity	=	

𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs
𝒏𝒗𝒑𝒓𝒐𝒇	Data	Movement(GFLOP/s) (FLOPs/Byte)

14

Plot Roofline with Python

• Quick example: plot_roofline.py data.txt

• Accepts space-delimited list for values
• Use quotes to separate names/labels

data.txt

all data is space delimited
memroofs 14336.0 2996.8 828.758
mem_roof_names ‘L1’ ‘L2’ ‘HBM’
comproofs 7068.86 3535.79
comp_roof_names ‘FMA’ ‘No-FMA’

omit the following if only plotting roofs
AI: arithmetic intensity; GFLOPs: performance
AI 0.87 2.25 2.58
GFLOPs 2085.756683
labels ‘Kernel’

15

Recap: Methodology to Construct Roofline

1. Collect Roofline ceilings
– ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
– compute (FMA/no FMA) and bandwidth (DRAM, L2, …)

2. Collect application performance
– nvprof: --metrics, --events, --print-gpu-trace
– FLOPs, bytes (DRAM, L2, …), runtime

3. Plot Roofline with Python Matplotlib
– arithmetic intensity, GFLOP/s performance, ceilings
– example scripts: https://github.com/cyanguwa/nersc-roofline

16

Roofline Analysis: Two Examples

Example 1: GPP
• GPP (General Plasmon Pole) kernel from BerkeleyGW (Material Science)
• https://github.com/cyanguwa/BerkeleyGW-GPP
• Small problem size: 512 2 32768 20

• Tensor-contraction, abundant parallelism, large reductions
• Low FMA counts, divides, complex double data type, HBM data 1.5GB

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do ig = 1, ncouls #threadIdx.x
do iw = 1, nw #unrolled

compute; reductions

Pseudo Code

18

Example 1: GPP
• Highly parameterizable

1. Varying nw from 1 to 6 to increase arithmetic intensity
• FLOPs increases, but data movement stays (at least for HBM)

2. Compiling with and without FMA to study impact of instruction mix
• -fmad=true/false

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do ig = 1, ncouls #threadsIdx.x
do iw = 1, nw #unrolled

compute; reductions

Pseudo Code

19

Example 1: GPP

• Highly parameterizable

3. Striding ig loop to analyze impact of memory coalescing
• Split ig loop to two loops and place the ‘blocking’ loop outside

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do igs = 0, stride - 1
do ig = 1, ncouls/stride #threadIdx.x

do iw = 1, nw #unrolled
compute; reductions

Stride 2
Pseudo Code

20

Example 1: GPP Analysis

• Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
– GPP is HBM bound at low nw’s and compute bound at high nw’s
– FLOPs ∝ nw

– HBM bytes: constant
– L2 bytes: increasing at 𝜶 > 1
– L1 bytes: constant

• Hierarchical Roofline captures
more details about cache locality

21

Example 1: GPP Analysis

• HBM Roofline, i.e. bytes are HBM bytes
– No-FMA performance converges

to no-FMA ceiling, but FMA
performance is still far from
the FMA ceiling

– Not reaching FMA ceiling due
to lack of FMA instructions

22

Example 1: GPP Analysis
• At nw=6, GPP has of FMA instructions

• Expected performance is

of peak

But at nw=6, GPP only achieves 66%

• Other FP/non-FP instructions may
be taking up the instruction
issue/execution pipeline

• Roofline captures effects of

instruction mix

𝜶 =
FMA	FP64	instr.	

FMA	FP64	instr.	+	non−FMA	FP64	instr.
= 𝟔𝟎%

𝜷 =
α	×	2	+	(1	−	𝜶)	

2	
= 𝟖𝟎%

23

Example 1: GPP Analysis
• Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes

– L1/L2 bytes doubles from stride 1 to 2, but stays almost constant afterwards
– at nw=6, GPP moves from compute bound to bandwidth bound
– Eventually all converge to HBM

• Roofline captures effects of
suboptimal memory coalescing

24

Example 2: conv2d from TensorFlow

• Kernel tf.nn.conv2d

https://www.tensorflow.org

25

Example 2: conv2d from TensorFlow

• TensorFlow autotuning mechanism

• Split the loop into ‘warm-up’ and ‘measurement’
– 5 iters and 20 iters

• pyc.driver from PyCUDA
– need to launch nvprof with

--profile-from-start off

with tf.Session(config=...) as sess:
...

