
Charlene Yang
Lawrence Berkeley National Laboratory

June 24, 2018, Frankfurt

Introduction to the Roofline Model

Outline
• Performance modeling: Why use performance models or tools?
• Roofline Model:

– Arithmetic intensity (AI) and bandwidth
• DRAM Roofline, stream/7pt stencil example
• Hierarchical Roofline is superposition of rooflines

– Modeling in-core performance effects
• Data/instruction/thread level parallelism gives different roofs!
• Divides/sqrts affect roofs as well!

– Modeling cache effects - Locality matters!
– General optimization strategy (In-core/memory bandwidth/data locality)

• Constructing a Roofline Model requires knowledge of machine/application/problem/etc
• Performance tools: tools available, NESAP, Advisor’s Roofline feature
• Comparison of Hierarchical Roofline and CARM: stream/7pt stencil example

2

Performance Modeling

Why Performance Models or Tools?

§ Identify performance bottlenecks

§ Motivate software optimizations

§ Determine when we’re done optimizing
• Assess performance relative to machine capabilities
• Motivate need for algorithmic changes

§ Predict performance on future machines / architectures
• Sets realistic expectations on performance for future procurements
• Used for HW/SW Co-Design to ensure future architectures are well-suited for the

computational needs of today’s applications.

4

Contributing Factors

§ Many different components contribute to kernel run time.
§ Characteristics of the application, machine, or both.
§ Focus on one or two dominant components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

5

!
Roofline
Model

Roofline Model:
Arithmetic Intensity and Bandwidth

Roofline Model

§ Roofline Model is a throughput-oriented
performance model…
• Tracks rates not times
• Augmented with Little’s Law

(concurrency = latency*bandwidth)
• Independent of ISA and architecture

(applies to CPUs, GPUs, Google TPUs1, etc…)

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-
science/PAR/research/roofline

7

(DRAM) Roofline

§ One could hope to always attain peak performance (Flop/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

Peak GFlop/s
GFlop/s = min

AI * Peak GB/s
Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM)
Machine Balance (MB) = Peak Gflop/s / Peak GB/s

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

8

(DRAM) Roofline

§ Plot Roofline bound using Arithmetic Intensity as the x-axis
§ Log-log scale makes it easy to doodle, extrapolate performance along Moore’s

Law, etc…
§ Kernels with AI less than machine balance

are ultimately DRAM bound
§ Typical machine balance is 5-10 flops per byte…

§ 40-80 flops per double to exploit compute
capability

§ Artifact of technology and money
§ Unlikely to improve

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

DRAM-bound Compute-bound

9

Roofline Example #1

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

TRIAD

Gflop/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

0.083

Peak Flop/s

10

Roofline Example #2

§ Conversely, 7-point constant coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte == memory bound,

but 5x the flop rate

At
ta

in
ab

le
 F

lo
p/

s

7-point
Stencil

Gflop/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak Flop/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

new[k][j][i] = -6.0*old[k][j][i]
+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i

];
}}}

11

§ Multiple levels of memory on real processors
§ Registers, L1, L2, L3 cache, MCDRAM/HBM (KNL/GPU device memory),

DDR (main memory), NVRAM (non-volatile memory)
§ A different bandwidth/data movement/AI

for each memory level
§ Construct superposition of Rooflines…

§ Measure a bandwidth
§ Measure an AI for each memory level

§ Although a loop nest may have multiple AI’s
and multiple bounds (flops, L1, L2, … DRAM),
performance is bound by the minimum

DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Peak Flop/s

12

Hierarchical Roofline

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

DDR bottleneck
pulls performance
below MCDRAM

Roofline

Peak Flop/s

§ Although a loop nest may have multiple AI’s and multiple bounds (flops, L1, L2,
… DRAM), performance is bound by the minimum

DDR AI*BW < MCDRAM AI*BW

13

§ Although a loop nest may have multiple AI’s
and multiple bounds (flops, L1, L2, … DRAM),
performance is bound by the minimum

