Hierarchical Roofline Analysis on GPUs

Charlene Yang
Lawrence Berkeley National Laboratory
ISC 2019, Frankfurt
Outline

• Hierarchical Roofline on NVIDIA GPUs
 – L1, L2, HBM, System Memory

• Methodology for Roofline Data Collection
 – Machine characterization: peak bandwidth and peak GFLOP/s
 – Application characterization: FLOPs, bytes, runtime

• Three Examples
 – GPP from BerkeleyGW, HPGMG from AMReX, conv2d from TensorFlow
Hierarchical Roofline
Roofline Performance Model

- Sustainable performance is bound by
 \[\text{GFLOP/s} = \min \left\{ \frac{\text{Peak GFLOP/s}}{AI} \times \text{Peak GB/s} \right\} \]
- Arithmetic Intensity (AI) = \(\frac{\text{FLOPs}}{\text{Bytes}} \)
- Log-log scale makes it easy to extrapolate performance along Moore’s Law

\[\text{Transition} @ AI = \frac{\text{Peak Gflop/s}}{\text{Peak GB/s}} = \text{‘Machine Balance’} \]
Hierarchical Roofline

- Superposition of multiple Rooflines
 - Incorporate full memory hierarchy
 - Arithmetic Intensity = $\frac{\text{FLOPs}}{\text{Bytes}_{L1/L2/HBM/SysMem}}$

- Each kernel will have multiple AI’s but one observed GFLOP/s performance

- Hierarchical Roofline tells you cache locality
Multiple Compute Ceilings

- Impact of **instruction mix**
- Applications are usually a mix of FMA.f64, ADD.f64, MUL.f64…
- Performance is a **weighted** average … bound by a **partial FMA ceiling**
Our goal is to incorporate full memory hierarchy into Roofline
- L1, L2, HBM, System Memory (NVLINK/PCIe)

Also, instruction mix, data type...
- FMA/no-FMA
- FP64, FP32, FP16
- CUDA core/Tensor core
- ...

Certain ceilings can be omitted if irrelevant to application
Methodology to Collect Roofline Data
Machine Characterization

How to get the ceilings?
- compute and bandwidth

Theoretical vs Empirical

Empirical Roofline Toolkit (ERT)
- runs micro benchmarks
- More Realistic
- power constraints, etc
Machine Characterization

- Empirical Roofline Toolkit (ERT)
 - Different than the architecture specs, **MORE REALISTIC**
 - Reflects **actual** execution environment (power constraints, *etc*)
 - Sweeps through a range of configurations, and **statistically stable**
 - Data elements per thread
 - FLOPs per data element
 - Threadblocks/threads
 - Trails per dataset
 - *etc*

ERT Configuration

Kernel.c
- actual compute
- customizable

Driver.c
- setup
- call kernels
- loop over parameters

config script
- set up ranges of parameters

job script
- submit the job and run it

ERT Configuration
Machine Characterization

• ERT can’t detect all the ceilings yet - IN DEVELOPMENT!

• Theoretical **compute** ceilings on V100:
 - FP64 FMA: \(80 \text{ SMs} \times 32 \text{ FP64 cores} \times 1.53 \text{ GHz} \times 2 = 7.83 \text{ TFLOP/s}\)
 - FP64 No-FMA: \(80 \text{ SMs} \times 32 \text{ FP64 cores} \times 1.53 \text{ GHz} = 3.92 \text{ TFLOP/s}\)

• Theoretical **memory** bandwidths on V100:
 - HBM: \(900 \text{ GB/s}\)
 - L2: \(\sim 4.1 \text{ TB/s}\)

Bad News:
• you may never achieve 7.8 TFLOP/s

Good News:
• you may be closer to the ceiling than you think

Voltar at UOregon
Application Characterization

Require three raw measurements:

- Runtime
- FLOPs
- Bytes (on each cache level)

to calculate AI and GFLOP/s:

Arithmetic Intensity = \(\frac{nvprof \text{ FLOPs}}{nvprof \text{ Data Movement}} \)
(x: FLOPs/Byte)

Performance = \(\frac{nvprof \text{ FLOPs}}{\text{Runtime}} \)
(y: GFLOP/s)
Application Characterization

- **Runtime:**
 - Time per invocation of a kernel
 \[\text{nvprof} --\text{print-gpu-trace} \ . /\text{application} \]
 - Average time over multiple invocations
 \[\text{nvprof} --\text{print-gpu-summary} \ . /\text{application} \]

