
Tutorial: 2pm-6pm June 16, Room Expose

Performance Optimization of Scientific Codes with the
Roofline Model

Zakhar Matveev
Intel Corporation

zakhar.a.matveev@intel.com

Aleksandar Ilic, Diogo Marques
INESC-ID, Instituto Superior Técnico

Universidade de Lisboa
{aleksandar.ilic, diogo.marques}@inesc-id.pt

Charlene Yang
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
cjyang@lbl.gov

Tutorial: 2pm-6pm June 16, Room Expose

Performance Optimization of Scientific Codes with the Roofline Model

• 2:00 - 2:40 Introduction to the Roofline Model - Charlene Yang
• 2:40 - 3:20 Roofline Analysis on NVIDIA GPUs - Charlene Yang
• 3:20 - 3:50 Cache-Aware Roofline Model (CARM) - Aleksandar Ilic
• 3:50 - 4:00 Installation of Intel Advisor - Zakhar Matveev
• 4:00 - 4:30 Break
• 4:30 - 4:45 Introduction to Intel Advisor - Zakhar Matveev
• 4:45 - 5:25 Roofline Analysis on Intel CPUs - Zakhar Matveev
• 5:25 - 5:55 Application Use Cases - Diogo Marques
• 5:55 - 6:00 Q&A - All

Please complete the survey afterwards!
Find this tutorial at https://2019.isc-program.com/ and click ‘Give Feedback’

Related Talks at ISC

Tutorial at Intel Developer Connect:
• Roofline Model-Based Optimization Guidance and Tuning for Modern CPUs
• Zakhar A. Matveev, Diogo Marques, Aleksandar Ilic
• Mon Jun 17 9am - 3:30pm, Matterhorn 1, Movenpick
• https://inteleventexpress.com/ISC2019/isc.htm

Material Download

• Google Drive:
– Slides
– Intel Advisor remote viewers (Linux/Mac/Windows)
– Stencil code snapshot

http://bit.ly/isc19roofline

• USB Sticks:
– Please pass them around after finishing copying

Charlene Yang
Lawrence Berkeley National Laboratory

Jun 16 2019, Frankfurt

Introduction to the Roofline Model

Performance Models

The Maze of Performance Optimization The Map !!!

2

Performance Models
Modern architectures are complicated!

1.	https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor
2.	http://on-demand.gputechconf.com/gtc/2016/presentation/s6659-avinash-baliga-perfworks.pdf

Intel Haswell CPU1

NVIDIA Volta GPU2

Performance Models
§ Many components contribute to the kernel run time
§ An interplay of application characteristics and machine characteristics

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
MPI Message Size

MPI Send:Wait ratio
#MPI Wait’s

IO

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
Network Bandwidth
Network Gap
Network Latency
File systems

Roofline Model

4

Roofline Performance Model

§ Sustainable performance is bound by

§ Arithmetic Intensity (AI) =

FLOPs / Bytes

§ How did this come about?
à A CPU DRAM example

Peak GFLOP/s

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

5

Bandwidth-bound Compute-bound

Peak GFLOP/sGFLOP/s = min AI * Peak GB/s

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

486

= max

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

497

= min

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM) CPU

(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)Peak GFLOP/s#FP ops

Time (#FP ops / #Bytes) * Peak GB/s

508

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s

Arithmetic Intensity (AI) = FLOPs / Bytes (as presented to DRAM)

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

519

Roofline Performance Model

§ Thus we obtain the model as

where Arithmetic Intensity (AI) is

FLOPs / Bytes

• Machine Balance (FLOPs/Byte) =
8.9 (V100, DP, HBM) or 5.1 (KNL, DP, HBM)

Peak GFLOP/s

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

10

Bandwidth-bound Compute-bound

Peak GFLOP/sGFLOP/s = min AI * Peak GB/s

Roofline Performance Model

• A throughput-oriented model
– tracks rates not times, i.e. GFLOP/s, GB/s, not seconds

• An abstraction over
– architectures, ISA (CPU, GPU, Haswell, KNL, Pascal, Volta)
– programming models, programming languages
– numerical algorithms, problem sizes

• In log-log scale to easily extrapolate performance along Moore’s Law

11

More Advanced on Roofline

Roofline Performance Model

§ This is a single Roofline

§ What about the memory hierarchy,
different execution configurations,
and instruction mixes?