MCDRAM AI*BW < DDR AI*BW

MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW

Hierarchical Roofline

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Peak Flop/s

14

Hierarchical Roofline

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

MCDRAM
bottleneck pulls

performance below
DDR Roofline

§ Although a loop nest may have multiple AI’s
and multiple bounds (flops, L1, L2, … DRAM),
performance is bound by the minimum

MCDRAM AI*BW < DDR AI*BW

15

Roofline Model:
Modeling In-core Performance Effects

Data, Instruction, Thread-Level Parallelism

§ If every instruction were an ADD (instead of
FMA), performance would

drop by 2x on KNL or 4x on Haswell !!

§ Similarly, if one failed to vectorize,
performance would drop by

another 8x on KNL and 4x on Haswell !!!

§ Lack of threading (or load imbalance) will
reduce performance by another 64x on KNL.

Peak Flop/s

Add-only (No FMA)

No vectorization

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Poor vectorization
pulls performance

below DDR
Roofline

17

Superscalar vs. Instruction Mix

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

25% FP (75% int)

non-FP instructions
can sap instruction

issue bandwidth and
pull performance
below Roofline

§ Define in-core ceilings based on instruction mix…
§ e.g. Haswell

• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP

to get peak performance

§ e.g. KNL
• 2-issue superscalar
• 2 FP data paths
• Requires 100% of the instructions to be FP

to get peak performance

18

Divides and other Slow FP instructions

§ FP Divides (sqrt, rsqrt, …) might support only limited pipelining
§ As such, their throughput is substantially lower than FMA’s
§ If divides constitute even if 3%

of the flop’s come from divides,
performance can be

cut in half !!

Penalty varies substantially between
architectures and generations
(e.g. IVB, HSW, KNL, …)

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

6% VDIVPD

A divide in the inner
loop can easily cut

peak performance in
half

19

Roofline Model:
Modeling Cache Effects

Locality Matters!

§ Naively, we can bound AI using only
compulsory cache misses

§ However, write allocate caches can lower
AI

§ Cache capacity misses can have a huge
penalty

Compute bound became memory bound!

Peak Flop/s

No FMA

No vectorization

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

AI

#Flop’s
Compulsory Misses + Write Allocates + Capacity MissesAI =

+W
rit

e
Al

lo
ca

te

+C
ap

ac
ity

 M
is

se
s

!
21

Roofline Model:
General Strategy Guide

General Strategy Guide

§ Broadly speaking, three approaches
to improving performance:

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

23

General Strategy Guide

§ Broadly speaking, three approaches
to improving performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

24

General Strategy Guide

§ Broadly speaking, three approaches
to improving performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth
(e.g. NUMA-aware allocation)

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

25

General Strategy Guide

§ Broadly speaking, three approaches
to improving performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth
(e.g. NUMA-aware allocation)

§ Minimize data movement
(increase AI)

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

AI

C
ur

re
nt

 A
I

26

Constructing a Roofline Model
requires answering some questions…

Questions can overwhelm users…

?What is my
machine’s

peak flop/s?

?What is my
machine’s
DDR GB/s?
L2 GB/s?

?How much
data did my

kernel actually
move? ?What is my kernel’s

compulsory AI?
(communication lower

bounds)?How many
flop’s did my

kernel actually
do?

?How important is
vectorization or

FMA on my
machine?

?Did my kernel
vectorize?

?Can my kernel
ever be

vectorized??How much did
that divide

hurt?

