
Charlene Yang

Application Performance Specialist
NERSC, LBNL

cjyang@lbl.gov

Case Study:
Fusion PIC Code XGC1
on Cori KNL

XGC1: Particle-In-Cell Simulation

- 2 -

PI:	CS	Chang	(PPPL)	|	ECP:	High-Fidelity	Whole	Device	Modeling	of	Magnetically	Confined	Fusion	Plasma

XGC1: Code Flowchart

Gather	Fields	
from	Mesh	to	

Ions

Ion	Push

Collision	
Operator

Deposit	Charge	
From	Particles	

to	Mesh

Solve	Fields	on	
Mesh

- 3 -

*Computation
*Mapping

Electron Push
Sub-Cycling

push electrons without
updating fields or

collisions –only field
gather and push

~50x

XGC1: Code Timings

- 4 -

Unoptimized XGC1	Timings	on	1024	Cori	KNL	nodes in	Quad-Flat	mode

XGC1: Code Profile on Roofline

- 5 -

Force

Search

Interpolate

1. Search for	nearest	3	mesh	
nodes	to	the	particle	
position	
(for	multi-mesh	refinement)	

2. Interpolate fields	from	3	
mesh	points	to	particle	
position

3. Calculate	force on	particle	
from	fields

4. Push particle	for	time	step	dt

ToyPush: Mini-App for Electron Sub-Cycling

- 5 -- 6 -

ToyPush: Baseline Profile - Timings

- 7 -

35%

29%

28%

8%

Force	Calculation

Interpolation

Search

Other

Unoptimized ToyPush Timings	on	Cori	KNL	in	Quad-Cache	mode

ToyPush: Baseline Profile - Roofline

- 8 -

Force	Calc.
Interpolate
Search

Marker	size	~=	CPU	time

• Data	collected	with	Intel	
Advisor	and	analyzed	with	
pyAdvisor

• Single	thread	rooflines	on	
Cori	KNL

• Should	focus	optimization	
efforts	on	Interpolate	and	
Search	kernels

Roofline	Model	shows	information	timings	alone	can	not	show
• Kernel	Force	Calculation:	close	to	vector	peak	performance
• Kernel	Interpolate	and	Search:	less	than	scalar	peak	performance

Interpolation: Vectorization – L1 Blocking
• veclength optimizations

– Baseline:	2^(9)

– Optimized:	2^(6)

- 9 -

Low	L1	Hit	Rate,	
L2	Hit	Bound

High	L1	Hit	Rate

~1.5x	improvement	(MCDRAM	Flat);	~2x	improvement	(DDR	Flat)

Interpolation: Vectorization - Memory Access
Problems:

• Field	data	is	stored	on	grid	
nodes,	particles	access	nearest	3	
grid	nodes	indirectly via	triangle	
index.	
efield(j,	tri(i,	itri(iv)))

• Interpolation	loop	is	vectorized	
but	inefficiently because	of	
gather	loads

Intel	Compiler	Vectorization	Report

LOOP	BEGIN	at	interpolate_aos.F90(67,48)
reference	itri(iv)	has	unaligned	access	
reference	y(iv,1)	has	unaligned	access
reference	y(iv,3)	has	unaligned	access	
reference	evec(iv,icomp)	has	unaligned	access
reference	evec(iv,icomp)	has	unaligned	access

…..
irregularly	indexed	load	was	generated	for	the	
variable	<grid_mapping_(1,3,itri(iv))>,	64-bit	
indexed,	part	of	index	is	read	from	memory
…..

LOOP	WAS	VECTORIZED
unmasked	unaligned	unit	stride	loads:	6
unmasked	unaligned	unit	stride	stores:	3
unmasked	indexed	(or	gather)	loads:	18
…..

- 10 -

18	Gathers	per	loop	iteration	
(3	nodes	x	3	components	x	2)

Interpolation: Vectorization - Memory Access
Optimizations:	

• Group	particles	that	access	the	
same	triangle	together,	access	
grid	nodes	directly	with	a	scalar	
index

• Single	mesh:	Trivial

• Multiple	mesh:	Feasible	for	
number	of	particles	>>	number	
of	grid	nodes

• Align	arrays	during	compile	time.

Intel	Compiler	Vectorization	Report

LOOP	BEGIN	at	
interpolate_aos.F90(72,51)
reference	y(iv,1)	has	aligned	access
reference	y(iv,3)	has	aligned	access
reference	evec(iv,	icomp)	has	aligned	
access
…..
SIMD	LOOP	WAS	VECTORIZED
…..
unmasked	aligned	unit	stride	loads:	5
unmasked aligned unit	stride	stores:	3
….