à Hierarchical Roofline
à Multiple compute ceilings

Peak GFLOP/s

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

13

Bandwidth-bound Compute-bound

Hierarchical Roofline

• Superposition of multiple Rooflines
– Incorporate full memory hierarchy
– Arithmetic Intensity =

FLOPs / BytesL1/L2/HBM/SysMem

• Each kernel will have multiple AI’s
but one observed GFLOP/s performance

• Hierarchical Roofline tells you about cache locality

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

14

High Reuse

V100

• Impact of execution configuration

• Concurrency affects your peak
– OpenMP thread concurrency
– SM occupancy
– load balance
– threadblock/thread configuration

• Performance is bound by the actual concurrency ceiling

Threaded Peak

Multiple Compute Ceilings

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Single Thread

15

CPU

Actual
Concurrency

FMA.f64 Peak

Multiple Compute Ceilings

• Impact of instruction mix

• Applications are usually a mix
of FMA.f64, ADD.f64, MUL.f64…

• Performance is a weighted average

… bound by a partial FMA ceiling

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

ADD.f64 Peak

16

Partial FMA

Roofline Drives Optimization

Roofline Performance Model

The Roofline Model
• helps you identify the bottlenecks
• guides you through optimization
• tells you when to stop

An example:
• NESAP for Cori - BerkeleyGW

18

Roofline Example: BerkeleyGW

Optimization Path for Kernel-C (Sigma):
1. Add OpenMP
2. Initial Vectorization

• loop reordering
• conditional removal

3. Cache-Blocking
4. Improved Vectorization

• divides
5. Hyper-threading

19

General Optimization Strategy

§ Broadly speaking, three approaches
to improving performance:

Peak FLOP/s

No FMA

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

2320

General Optimization Strategy

§ Broadly speaking, three approaches
to improving performance:

§ Maximize compute performance
§ multithreading
§ vectorization
§ increase SM occupancy
§ utilize FMA instructions
§ minimize thread divergence

Peak FLOP/s

No FMA

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

2421

General Optimization Strategy

§ Broadly speaking, three approaches
to improving performance:

§ Maximize compute performance

§ Maximize memory bandwidth
§ utilize higher-level caches
§ NUMA-aware allocation
§ avoid H-D transfers
§ avoid uncoalesced memory access

Peak FLOP/s

No FMA

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

2522

General Optimization Strategy

§ Broadly speaking, three approaches
to improving performance:

§ Maximize compute performance

§ Maximize memory bandwidth

§ Improve AI
§ minimize data movement
§ exploit cache reuse

Peak FLOP/s

No FMA

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

C
om

pu
ls

or
y

AI

C
ur

re
nt

 A
I

2623

Roofline Data Collection

Pen and Paper

§ Example #1: STREAM Triad

• 2 FLOPs per iteration
• Transfer 24 bytes per iteration

• read X[i], Y[i], and write Z[i]

• AI = 0.083 FLOPs per byte
• Memory bound

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (Flop:Byte)

TRIAD

GFLOP/s ≤ AI * DRAM GB/s

for(i=0;i<N;i++){
Z[i] = X[i] + alpha*Y[i];

}

0.083

Peak FLOP/s

1025

5.1

Pen and Paper
§ Example #2: 7-pt stencil

• 7 FLOPs; 8 memory references (7 reads, 1 store) per pt
• Cache can filter all but 1 read and 1 write per pt
• AI = 0.44 FLOPs per byte
• Memory bound, but 5x the GFLOP/s rate

At
ta

in
ab

le
 F

LO
P/

s

7-point Stencil

GFLOP/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak FLOP/s

for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

new[k][j][i] = -6.0*old[k][j][i]
+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

1126

5.1

Pen and Paper

• Not scalable for real-life applications

• Millions of lines of code; mix of different languages

• Complicated modern architecture
– memory hierarchy, caching effects
– ISA

• Different problem sizes

27

We Need Tools!

28

• Roofline ceilings
– vendor specifications
– empirical measurements

• ERT
• https://bitbucket.org/be

rkeleylab/cs-roofline-
toolkit

We Need Tools!

29

Where to put these dots?

Require three raw measurements:
– Runtime
– FLOPs
– Bytes (on each cache level)

In order to calculate AI and GFLOP/s:

We Need Tools!

Performance	=	
FLOPs
Runtime

		

Arithmetic	Intensity	=	
FLOPs

Data	Movement

(GFLOP/s)

(FLOPs/Byte)

30

Where to put these dots?