Properties of the
target machine

(Benchmarking)

Properties of an
application’s execution

(Instrumentation)

Fundamental properties
of the kernel

constrained by
hardware

(Theory)

28

We need tools…

Forced to Cobble Together Tools…
DRAM Roofline:
• Use tools known/observed to work on NERSC’s Cori

(KNL, HSW)…
• Used Intel SDE (Pin binary instrumentation +

emulation) to create software Flop counters
• Used Intel VTune performance tool (NERSC/Cray

approved) to access uncore counters
Ø Accurate measurement of Flop’s (HSW) and DRAM

data movement (HSW and KNL)
Ø Used by NESAP (NERSC KNL application readiness

project) to characterize apps on Cori…

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division; CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project; LBL is part of SUPER (DOE SciDAC3 Computer Science Institute) 30

Initial Roofline Analysis of NESAP Codes

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"
1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"2P
 H

SW
K

N
L

MFDn PICSAREMGeo

31

Evaluation of LIKWID

§ LIKWID provides easy to use wrappers for
measuring performance counters…
ü Works on NERSC production systems
ü Minimal overhead (<1%)
ü Scalable in distributed memory (MPI-friendly)
ü Fast, high-level characterization
x No detailed timing breakdown or optimization

advice
x Limited by quality of hardware performance

counter implementation (garbage in/garbage out)

Useful tool that complements other tools!

8

16

32

64

128

256

512

1024

H
P

G
M

G
 (

3
2

P
x1

T
)

H
P

G
M

G
 (

4
P

x8
T

)

C
o

m
b

u
st

o
r (

3
2

P
x1

T
)

C
o

m
b

u
st

o
r (

4
P

x8
T

)

M
F

IX
 (

3
2

P
x1

T
)

N
yx

 (
3

2
P

x1
T

)

N
yx

 (
4

P
x8

T
)

P
e

le
L

M
 (3

2
P

x1
T

)

W
a

rp
X

 (
3

2
P

x1
T

)

W
a

rp
X

 (
4

P
x8

T
)

B
a
n
d
w

id
th

(G
B

/s
)

AMReX Application Characterization
(2Px16c HSW == Cori Phase 1)

L2
L3
DRAM
Roofline

https://github.com/RRZE-HPC/likwid

32

Intel Advisor
§ Includes Roofline Automation…

ü Automatically instruments applications
(one dot per loop nest/function)

ü Computes FLOPS and AI for each function
(CARM)

ü AVX-512 support that incorporates masks
ü Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)
ü Automatically benchmarks target system

(calculates ceilings)
ü Full integration with existing Advisor

capabilities

Memory-bound, invest into
cache blocking etc

Compute bound: invest
into SIMD,..

1Technology Preview, not in official product roadmap so far.

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017
33

Hierarchical Roofline
vs. Cache-Aware Roofline

Two Major Roofline Formulations:

§ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…
• Defines multiple bandwidth ceilings and multiple AI’s per kernel
• Performance bound is the minimum of flops and the memory intercepts (superposition of single-

metric Rooflines)

§ Cache-Aware Roofline Model (CARM)
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)
• As one looses cache locality, performance falls from one BW ceiling to a lower one at constant AI

• CARM has been integrated into production Intel Advisor; evaluation version of
Hierarchical Roofline (cache simulator) has also been integrated into Intel Advisor
(Technology Preview version)

Hands-on Session shows you both !

35

Cache-AwareHierarchical vs
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to the L1
cache (plus non-temporal stores)

§ AI is Flop:Bytes after being filtered by
lower cache levels

§ Memory/Cache/Locality effects are
observed as decreased performance

§ Memory/Cache/Locality effects are
observed as decreased AI

§ Requires static analysis or binary
instrumentation to measure AI

§ Requires performance counters or
cache simulator to correctly measure AI

36

Example: STREAM

§ L1 AI…
§ 2 flops
§ 2 x 8B load (old)
§ 1 x 8B store (new)
§ = 0.08 flops per byte

§ No cache reuse…
§ Iteration i doesn’t touch any data associated with iteration i+delta for any delta.