- 11 -

~1.6x	improvement

Interpolation: Vectorization – memset
Problem:

• Initialization	of	large	arrays	with	
avx512_memset	at	every	time	
step	before	entering	vector	loop	
becomes	memory	bandwidth	
bound.

- 12 -

Optimizations:

• Initialize	array	inside	the	vector	loop	(if	you	can)
• Use	threads	for	initialization

Intel	Compiler	Vectorization	Report

LOOP	BEGIN	at	interpolate_aos.F90(57,5)
memset	generated
loop	was	not	vectorized:	
loop	was	transformed	to	memset	or	

memcpy
LOOP	END

~5%	improvement
Higher	if	no.	of	particle	increases

Interpolation: Optimization Path on Roofline

- 13 -

Baseline	Case	(w/	
Indirect	access)

Replace	Indirect	
Access	with	Scalar	
Access

Optimize	Vector	
Length

Access	Grid	Data	in	
Scalar	Chunks

• Kernel	moved	to	compute	bound	regime
• AI	increased	due	to	memory	access	pattern	change
• Peak	compute	performance	is	nearly	reached

Scalar	add	peak

Vector	add	peak

FMA	add	peak

Search: Vectorization – ‘cycle’ + SIMD

- 14 -

Intel	Compiler	Vectorization	Report

LOOP	BEGIN	at	search.F90(62,8)
loop	was	not	vectorized:	loop	with	multiple	exits	
cannot	be	vectorized unless	it	meets	search	loop	
idiom	criteria	

LOOP	BEGIN	at	search.F90(66,8)
reference	y(iv,1)	has	aligned	access
reference	y(iv,3)	has	aligned	access	
reference	id(iv)	has	aligned	access
reference	continue_search(iv)	has	aligned	access
data	layout	of	a	private	variable	bc_coords was	

optimized,	converted	to	SoA
OpenMP	SIMD	LOOP	WAS	VECTORIZED
unmasked	aligned	unit	stride	loads:	4
unmasked	aligned	unit	stride	stores:	1
.......

Problems:
• Multiple	exits	due	to	‘cycle’	

statement	prevents	
vectorization

• Assumed	read	after	write	
(RAW)	dependency	prevent	
vectorization

Optimization:	
• Replace	exit	condition	with	a	

logical	mask
• Vectorize with	omp simd

directive,	declare	private	
arrays	simd private

1.5x	improvement

Search: Optimization Path on Roofline

- 15 -

Baseline	Case

Force	SIMD	
Vectorization

Eliminate	Multiple	
Exits

• Forcing	SIMD	vectorization	doesn’t	work	initially	due	to	multiple	exits
• Once	exits	are	eliminated,	code	vectorizes

Scalar	add	peak

Vector	add	peak

FMA	add	peak

ToyPush: Optimized Performance

- 16 -

• Force	Kernel:		still	good	performance,	close	to	vector	add	peak
• Interpolate	Kernel:	10x	speedup,	closer	to	vector	FMA	peak
• Search	Kernel:	3x	speedup,	closer	to	L2	bandwidth	roof

Force	Calc.
Interpolate
Search

• Code	is	available	at	
https://github.com/
tkoskela/toypush

Marker	size	~=	CPU	time

XGC1: Optimization Speedups (WIP)

- 17 -

XGC1	Timings	on	1024	Cori	KNL	nodes in	Quad-Flat	mode

3x

XGC1: Optimized Performance on Roofline

- 18 -

Interpolate

Search

Force

XGC1: Code Profile on Roofline

- 19 -

Force

Search

Interpolate

Summary
• XGC1	->	ToyPush	->	XGC1

• Roofline	Model	can	help
– Identify	performance	bottlenecks	(compute,	bandwidth,	latency,	etc)
– Prioritize	optimization	efforts	(routines,	vectorization,	memory	access,	etc)
– Tell	when	to	stop	(realistic	achievable	performance,	distance	to	roofs)

• Intel	Advisor	can	take	care	of	the	rest!	
– Integrated	compiler	reports,	static	binary	analysis	(instruction	set,	data	types,	etc)	

and	dynamic	analysis	(CPU	sampling)
– FLOPS/trip	counts,	vectorization	efficiency,	dependency	and	memory	access	

pattern
– Roofline	charts	of	various	flavors	J

• Original	DRAM-based	Roofline	(DRAM	<->	Core)
• Cache-aware	Roofline	(L1	<->	Core)				✔
• Cache-simulator	based	Roofline	(L1,	L2,	LLC,	MCDRAM	and	DRAM	<->	Core)				✔

- 20 -