- **FLOPs:**
 - CUDA Core: Predication aware and complex-operation aware (such as divides)
 \[\text{nvprof} --\text{kernels 'kernel_name'} --\text{metrics 'flop_count_xx'} \ . /\text{application} \text{ e.g. flop_count_\{dp/dp_add/dp_mul/dp_fma, sp*, hp*\}} \]
 - Tensor Core: (more details later)
 \[--\text{metrics tensor_precision_fu_utilization} \]
 0-10 integer range, 0-0, 10-125TFLOP/s; multiply by run time -> FLOPs
Application Characterization

Bytes for different cache levels in order to construct hierarchical Roofline:
- \(\text{Bytes} = (\text{read transactions} + \text{write transactions}) \times \text{transaction size} \)
- `nvprof --kernels `kernel_name` --metrics `metric_name` ./application`

<table>
<thead>
<tr>
<th>Level</th>
<th>Metrics</th>
<th>Transaction Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Level Cache*</td>
<td><code>gld_transactions, gst_transactions, atomic_transactions, local_load_transactions, local_store_transactions, shared_load_transactions, shared_store_transactions</code></td>
<td>32B</td>
</tr>
<tr>
<td>Second Level Cache</td>
<td><code>l2_read_transactions, l2_write_transactions</code></td>
<td>32B</td>
</tr>
<tr>
<td>Device Memory</td>
<td><code>dram_read_transactions, dram_write_transactions</code></td>
<td>32B</td>
</tr>
<tr>
<td>System Memory</td>
<td><code>system_read_transactions, system_write_transactions</code></td>
<td>32B</td>
</tr>
</tbody>
</table>

- **Note:** surface and texture transactions are ignored here for HPC applications
Example Output

```
[cjyang@voltar source]$ nvprof --kernels "1:7:smooth_kernel:1" --metrics flop_count_dp --metrics gld_transactions --metrics gst_transactions --metrics 12_read_transactions --metrics 12_write_transactions --metrics dram_read_transactions --metrics dram_write_transactions --metrics sysmem_read_bytes --metrics sysmem_write_bytes ./hpgmg-fv-fp 5 8
```

- Export to CSV: --csv -o nvprof.out

<table>
<thead>
<tr>
<th>Invocations</th>
<th>Metric Name</th>
<th>Metric Description</th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
</tr>
</thead>
</table>
| Device "Tesla V100-PCIE-16GB (0)"
| Kernel: void smooth_kernel<int=6, int=32, int=4, int=8>(level_type, int, int, double, double, int, double*, double*) | flop_count_dp Floating Point Operations(Double Precision) | 30277632.0 | 30277632.0 | 30277632.0 | |
| 1 | gld_transactions | Global Load Transactions | 4280320.0 | 4280320.0 | 4280320.0 |
| 1 | gst_transactions | Global Store Transactions | 73728.0 | 73728.0 | 73728.0 |
| 1 | 12_read_transactions| L2 Read Transactions | 896596.0 | 896596.0 | 896596.0 |
| 1 | 12_write_transactions| L2 Write Transactions | 85927.0 | 85927.0 | 85927.0 |
| 1 | dram_read_transactions| Device Memory Read Transactions | 702911.0 | 702911.0 | 702911.0 |
| 1 | dram_write_transactions| Device Memory Write Transactions | 151487.0 | 151487.0 | 151487.0 |
| 1 | sysmem_read_bytes | System Memory Read Bytes | 0.0 | 0.0 | 0.0 |
| 1 | sysmem_write_bytes | System Memory Write Bytes | 160.0 | 160.0 | 160.0 |
Plot Roofline with Python

• Calculate Arithmetic Intensity and GFLOP/s performance
 – x coordinate: Arithmetic Intensity
 – y coordinate: GFLOP/s performance

\[
\text{Performance} = \frac{\text{nvprof FLOPs}}{\text{Runtime (GFLOP/s)}}, \quad \text{Arithmetic Intensity} = \frac{\text{nvprof FLOPs}}{\text{nvprof Data Movement (FLOPs/Byte)}}
\]

• Plot Roofline with Python Matplotlib
 – Example scripts:
 – https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting
 – Tweak as needed for more complex Rooflines
Plot Roofline with Python

- Quick example: `plot_roofline.py data.txt`
- Accepts space-delimited list for values
- Use quotes to separate names/labels

data.txt

```
# all data is space delimited
memroofs 14336.0 2996.8 828.758
mem_roof_names ‘L1’ ‘L2’ ‘HBM’
comproofs 7068.86 3535.79
comp_roof_names ‘FMA’ ‘No-FMA’

# omit the following if only plotting roofs
# AI: arithmetic intensity; GFLOPs: performance
AI 0.87 2.25 2.58
GFLOPs 2085.756683
labels ‘Kernel’
```
Recap: Methodology to Construct Roofline

