Hierarchical Roofline Analysis on GPUs

Charlene Yang Lawrence Berkeley National Laboratory SC 2019, Denver

Outline

- Hierarchical Roofline on NVIDIA GPUs
 - L1, L2, HBM, System Memory
- Methodology for Roofline Data
 - Machine characterization: n This methodology
 - Application characteria
- Two Examples
 - GPP from BerkeleyGW

This methodology can be extended to other GPUs, and other instruction types!

low

octio

Goal: Construct Hierarchical Roofline

BERKELEY L

To construct a Roofline on NVIDIA GPUs

- that incorporates the full memory hierarchy
 - L1, L2, HBM, System Memory (NVLINK/PCIe)
- also instruction types, data types...105
 - FMA/no-FMA
 - FP64, FP32, FP16
 - CUDA core/Tensor core

- ...

Methodology to Collect Roofline Data

Machine Characterization

How to get the ceilings?

compute and bandwidth

Theoretical vs Empirical

Empirical Roofline Toolkit (ERT)

- runs micro benchmarks
- More Realistic
- power constraints, etc

Machine Characterization

• Empirical Roofline Toolkit (ERT)

- Different than the architecture specs, **MORE REALISTIC**
- Reflects **actual** execution environment (power constraints, *etc*)
- Sweeps through a range of configurations, and **statistically stable**
 - Data elements per thread
 - FLOPs per data element
 - Threadblocks/threads
 - Trails per dataset
 - etc

Kernel.cactual computecustomizable	 Driver.c setup call kernels loop over parameters
 config script set up ranges of parameters 	 job script submit the job and run it

Machine Characterization

- ERT can't detect all the ceilings yet IN DEVELOPMENT!
- Theoretical compute ceilings on V100:
 - FP64 FMA: 80 SMs x 32 FP64 cores x 1.53 GHz x 2 = 7.83 TFLOP/s
 - FP64 No-FMA: 80 SMs x 32 FP64 cores x 1.53 GHz = 3.92 TFLOP/s
- Theoretical memory bandwidths on V100:
 - HBM: 900 GB/s
 - L2: ~4.1 TB/s

Bad News:

you may never achieve 7.8 TFLOP/s

Good News:

• you may be closer to the ceiling than you think

Application Characterization

Require three raw measurements:

- Runtime
- · FLOPs
- Bytes (on each cache level)

to calculate AI and GFLOP/s:

 $= \frac{nvprof}{nvprof}$ Data Movement

Performance = (y: GFLOP/s)

nvprof FLOPs Runtime

Currently the methodology is based on nvprof

But we are working with NVIDIA on an Nsight-based methodology!!

Application Characterization

- Runtime:
 - Time per invocation of a kernel

nvprof --print-gpu-trace ./application

- Average time over multiple invocations
 nvprof --print-gpu-summary ./application
- FLOPs:

Science

- CUDA Core: Predication aware and complex-operation aware (such as divides) nvprof --kernels `kernel_name' --metrics `flop_count_xx'
 - ./application e.g. flop_count_{dp/dp_add/dp_mul/dp_fma, sp*, hp*}
- Tensor Core: (more details later)

--metrics tensor_precision_fu_utilization

0-10 integer range, 0-0, 10-125TFLOP/s; multiply by run time -> FLOPs

Application Characterization

- Bytes for different cache levels in order to construct hierarchical Roofline:
 - Bytes = (read transactions + write transactions) x transaction size
 - nvprof --kernels `kernel_name' --metrics `metric_name'

./applicatio	n
--------------	---

Level	Metrics	Transaction Size	
First Level Cache*	<pre>gld_transactions, gst_transactions, atomic_transactions, local_load_transactions, local_store_transactions, shared_load_transactions, shared_store_transactions</pre>	32B	
Second Level Cache	<pre>12_read_transactions, 12_write_transactions</pre>	32B	
Device Memory	dram_read_transactions, dram_write_transactions	32B	
System Memory	<pre>system_read_transactions, system_write_transactions</pre>	32B	

Note: surface and texture transactions are ignored here for HPC applications_

context : stream : kernel : invocation

[cjyang@voltar source]\$ nvprof --kernels "1:7:smooth_kernel:1" --metrics flop_count_dp --metrics gld_transactions --metrics gst_transactions -metrics 12_read_transactions --metrics 12_write_transactions --metrics dram_read_transactions --metrics dram_write_transactions --metrics sysmem_read_bytes --metrics sysmem_write_bytes ./hpgmg-fv-fp 5 8