#warm-up
for i in range(n_warm):
result = sess.run(exec_op)

#measurement
pyc.driver.start_profiler()
for i in range(n_iter):

result = sess.run(exec_op)
pyc.driver.stop_profiler()

26

Example 2: conv2d from TensorFlow

exec_op:
• forward pass -- conv in 2D
• backward pass -- conv + derivative
• calibrate -- tensor generation

#generate random input tensor
input_image = tf.random_uniform(shape=input_size, minval=0., maxval=1., dtype=dtype)
#create network
output_result = conv2d(input_image, ’NHWC’, kernel_size, stride_size, dtype)

#choose operation depending on pass
if pass=="forward":

with tf.device(gpu_dev):
exec_op = output_result

elif pass=="backward":
with tf.device(gpu_dev):
opt = tf.train.Gradient\

DescentOptimizer(0.5)
exec_op = opt.compute\

_gradients(output_result)
elif pass=="calibrate":

with tf.device(gpu_dev):
exec_op = input_image

27

Example 2: conv2d from TensorFlow

• Each TensorFlow kernel translates to a series of subkernels
– padding, shuffling, data conversion, etc

• TensorFlow based on heuristics decides what subkernels to call

• cuDNN also has some algorithm selection mechanism

• We INCLUDE the housekeeping subkernels in our measurements,
but EXCLUDE the autotuning subkernels

28

Example 2: conv2d from TensorFlow

• Our FLOP count comes from
flop_count_sp, flop_count_hp, tensor_precision_fu_utilization

• Byte count and run time are the sum of these quantities across all subkernels

CAVEATS:
• Housekeeping subkernels may run in FP32 even when input is FP16
• TensorFlow may execute computation in FP32 even when input is FP16
• Very coarse quantization for tensor_precision_fu_utilization

– 0-10 integer range, 0 maps to 0 TFLOP/s and 10 maps to 125 TFLOP/s

29

!

Example 2: conv2d Analysis

• Batch Size 16, 32 and 64, forward pass

• Same underlying algorithm
à should be same performance

• But, housekeeping kernels
are mostly bandwidth bound

• One reason TF applications
are not reaching peak

30

Example 2: conv2d Analysis

• Batch Size 16, 32 and 64, backward pass

• Similar trend as forward pass

• But algorithm changes for
FP32 at batch size 64,
leading to slightly better
performance

31

Example 2: conv2d Analysis

• Number of Output Filters 64, 128, 256 and 512, forward pass

• Increasing intensity and
performance

• Good L1 locality
• cuDNN uses shared mem

32

Example 2: conv2d Analysis

• Number of Output Filters 64, 128, 256 and 512, backward pass

• Similar trend as forward pass

• Almost reaching TC peak
and FP32 FMA peak

33

Example 2: conv2d Analysis

• Kernel Size 3x3, 7x7 and 9x9, forward pass

• Increasing intensity and
performance

• Algorithm change at 9x9
– wgrad to FFT
– may not be efficient

use of FFT kernels

34

Example 2: conv2d Analysis

• Kernel Size 3x3, 7x7 and 9x9, backward pass

• TF decides to run in FP32
even though both input and
output are in FP16; Data
needs to be converted
back and forth

• More robust autotuning

35

Summary
• An effective methodology to construct hierarchical Roofline on NVIDIA GPUs

– ERT for machine characterization
– nvprof for application characterization

• Two examples demonstrated the value of this methodology and its ability to
understand various aspects of performance on NVIDIA GPUs

– cache locality, instruction mix, memory coalescing, thread predication,
reduced precision and Tensor Cores

– GPP from BerkeleyGW, and conv2d from TensorFlow

36

Acknowledgement

• This material is based upon work supported by the Advanced Scientific
Computing Research Program in the U.S. Department of Energy, Office
of Science, under Award Number DE-AC02-05CH11231.

• This material is based upon work supported by the DOE RAPIDS SciDAC
Institute.

• This research used resources of the National Energy Research Scientific
Computing Center (NERSC), which is supported by the Office of Science
of the U.S. Department of Energy under contract DE-AC02- 05CH11231.

Thank You