1. Collect Roofline ceilings
 - ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
 - **compute** (FMA/no FMA) and **bandwidth** (DRAM, L2, …)

2. Collect application performance
 - nvprof: --metrics, --events, --print-gpu-trace
 - **FLOPs**, **bytes** (DRAM, L2, …), **runtime**

3. Plot Roofline with Python Matplotlib
 - **arithmetic intensity**, **GFLOP/s** performance, **ceilings**
 - example scripts: https://github.com/cyanguwa/nersc-roofline
Roofline Analysis: Three Examples
Example 1: GPP

- GPP (General Plasmon Pole) kernel from BerkeleyGW (Material Science)
 - https://github.com/cyanguwa/BerkeleyGW-GPP
 - Medium problem size: 512 \times 32768 \times 20
- Tensor-contraction, abundant parallelism, large reductions
- Low FMA counts, divides, complex double data type, HBM data 1.5GB

Pseudo Code

```plaintext
do band = 1, nbands #blockIdx.x
    do igp = 1, ngpown #blockIdx.y
        do ig = 1, ncouls #threadIdx.x
            do iw = 1, nw #unrolled
                compute; reductions
            end do
        end do
    end do
end do
```
Example 1: GPP

- Three experiments:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vary nw from 1 to 6</td>
<td>To study impact of varying Arithmetic Intensity on performance</td>
</tr>
<tr>
<td>Compile w/wo FMA</td>
<td>To study impact of instruction mix on performance on performance</td>
</tr>
<tr>
<td>Stride ig loop</td>
<td>To study impact of suboptimal memory coalescing on performance</td>
</tr>
</tbody>
</table>

- **Note that nvprof** has already taken care of
 - Appropriate counting of FLOPs for complex instructions
 - div, exp, log and sin/cos should be counted as multiple FLOPs rather than 1
 - Appropriate counting of FLOPs for predicated-out threads
 - FLOPs are only counted on non-predicated threads
Example 1: GPP

- Highly parameterizable
 1. Varying nw from 1 to 6 to increase arithmetic intensity
 - FLOPs increases, but data movement stays (at least for HBM)

Pseudo Code

```
do band = 1, nbands    #blockIdx.x
  do igp = 1, ngpown   #blockIdx.y
    do ig = 1, ncouls   #threadsIdx.x
      do iw = 1, nw    #unrolled
        compute; reductions
      end do
    end do
  end do
end do
```

2. Compiling with and without FMA
 - `-fmad=true/false`
Example 1: GPP

- Highly parameterizable
 3. Striding \(i_g\) loop to analyze impact of suboptimal memory coalescing
 - Split \(i_g\) loop to two loops and place the ‘blocking’ loop outside

Pseudo Code

```c
do band = 1, nbands  #blockIdx.x
    do igp = 1, ngpown  #blockIdx.y
        do igs = 0, stride - 1
            do ig = 1, ncouls/stride  #threadIdx.x
                do iw = 1, nw  #unrolled
                    compute; reductions
                end do
            end do
        end do
    end do
end do
```

Stride 2
Example 1: GPP Analysis

- Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
 - GPP is HBM bound at low nw’s and compute bound at high nw’s
 - FLOPs $\propto nw$
 - HBM bytes: constant
 - L2 bytes: increasing at $\alpha > 1$
 - L1 bytes: constant

- Hierarchical Roofline captures more details about cache locality
Example 1: GPP Analysis

HBM Roofline, i.e. bytes are HBM bytes
- No-FMA performance converges to no-FMA ceiling, but FMA performance is still far from the FMA ceiling
- Not reaching FMA ceiling due to lack of FMA instructions
Example 1: GPP Analysis

- At \(nw=6\), GPP has \(\alpha = \frac{\text{FMA FP64 instr.}}{\text{FMA FP64 instr.} + \text{non-FMA FP64 instr.}} = 60\%\) of FMA instructions.

- Expected performance is \(\beta = \frac{\alpha \times 2 + (1 - \alpha)}{2} = 80\%\) of peak.

But at \(nw=6\), GPP only achieves 66%.

- Other FP/non-FP instructions may be taking up the instruction issue/execution pipeline.