Export to CSV: --csv -o nvprof.out

Invocations	Metric Name		Metric D	escription	Min	Max	Avg
Device "Tesla V100-PCIE-	16GB (0)"						_
<pre>Kernel: void smooth_</pre>	kernel≺int=6, int=32, int=4, i	nt=8>(level_type,	int, int, double,	double, int,	double*,	double*)	
1	flop_count_dp	Floating Point 0	perations(Double	Precision)	30277632	30277632	30277632
1	gld_transactions		Global Load Tr	ansactions	4280320	4280320	4280320
1	gst_transactions		Global Store Tr	ansactions	73728	73728	73728
1	12_read_transactions		L2 Read Tr	ansactions	890596	890596	890596
1	12_write_transactions		L2 Write Tr	ansactions	85927	85927	85927
1	dram_read_transactions	Devi	ice Memory Read Tr	ansactions	702911	702911	702911
1	dram_write_transactions	Devic	e Memory Write Tr	ansactions	151487	151487	151487
1	sysmem_read_bytes		System Memory	Read Bytes	Θ	Θ	Θ
1	sysmem_write_bytes		System Memory W	Irite Bytes	160	160	160

Plot Roofline with Python

- Calculate Arithmetic Intensity and GFLOP/s performance
 - x coordinate: Arithmetic Intensity
 - y coordinate: GFLOP/s performance

- Plot Roofline with Python Matplotlib
 - Example scripts:
 - <u>https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting</u>
 - Tweak as needed for more complex Rooflines

Plot Roofline with Python

Quick example: ٠

Office of

Science

plot roofline.py data.txt

- Accepts space-delimited list for values •
- Use quotes to separate names/labels ٠

```
data.txt
# all data is space delimited
memroofs 14336.0 2996.8 828.758
mem roof names 'L1' 'L2' 'HBM'
comproofs 7068.86 3535.79
comp roof names 'FMA' 'No-FMA'
# omit the following if only plotting roofs
# AI: arithmetic intensity; GFLOPs: performance
AI 0.87 2.25 2.58
GFLOPs 2085,756683
labels 'Kernel'
```


1. Collect Roofline ceilings

Office of

- ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
- **compute** (FMA/no FMA) and **bandwidth** (DRAM, L2, ...)
- 2. Collect application performance
 - nvprof: --metrics, --events, --print-gpu-trace
 - FLOPs, bytes (DRAM, L2, ...), runtime
- 3. Plot Roofline with Python Matplotlib
 - arithmetic intensity, GFLOP/s performance, ceilings
 - example scripts: https://github.com/cyanguwa/nersc-roofline

Roofline Analysis: Two Examples

Example 1: GPP

- GPP (General Plasmon Pole) kernel from BerkeleyGW (Material Science)
- <u>https://github.com/cyanguwa/BerkeleyGW-GPP</u>
- Small problem size: 512 2 32768 20
- Tensor-contraction, abundant parallelism, large reductions
- Low FMA counts, divides, complex double data type, HBM data 1.5GB

Pseudo Code

do band = 1, nbands	#blockIdx.x	
do lgp = 1, ngpown	#DLOCKLOX.Y	
do ig = 1, ncouls	<pre>#threadIdx.x</pre>	
do iw = 1, nw	#unrolled	
compute; reductions		

Example 1: GPP

- Highly parameterizable
 - 1. Varying nw from 1 to 6 to increase arithmetic intensity
 - FLOPs increases, but data movement stays (at least for HBM)

- 2. Compiling with and without FMA to study impact of instruction mix
 - -fmad=true/false

Example 1: GPP

• Highly parameterizable

Office of

Science

- 3. Striding ig loop to analyze impact of memory coalescing
 - Split ig loop to two loops and place the 'blocking' loop outside

Example 1: GPP Analysis

- Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
 - GPP is HBM bound at low nw's and compute bound at high nw's
 - **FLOPs** \propto nw
 - HBM bytes: constant
 - L2 bytes: increasing at $\alpha > 1$
 - L1 bytes: constant
- Hierarchical Roofline captures more details about cache locality

- HBM Roofline, i.e. bytes are HBM bytes •
 - No-FMA performance converges to no-FMA ceiling, but FMA performance is still far from the FMA ceiling Not reaching FMA ceiling due _
 - to lack of FMA instructions

Example 1: GPP Analysis

Example 1: GPP Analysis

- Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
 - L1/L2 bytes doubles from stride 1 to 2, but stays almost constant afterwards
 - at nw=6, GPP moves from compute bound to bandwidth bound
 - Eventually all converge to HBM
- Roofline captures effects of suboptimal memory coalescing