§ … leads to a DRAM AI equal to the L1 AI

#pragma omp parallel for
for(i=0;i<N;i++){
Z[i] = X[i] + alpha*Y[i];

}

37

Example: STREAM

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)
0.083

Multiple AI’s….
• Flop:DRAM bytes
• Flop:L1 bytes (same)

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.083
Arithmetic Intensity (Flop:Byte)

Single AI based on flop:L1 bytes

Observed performance
is correlated with DRAM
bandwidth

Performance is bound to
the minimum of the two
Intercepts…

AIL1 * L1 GB/s
AIDRAM * DRAM GB/s

38

Example: 7-point Stencil (Small)
§ L1 AI…

• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• compilers may do register shuffles to reduce number of loads

§ Moderate cache reuse…
• old[ijk] is reused on subsequent iterations of i,j,k
• old[ijk-1] is reused on subsequent iterations of i.
• old[ijk-jStride] is reused on subsequent iterations of j.
• old[ijk-kStride] is reused on subsequent iterations of k.

§ … leads to DRAM AI larger than the L1 AI

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk]

+ old[ijk-1]
+ old[ijk+1]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

39

Example: 7-point Stencil (Small)

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.44

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

Single AI based on flop:L1 bytes
Multiple AI’s….
• flop:DRAM ~ 0.44
• flop:L1 ~ 0.11

Observed performance
is between L1 and DRAM lines
(== some cache locality)

Performance bound is
the minimum of the two

Cache-Aware RooflineHierarchical Roofline

(Small Problem) 40

Example: 7-point Stencil (Large)

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

Single AI based on flop:L1 bytes
Multiple AI’s….
• flop:DRAM ~ 0.20
• flop:L1 ~ 0.11

Capacity misses reduce
DRAM AI and performance

Observed performance
is closer to DRAM line
(== less cache locality)

Cache-Aware RooflineHierarchical Roofline

(Large Problem) 41

Example: 7-point Stencil (Large)

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

Single AI based on flop:L1 bytes

Actual observed performance
is tied to the bottlenecked resource
and can be well below a cache
Roofline (e.g. L1).

Observed performance
is closer to DRAM line
(== less cache locality)

Cache-Aware RooflineHierarchical Roofline

42(Large Problem)

Summary
• Answered the questions: Why use performance models or tools?

• Introduced Roofline model:
– Arithmetic intensity and bandwidth
– Two formulations: DRAM Roofline, Hierarchical Roofline
– General optimization strategy (In-core/memory bandwidth/data locality)

• Performance tools: tools available in the market, NESAP, Intel Advisor

• Two examples: stream and 7-pointt stencil
– Differences between Hierarchical Roofline and CARM

Aleks’ talk: CARM, Hierarchical (ORM) Roofline, and Integrated Roofline in Advisor

43

Acknowledgements

• This material is based upon work supported by the Advanced Scientific
Computing Research Program in the U.S. Department of Energy, Office of
Science, under Award Number DE-AC02-05CH11231.

• This research used resources of the National Energy Research Scientific
Computing Center (NERSC), which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

44

Thank You

Backup Slides

Performance Models / Simulators

§ Historically, many performance models and simulators tracked
latencies to predict performance (i.e. counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

§ Effective latency hiding has resulted in a shift from a latency-limited
computing regime to a throughput-limited computing regime

47

(DRAM) Roofline

§ One could hope to always attain peak performance (Flop/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

#FP ops / Peak GFlop/s
Time = max

#Bytes / Peak GB/s

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

48

= max

(DRAM) Roofline

§ One could hope to always attain peak performance (Flop/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

1 / Peak GFlop/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

49

= min

(DRAM) Roofline

§ One could hope to always attain peak performance (Flop/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM) CPU

(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)Peak GFlop/s#FP ops

Time (#FP ops / #Bytes) * Peak GB/s

50

(DRAM) Roofline

§ One could hope to always attain peak performance (Flop/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

Peak GFlop/s
GFlop/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM)