- Roofline captures effects of instruction mix.
Example 1: GPP Analysis

- Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
 - L1/L2 bytes doubles from stride 1 to 2, but stays almost constant afterwards
 - at \(n_w = 6 \), GPP moves from compute bound to bandwidth bound
 - Eventually all converge to HBM

- Roofline captures effects of suboptimal memory coalescing
Example 2: HPGMG

- HPGMG (High-performance Geometric Multigrid) from Adaptive Mesh Refinement code
- https://bitbucket.org/nsakharnykh/hpgmg-cuda

- Stencil code, F-cycles and V-cycles, GSRB smoother kernel (Gauss-Seidel Red-Black)

Example 2: HPGMG

- Hybrid GPU and CPU code
 - Example: `hpgmg-fv 7 8`
 - 128^3 box x 8, Level 5-8 run on GPU, Level 1-4 on CPU

- Three versions of GSRB kernel
 - `GSRB_FP`, `GSRB_BRANCH`, `GSRB_STRIDE2`
Example 2: HPGMG

GSRB_FP

```c
for(int k=klo; k<(klo+kdim); k++){
    const int ijk = i + j*jStride + k*kStride;
    const double *__restrict__ RedBlack =
        level.RedBlack_FP + ghosts*(1+jStride) +((k^color000) & 1)*kStride;
    const double Ax = apply_op_ijk();
    const double lambda = Dinv_ijk();
    const int ij = i + j*jStride;
    xo[ijk] = X(ijk) + RedBlack[ij]*lambda*(rhs[ijk]-Ax);
}
```

GSRB_BRANCH

```c
for(int k=klo; k<(klo+kdim); k++){
    const int ijk = i + j*jStride + k*kStride;
    if(((i^j^k^color000^1)&1)){
        const double Ax = apply_op_ijk();
        const double lambda = Dinv_ijk();
        xo[ijk] = X(ijk) + lambda*(rhs[ijk]-Ax);
    }else{
        xo[ijk] = X(ijk);
    }
}
```

- **GSRB_BRANCH** has half the FLOPs as **GSRB_FP** but the same HBM/L1/L2 bytes
Example 2: HPGMG

GSRB_STRIDE2

```cpp
for(int k=klo; k<klo+kdim; k++){
    i = ilo +!(ilo^j^k^color000)&1 + threadIdx.x*2;
    if(i < ilo+idim){
        const int ijk = i + j*jStride + k*kStride;
        xo[ijk] = X(ijk);
    }
    i = ilo + (ilo^j^k^color000)&1 + threadIdx.x*2;
    if(i < ilo+idim){
        const int ijk = i + j*jStride + k*kStride;
        const double Ax = apply_op_ijk();
        const double lambda = Dinv_ijk();
        xo[ijk] = X(ijk) + lambda*(rhs[ijk]-Ax);
    }
}
```

- **GSRB_STRIDE2** should have the same FLOPs as **GSRB_BRANCH**, but more bytes? More writes than **GSRB_BRANCH**.
Example 2: HPGMG Analysis

- **GSRB_FP**, Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
- Highly bandwidth bound, inherent to stencil codes
- From Level 5 to Level 8:
 - HBM AI increases due to better Surface: Volume ratio
 - Roughly constant L1/L2 AI due to stencils being ‘tiled’
- Roofline captures computational characteristics of the algorithm

![Graph showing performance vs. arithmetic intensity for different memory levels and cache types.](image)
Example 2: HPGMG Analysis

GSRB_FP vs. GSRB_BRANCH

- FLOPs halves, bytes doesn’t change, thus AI halves and GFLOP/s halves
- Runtime is comparable even though GFLOP/s has halved
- Same number of threads occupied, only with half predicated in GSRB_BRANCH
Example 2: HPGMG Analysis

GSRB_BRANCH vs. GSRB_STRIDE2

- Extra writes in GSRB_STRIDE2 cause more capacity misses in L2, leading to AI drop on L2 and DRAM, starting from Level 7 (data size ≈ L2 cache size)
- Runtime almost doubled and GFLOP/s halved
Example 3: conv2d from TensorFlow

- Kernel `tf.nn.conv2d`

\[
B_{nhw} = \sum_{m=0}^{C-1} \sum_{k_h=0}^{K_H-1} \sum_{k_w=0}^{K_W-1} A_{n h+k_h w+w_h m} K_{k_h k_w m c}
\]
Example 3: conv2d from TensorFlow