- TensorFlow autotuning mechanism
- Split the loop into 'warm-up' and 'measurement'
 - 5 iters and 20 iters
- pyc.driver from PyCUDA
 - need to launch nvprof with

--profile-from-start off

```
with tf.Session(config=...) as sess:
    ...
#warm-up
for i in range(n_warm):
    result = sess.run(exec_op)
#measurement
    pyc.driver.start_profiler()
for i in range(n_iter):
        result = sess.run(exec_op)
    pyc.driver.stop_profiler()
```


exec_op:

- forward pass -- conv in 2D
- backward pass -- conv + derivative
- calibrate -- tensor generation

```
#choose operation depending on pass
if pass=="forward":
    with tf.device(gpu_dev):
    exec_op = output_result
elif pass=="backward":
    with tf.device(gpu_dev):
    opt = tf.train.Gradient\
        DescentOptimizer(0.5)
    exec_op = opt.compute\
        _gradients(output_result)
elif pass=="calibrate":
    with tf.device(gpu_dev):
    exec_op = input_image
```

#generate random input tensor

Office of

Science

```
input_image = tf.random_uniform(shape=input_size, minval=0., maxval=1., dtype=dtype)
#create network
```

output_result = conv2d(input_image, 'NHWC', kernel_size, stride_size, dtype)

- Each TensorFlow kernel translates to a series of subkernels
 - padding, shuffling, data conversion, etc
- TensorFlow based on heuristics decides what subkernels to call
- cuDNN also has some algorithm selection mechanism
- We INCLUDE the housekeeping subkernels in our measurements, but EXCLUDE the autotuning subkernels

subkernels

is FP16

- Our FLOP count comes from flop_count_sp, flop_count_hp, tensor_preci_io__u_utilization
- Byte count and run time are the sum of t

CAVEATS:

- Housekeeping subkernels may run in FP32
- TensorFlow may execute computation in FP3
 when input is FP16
- Very coarse quantization for tensor_precision_fu_utilization
 - 0-10 integer range, 0 maps to 0 TFLOP/s and 10 maps to 125 TFLOP/s

- Batch Size 16, 32 and 64, forward pass
- Same underlying algorithm
- \rightarrow should be same performance¹⁰⁵
- But, housekeeping kernels are mostly bandwidth bound
- One reason TF applications are not reaching peak

- Batch Size 16, 32 and 64, backward pass
- Similar trend as forward pass
- But algorithm changes for FP32 at batch size 64, leading to slightly better performance

Office of

Science

- Number of Output Filters 64, 128, 256 and 512, forward pass
- Increasing intensity and performance
- Good L1 locality

Office of

Science

• cuDNN uses shared mem

- Number of Output Filters 64, 128, 256 and 512, backward pass
- Almost reaching TC peak Almost reaching TC peak Almost reaching TC peak FP16 #h FP16 #h FP16 #h FP16 #h FP32 #filters 64 ٠ Tensor Core (FP16): 125.0 TFLOP/s FP32 #filters 128 BIS it it FP32 #filters 256 0.00 000 FP32 #filters 512 FP16 #filters 64 HOW • FP16 #filters 128 FP16 #filters 256 /FMA (FP16): 28.3 TFLOP/s FP16 #filters 512 No-FMA (FP16): 14.1 TFLOP/s FMA (FP32): 14.1 TFLOP/s No-FMA (FP32): 7.1 TFLOP/s

100

101

Arithmetic Intensity [FLOP/Byte]

10²

 10^{3}

10-1

- Kernel Size 3x3, 7x7 and 9x9, forward pass
- Increasing intensity and performance
- Algorithm change at 9x9
 - wgrad to FFT
 - may not be efficient use of FFT kernels

- Kernel Size 3x3, 7x7 and 9x9, backward pass
- TF decides to run in FP32
 even though both input and output are in FP16; Data
 needs to be converted back and forth
- More robust autotuning

Office of

Science

- An effective methodology to construct hierarchical Roofline on NVIDIA GPUs
 - ERT for machine characterization
 - nvprof for application characterization
- Two examples demonstrated the value of this methodology and its ability to understand various aspects of performance on NVIDIA GPUs
 - cache locality, instruction mix, memory coalescing, thread predication, reduced precision and Tensor Cores
 - GPP from BerkeleyGW, and conv2d from TensorFlow

- This material is based upon work supported by the Advanced Scientific Computing Research Program in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.
- This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
- This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02- 05CH11231.

Thank You

