
Charlene Yang

Case Studies:
GPP, CoMD and XGC1

Lawrence Berkeley National Laboratory
cjyang@lbl.gov

Outline
• Roofline	helps	identify	the	performance	bottleneck	of	a	code

• GPP	from	BerkeleyGW -- Bandwidth-bound		
• CoMD from	ddcMD and	SPaSM -- Compute-bound		

• Roofline	helps	guide	optimization	efforts
• XGC1	from	high	energy	physics		-- Electron	push	module,	ToyPush -- XGC1
• A complete	optimization	process	together	with	its	results
• How	Roofline	is	used	in	the	optimization	process,	together	with	other	ad-

hoc	analysis,	such	as	general	code	analysis,	hotspot	analysis,	compiler	report	
analysis	on	vectorization,	dependency	and	memory	access	pattern,	and	
instruction	set	analysis.	

- 1 -

GPP: Material Science

• BerkeleyGW [1-3]	is	a	material	science	application	that	predicts	the	excited-state	
properties	of	materials
– https://berkeleygw.org

• GPP	is	a	proxy	code	for	BerkeleyGW,	used	for	optimization	efforts
– Represents	the	work	on a	single	MPI	rank	in	a	large	BGW	computation
– https://github.com/rahulgayatri23/BGW-Kernels

• Performs	a	tensor-contraction	like	operation,	where	pre-computed	
complex	double-precision	arrays	are	multiplied/summed	and	collapsed	into	a	3x3	
matrix

• Fortran/C++,	OpenMP,	~500	LOC

[1] M. S. Hybertsen, S. G. Louie, Phys. Rev. B 34, 5390 (1986)
[2] M. Rohlfing, S. G. Louie, Phys. Rev. B 62, 4927 (2000)
[3] J. Deslippe, et. al., Comput. Phys. Commun. 183, 1269 (2012)

GPP - Original

242 GFLOP/s, Bound by
MCDRAM Bandwidth

Read/Write 2MB of data
per inner loop iteration

➤ No reuse of data in
L1/L2, shown by
overlapping points at
MCDRAM bandwidth

➤ Bandwidth bound.
Increase MCDRAM AI by
improving cache locality

Overlapping
points at
MCDRAM BW

Large gap
between
DRAM and
MCDRAM AI

KNL
- 3 -

GPP - With L2 Cache Blocking

Cache blocking
implemented to achieve
L2 data reuse. Notice the
gap between L2 and
MCDRAM dots.

Performance increased
from 242 to 287 GFLOP/s
(+18%)

But why not 3x increase
in FLOP/s?

3x Increase in
MCDRAM AI

Why not 3x
Flops increase ?

KNL
- 4 -

CoMD: Molecular Dynamics

• CoMD	[4-6]	is	a	proxy	code	for	ddcMD and	SPaSM in	molecular	dynamics	
• Molecular	dynamics	are	usually	N-body	problems	with	𝛰(𝑛$) complexity
• Two	types	of	force	calculation,	Leonard	Jones	(LJ)	and	Embedded	Atom	

Model	(EAM),	and	we	focus	on	the	LJ	kernels
• CoMD is	implemented	in	C	with	MPI	and	OpenMP,	~4k	LOC

[4] J. Mohd-Yusof, CoDesign Molecular Dynamics (CoMD) Proxy App, LA-UR-12-21782, Los Alamos National Lab, 2012.
[5] P. Cicotti, et. al., An Evaluation of Threaded Models for a Classical MD Proxy Application, Hardware-Software Co-Design for High Performance
Computing, New Orleans, LA, 2014, pp. 41-48.
[6] A. Adedoyin, A Case Study on Software Modernization using CoMD, LA-UR-17-22676, Los Alamos National Lab, 2017.

CoMD - Original

Good L1 and MCDRAM
locality, not really
bandwidth bound.

Look at other aspects
(compute)
➤ Data level parallelism
➤ Thread level parallelism

KNL - 6 -

CoMD - Better Vectorized

- 8 -

30% improvement

➤ Vectorization. Data
alignment, compiler hints,
data structure
transformations.

➤Work remains to be
done, given the gap
between LJ and the Vector
Peak.

Roofline needs to be
used together with other
analysis/tools, e.g.
compiler report.