- TensorFlow autotuning mechanism

- Split the loop into ‘warm-up’ and ‘measurement’
 - 5 iters and 20 iters

- pyc.driver from PyCUDA
 - need to launch nvprof with
 --profile-from-start off

```python
with tf.Session(config=...) as sess:
  ...

  #warm-up
  for i in range(n_warm):
    result = sess.run(exec_op)

  #measurement
  pyc.driver.start_profiler()
  for i in range(n_iter):
    result = sess.run(exec_op)
  pyc.driver.stop_profiler()
```
Example 3: conv2d from TensorFlow

exec_op:
- forward pass -- conv in 2D
- backward pass -- conv + derivative
- calibrate -- tensor generation

#generate random input tensor
input_image = tf.random_uniform(shape=input_size, minval=0., maxval=1., dtype=dtype)

#create network
output_result = conv2d(input_image, 'NHWC', kernel_size, stride_size, dtype)

#choose operation depending on pass
if pass=="forward":
 with tf.device(gpu_dev):
 exec_op = output_result
elif pass=="backward":
 with tf.device(gpu_dev):
 opt = tf.train.GradientDescentOptimizer(0.5)
 exec_op = opt.compute_gradients(output_result)
elif pass=="calibrate":
 with tf.device(gpu_dev):
 exec_op = input_image
Example 3: conv2d from TensorFlow

- Each TensorFlow kernel translates to a series of subkernels
 - padding, shuffling, data conversion, etc

- TensorFlow based on heuristics decides what subkernels to call

- cuDNN also has some algorithm selection mechanism

- We INCLUDE the housekeeping subkernels in our measurements, but EXCLUDE the autotuning subkernels
Example 3: conv2d from TensorFlow

- Our FLOP count comes from
 \[\text{flop_count_sp, flop_count_hp, tensor_precision_fu_utilization} \]

- Byte count and run time are the sum of the quantities for all subkernels

CAVEATS:

- Housekeeping subkernels may run in FP32 even when input is FP16
- TensorFlow may execute computation in FP32 even when input is FP16
- Very coarse quantization for \text{tensor_precision_fu_utilization}
 - 0-10 integer range, 0 maps to 0 TFLOP/s and 10 maps to 125 TFLOP/s

FP16 and FP32 are the input/output data types
Example 3: conv2d Analysis

- **Batch Size** 16, 32 and 64, forward pass

- **Same underlying algorithm** → *should* be same performance

- **But, housekeeping kernels** are mostly bandwidth bound

- **One reason TF applications** are not reaching peak
Example 3: conv2d Analysis

- **Batch Size** 16, 32 and 64, backward pass

- Similar trend as forward pass

- But algorithm changes for FP32 at batch size 64, leading to slightly better performance
Example 3: conv2d Analysis

- **Number of Output Filters** 64, 128, 256 and 512, forward pass

- **Increasing intensity and performance**

- **Good L1 locality**

- **cuDNN uses shared mem**
Example 3: conv2d Analysis

- **Number of Output Filters** 64, 128, 256 and 512, backward pass

- **Similar trend as forward pass**

- **Almost reaching TC peak and FP32 FMA peak**
Example 3: conv2d Analysis

- **Kernel Size** 3x3, 7x7 and 9x9, forward pass

- **Increasing intensity and performance**

- **Algorithm change at 9x9**
 - wgrad to FFT
 - may not be efficient use of FFT kernels
Example 3: conv2d Analysis

- **Kernel Size** 3x3, 7x7 and 9x9, backward pass

- TF decides to run in FP32 even though both input and output are in FP16; Data needs to be converted back and forth

- More robust autotuning
Summary

• An effective methodology to construct hierarchical Roofline on NVIDIA GPUs
 – ERT for machine characterization
 – nvprof for application characterization

• Three examples demonstrated the value of this methodology and its ability to understand various aspects of performance on NVIDIA GPUs
 – cache locality, instruction mix, memory coalescing, thread predication, reduced precision and Tensor Cores
 – GPP from BerkeleyGW, HPGMG from AMReX, and conv2d from TensorFlow
Reference

- Empirical Roofline Toolkit (ERT):
 - [https://bitbucket.org/berkele...roofline-toolkit](https://bitbucket.org/berkelelab/cs-roofline-toolkit)

- Example scripts for plotting Roofline:
 - [https://github.com/cyanguwa/nersc-...roofline](https://github.com/cyanguwa/nersc-roofline)

- General Plasmon Pole kernel:
 - https://github.com/cyanguwa/BerkeleyGW-GPP

- HPGMG-CUDA kernel:
 - https://bitbucket.org/nsakharnykh/hpgmg-cuda
Acknowledgement

- This material is based upon work supported by the Advanced Scientific Computing Research Program in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

- This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

- This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02- 05CH11231.
Thank You