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

51

Data, Instruction, Thread-Level Parallelism

§ Modern CPUs use several techniques to increase per core Flop/s
Fused Multiply Add
• w = x*y + z is a common

idiom in linear algebra
• Rather than having

separate multiple and
add instructions,
processors can use a
fused multiply add (FMA)

• The FPU chains the
multiply and add in a
single pipeline so that it
can complete FMA/cycle

Vector Instructions
• Many HPC codes apply

the same operation to a
vector of elements

• Vendors provide vector
instructions that apply
the same operation to 2,
4, 8, 16 elements…
x [0:7] *y [0:7] + z [0:7]

• Vector FPUs complete 8
vector operations/cycle

Deep pipelines
• The hardware for a FMA

is substantial.
• Breaking a single FMA

up into several smaller
operations and
pipelining them allows
vendors to increase GHz

• Little’s Law applies…
need FP_Latency *
FP_bandwidth
independent instructions

!
52

Node Characterization?
§ “Marketing Numbers” can be

deceptive…
• Pin BW vs. real bandwidth
• TurboMode / Underclock for AVX
• compiler failings on high-AI loops.

§ LBL developed the Empirical Roofline
Toolkit (ERT)…
• Characterize CPU/GPU systems
• Peak Flop rates
• Bandwidths for each level of memory
• MPI+OpenMP/CUDA == multiple GPUs

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.quadflat.2t/Run.002)

2450.0 GFLOPs/sec (Maximum)

L1
 - 6

44
2.9

 G
B/s

L2
 - 1

96
5.4

 G
B/s

DRAM - 4
12

.9
GB/s

Cori / KNL

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.summitdev.ccs.ornl.gov.02.MPI4/Run.001)

17904.6 GFLOPs/sec (Maximum)

L1
 - 6

50
6.5

 G
B/s

DRAM - 1
92

9.7
 G

B/s

SummitDev / 4GPUs

53

Instrumentation with Performance Counters?

Characterizing applications with performance counters can be problematic…

x Flop Counters can be broken/missing in production processors
x Vectorization/Masking can complicate counting Flop’s
x Counting Loads and Stores doesn’t capture cache reuse while counting cache misses

doesn’t account for prefetchers
x DRAM counters (Uncore PMU) might be accurate, but…
x are privileged and thus nominally inaccessible in user mode
x may need vendor (e.g. Cray) and center (e.g. NERSC) approved OS/kernel changes

54

Tools/Platforms for Roofline Modeling

✓
✓
✓
✓
✓
✓

AMD CPUs

Intel CPUs
IBM Power8

ARM

NVIDIA GPUs

AMD GPUsPl
at

fo
rm

s

Peak MFlops

DRAM BW
Cache BWBe
nc

hm
ar

k

Peak MIPS

Metric STREAM

✓
✘

✘
✘

MFlops

DRAM BW
Cache BW

Ex
ec

ut
io

n %SIMD?
MIPS

Auto-Roofline

✘
✘

✘
✘

✘

✘

ERT
✓

✓
✓
✘
✘

✘
✘

✓
✓
✓
✓
✓
✓

✘

✘

✓

Intel
VTune

Intel
SDE
✘
✘

✘
✘

✓
✓
✓

✘
✘

✘

✘
✘

✘
✘

✓

?

✘
✘

✘
✘

✓

✘

✘

✓

✓

✘
✘

✘
✘

✓

✘

✘

LIKWID
✘
✘

✘
✘

✓
✓
✓
✓
✓
✘

✘

✘

✓
?

?

✓

Intel
Advisor

NVIDIA
NVProf
✘
✘

✘
✘

✓

✓
✓

✘

✓
✓

✓
✓
✓

✘

✘
✘

✘
✘

✓

?

✘

✘
✘

✘
✘

✓
✘

✓

✓
✓

✓
✓

Use ERT to
benchmark

systems

Use LIKWID for fast,
scalable app-level
instrumentation

Use Advisor for
loop-level

instrumentation
and analysis on

Intel targets

55