KNL
- 7 -

XGC1: Particle-In-Cell (PIC)
• PIC	code	to	simulate	edge	plasmas	for	Tokamak	fusion	reactor	
• Written	in	Fortran	90,	parallelized	with	MPI	and	OpenMP,	~100k	LOC
• Code	analysis:

Gather	Fields	
from	Mesh	to	

Ions

Ion	Push

Collision	
Operator

Deposit	
Charge	From	
Particles	to	

Mesh

Solve	Fields	
on	Mesh

*Computation
*Mapping

Electron	Push	
Sub-Cycling

push	electrons	
without	updating	
fields	or	collisions	–
only	field	gather	

and	push

~50x

- 8 -

XGC1 - ToyPush
• Hotspot	analysis:	

Left:					Unoptimized XGC1	timings	on	1024	Cori	KNL	nodes	in	Quad-Flat	mode
Right:		Unoptimized ToyPush timings	on	Cori	KNL	in	Quad-Cache	mode
*ToyPush is	the	proxy	app	for	electron	push	part	of	XGC1.

35%

29%

28%

8%
Force	Calculation
Interpolation
Search
Other

- 9 -

ToyPush: Baseline Profile
• Force	Calculation:	close	to	vector	peak
• Interpolate and	Search:	less	than	scalar	peak

- 11 -

Force Calculation
Interpolate
Search

Marker size ~= CPU time

Data collected with Intel Advisor and
analyzed with pyAdvisor.

Single thread rooflines on Cori KNL.

- 10 -

ToyPush - Interpolation
• Compiler	vectorization	report

• Indirect	access/gathers	->	group	
particles	together	that	access	the	
same	triangle

efield(j,tri(i,itri(iv)))

• Unaligned	access	->	align	at	compile	
time

• Improved	vectorization	efficiency	

LOOP BEGIN at interpolate_aos.F90(67,48)
reference itri(iv) has unaligned access
reference y(iv,1) has unaligned access
reference y(iv,3) has unaligned access
reference evec(iv,icomp) has unaligned access
reference evec(iv,icomp) has unaligned access
…..
irregularly indexed load was generated for the
variable <grid_mapping_(1,3,itri(iv))>, 64-bit
indexed, part of index is read from memory
…..

LOOP WAS VECTORIZED
unmasked unaligned unit stride loads: 6
unmasked unaligned unit stride stores: 3
unmasked indexed (or gather) loads: 18
…..

- 11 -

ToyPush - Interpolation
• Use	Advisor	to	examine	cache	behavior
• L1	hit	rate	low	->	shorten	veclength from	2' to	2(to	achieve	L1	blocking

- 12 -

ToyPush - Interpolation

- 13 -

Baseline Case (w/ Indirect access)

Replace Indirect Access with Scalar Access

Optimize Vector Length

Access Grid Data in Scalar Chunks

• Kernel moved to a more compute
bound regime.

• AI increased due to memory access
pattern change.

• Peak compute performance is nearly
reached.

Scalar add peak

Vector add peak

FMA add peak

ToyPush - Search

- 14 -

Baseline Case

Force SIMD Vectorization

Eliminate Multiple Exits

• Vector report, dependency report

• Eliminate multiple exits, ‘cycle’, and
RAW (read after write) dependency

• Force SIMD vectorization with omp
simd

Scalar add peak

Vector add peak

FMA add peak

ToyPush: Optimized Profile

- 15 -

Force Calculation

Interpolate

Search

• Force Kernel: still good performance,
close to vector add peak

• Interpolate Kernel: 10x speedup,
closer to vector FMA peak

• Search Kernel: 3x speedup, closer to
L2 bandwidth roof

• Roofline combined with other
analysis/tools

Marker size ~= CPU time

XGC1: Merge ToyPush Changes (WIP)

- 16 -

XGC1 Timings on 1024 Cori KNL nodes in Quad-Flat mode

3x

Summary
• Showcased	three	scientific	applications,	and	their	performance	analysis	and/or	

optimization	process:	GPP	from	BerkeleyGW,	CoMD from	ddcMD and	SPaSM,	
and	XGC1.

• Roofline	model	can	help identify	performance	bottlenecks,	prioritize	
optimization	efforts	(e.g.	routines,	vectorization,	memory	access),	and	tell	when	
to	stop	(e.g.	attainable	performance,	distance	to	roofs).

• Complement	Roofline	with	generic	code	analysis,	compiler	reports,	binary	
analysis	to	confirm	details	and	ways	to	implement	optimizations.
– vectorization,	dependency,	memory	access	pattern,	cache	locality,	cache	hit	

rate,	instruction	mix

• Tools	such	as	Intel	Advisor,	Intel	VTune are	very	useful!

- 17 -

Thank You!

http://bit.ly/sc18-eval