Methodology to Construct Roofline

1. Collect Roofline ceilings
– compute (FMA/no FMA) and bandwidth (DRAM, L2, …)
– ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit

2. Collect application performance
– FLOPs, bytes (DRAM, L2, …), runtime
– SDE, VTune, LIKWID, Advisor, nvprof, …

3. Plot Roofline with Python Matplotlib (or other tools of your preference)
– arithmetic intensity, GFLOP/s performance, ceilings
– example scripts: https://github.com/cyanguwa/nersc-roofline

31

Automated Data Collection

Data Collection on Intel CPUs

The not-so-automated way 1:
• Intel SDE for FLOPs (emulation)
• Intel VTune for DRAM bytes (HW counters)
• Runtime

• DRAM Roofline only

• Used by NESAP for Cori
– NERSC Exascale Science Application Program
– http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

33

Data Collection on Intel CPUs

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"
1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"2P
 H

SW
K

N
L

MFDn PICSAREMGeo

DRAM Rooflines of NESAP Codes

Data Collection on Intel CPUs

The not-so-automated way 2:
• LIWID for FLOPs and bytes

– Both are based on HW counters
• Runtime

• Hierarchical Roofline

• Limited by quality of HW counters
• High-level characterization, no callstack

8

16

32

64

128

256

512

1024

H
P

G
M

G
 (

3
2

P
x1

T
)

H
P

G
M

G
 (

4
P

x8
T

)

C
o

m
b

u
st

o
r (

3
2

P
x1

T
)

C
o

m
b

u
st

o
r (

4
P

x8
T

)

M
F

IX
 (

3
2

P
x1

T
)

N
yx

 (
3

2
P

x1
T

)

N
yx

 (
4

P
x8

T
)

P
e

le
L

M
 (3

2
P

x1
T

)

W
a

rp
X

 (
3

2
P

x1
T

)

W
a

rp
X

 (
4

P
x8

T
)

B
a
n
d
w

id
th

(G
B

/s
)

AMReX Application Characterization
(2Px16c HSW == Cori Phase 1)

L2
L3
DRAM
Roofline

https://github.com/RRZE-HPC/likwid

3235

Data Collection on Intel CPUs

The fully automated way:
• Intel Advisor, Roofline feature
• Instrument applications automatically

– one dot per loop nest/function
• FLOPs, bytes and runtime

• Hierarchical Roofline

• Integrates with other Advisor capabilities
• Benchmarks target system

Memory-bound, invest into
cache blocking etc

Compute bound: invest
into SIMD,..

3336

Data Collection on NVIDIA GPUs
• Still very manual at this stage, but…

• Runtime:
– Internal timers or nvprof --print-gpu-trace

• FLOPs:
– DP/SP/HP counters and metrics, nvprof --metrics

‘flop_count_dp/sp/hp’ or `tensor_precision_fu_utilization’

• Bytes for different cache levels:
– Bytes = (read transactions + write transactions) x transaction size
– nvprof --metrics ‘metric_name’ e.g. gld/gst_transactions

• Hierarchical Roofline
37

Summary

• The Roofline Model formulizes the interaction between machine
characteristics and application characteristics, and guides optimization

– Peak computational throughput and bandwidth
– Arithmetic intensity, cache locality, instruction mix…

• Automate Roofline data collection
– Intel CPUs

• Intel SDE + Intel VTune, Intel Advisor
– NVIDIA GPUs

• nvprof, Nsight Compute

More in the
next few talks!

38

Reference

• S. Williams, A. Waterman and D. Patterson, “Roofline: An Insightful Visual
Performance Model for Multicore Architectures,” Communications of the
ACM, vol. 52, no. 4, pp. 65–76, 2009

• LBNL CRD Roofline Research:
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

• Empirical Roofline Toolkit (ERT):
https://bitbucket.org/berkeleylab/cs-roofline-toolkit

• Python scripts for plotting manually-collected Roofline:
https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting

39

Acknowledgement

• This material is based upon work supported by the Advanced Scientific
Computing Research Program in the U.S. Department of Energy, Office
of Science, under Award Number DE-AC02-05CH11231.

• This material is based upon work supported by the DOE RAPIDS SciDAC
Institute.

• This research used resources of the National Energy Research Scientific
Computing Center (NERSC), which is supported by the Office of Science
of the U.S. Department of Energy under contract DE-AC02- 05CH11231.

40

Thank You

