22

Chapter 2.
Analytic Models

2.1. Introduction

The basic picture that a nearly axisymmetric collision produces an outward prop-
agating ring of high density and high star formation rate has been worked out by a
number of investigators (Lynds & Toomre 1986; Toomre 1978; Appleton & Struck-
Marcell 1987h: Struck-Marcell & Appleton 1987; Struck-Marcell & Lotan 1990; Theys
& Spiegel 1977; Huang & Stewart 1988; Chatterjee 1984). If the collision is not ax-
isymmetric, off-center rings, arcs and spiral patterns can be formed (Toomre & Toomre
1972; Toomre 1978; Struck-Marcell 1990; Chatterjee 1986, Huang & Stewart 1988;
Gerber, Lamb & Balsara 1992). In order to understand the mechanism by which off-
center collisions produce disturbed morphologies in galactic disks a simplified analytic
model can provide insight. Further, an analytic model can be used economically to
explore parameter space and guide the choice of future fully three-dimensional gravi-
tational /hydrodynamical computational models of observed systems.

In this chapter it is shown that the disk morphologies produced by Toomre’s n-
body experiments on ring galaxics (Toomre 1978, see also Byrd & Howard 1992) can
be understood in terms of an impulsive encounter with a second galaxy which produces
epicyclic oscillations in the disk galaxy (see Section 2.2; Binney & Tremaine 1987,
Struck-Marcell & Lotan 1990). Some of the results are similar to those obtained by
Struck-Marcell (1990), but he was more interested in the development and classification
of caustic structures in the disk following slightly off center collisions. The motivation
for undertaking this study is to gain insight into the mechanism whereby high gas den-
sity regions are produced in numerical n-body/gas dynamics simulations (see Chapter
4). This work also differs from Struck-Marcell (1990) in that an arbitrarily large impact

parameter is explicitly included, the restriction that the azimuthal velocity impulse be
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small compared to the radial velocity impulse is lifted, and the central concentration
of the intruder can be varied.

Analytic expressions are derived to describe the two-dimensional kinematic evolu-
tion of a stellar disk perturbed by the collision of a second galaxy which passes through
the disk at perpendicular incidence, but does not pass through its center. The intrud-
ing galaxy is approximated as spherical and the disk stars of the host galaxy lie in a
potential that produces a constant circular rotation velocity. The resulting morpholo-
gies depend on a “strength” parameter (see Section 2.2.2), the impact parameter, and
the central concentration of the spherical galaxy.

The purely kinematic model can not yield information about the role of self gravity
and gas dynamical processes, which are likely important for determining the sites of en-
hanced star formation. The behavior predicted by the analytic expressions is therefore
compared with computational results from a fully self-gravitating three-dimensional
n-body/gas dynamics code in Section 4.4. There is it shown that the initial behavior of
the galaxies is similar to that predicted by the analytic model, but at later times in the
evolution of the disk, self-gravity becomes important in amplifying density enhance-
ments. Gas piles up where orbits cross since, unlike the stars, gas cannot freely move
on intersecting orbits. It is argued that these regions of high gas density are likely to
be the locations of active star formation.

The analytic model for the velocity impulse is described in Section 2.2. The kine-
matic response predicted by the model is presented in Section 2.3. A summary is given

in Section 2.4.

2.2. Analytic Model

Under the simplifying assumptions described in the following sections, the equations
of motion are derived for disk stars following a collision with a spherically symmetric
galaxy. The intruder hits the disk at normal incidence at an arbitrary distance from

the center. Using these equations of motion, which are shown to be functions of a star’s
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initial position and three dimensionless parameters, the kinematic morphology of the

disk can be determined at any arbitrary time after the collision.

2.2.1. Solution for Velocity Impulses

The velocity impulse delivered by the intruder as it flies through the disk galaxy at
constant velocity is first derived. The impulse approximation is expected to be valid
as long as the intruder moves fast enough that the disk stars do not have time to
move appreciably in their orbits during the interaction, but as mentioned in Binney &
Tremaine (1987) this method can often be applicd beyond its formal limits.

The geometrical configuration is illustrated in Fig. 2.2.1. The disk lies in the z-y
plane, its center at the origin of coordinates. The intruder proceeds in a straight line in
the z-z plane (the plane of the paper) parallel to the 2 axis at constant velocity V and
penetrates the disk a distance z=b from the center of the disk. The vector 7 denotes
position with respect to the center of the intruder while the vector R, as well as the
coordinates (z,y, z), refer to position with respect to the center of the disk.

The intruder is represented by a Plummer model (Plummer 1911); it provides an
analytic model of a softened potential in which the degree of central concentration can
be easily varied. The gravitational potential of the Plummer model is given by

d = —L’Il , (2.2.1)

(r? + a?)'/?
where G is the gravitational constant, M is the total mass of the Plummer model, and a
is a constant, often referred to as a “softening” length since it introduces a length scale
into the potential and prevents singular behavior at the origin. The velocity 1mpulse

delivered to a particle at a position 7 from the intruder is
Av(7) = —/ Vo (7, t) di. (2.2.2)
—oc

Substituting 7(t) = (z — 8)& + yg + (2 + Vt)2, and taking the gradient of the potential

yields,

GM (z —b)

(Ve), = - 372
((x — )+ + V) oyt + az)

(2.2.3a)
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Z axis Intruder

Figure 2.2.1: The geometrical configuration for the derivation of
the impulse approximation expressions. The z-axis passes through the
disk’s center and the intruder moves along a line parallel to the z-axis,
intersecting the plane of the disk a distance z=b from its center. The

intruder, of mass M, moves at constant velocity V.

GMy ; (2.2.3b)
((m —0) (2 4+ V) 2+ a2)

(V(I))y = -
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GM (z+Vi
(V®), = — ( : ) 32 (2.2.3¢)
((:1: —B) 4+ (z+ V) Hy+ a2)
Upon performing the integrations of Equation (2.2.2), we obtain
PG ok || (U (2.2.4)
V o (z=-0"+y*+a?

Rewriting this result in polar coordinates, (R, ¢) defined by z = Rcos ¢,y = Rsin ¢,

gives
(R— bcosqS)R-{—bsinqﬁcg
R? — 2Rbcos ¢ + b2 + a?

2G M
V

AT (R, $) = — . (2.2.5)

The angular dependence is written in dimensionless form by defining the parameters,

n = R/b and v = a/b and we have

2GM n — Ccos ¢
A = - -
UR bV |i7]2—2T]COS§b+1+’)’21| (226(1)
2GM sin ¢
Avg = = . 2.2.6b
v bV [n2—2ncos¢>+1+72] e

2.2.2. Response to the Impulse

The effect the velocity impulse has on the orbits of stars in a given rigid potential
will be investigated. First, equations 2.2.6 are modified to express the velocity relative
to the impulse delivered to the center of the potential. Subtracting the velocity impulse

delivered to the origin of coordinates from equations 2.2.6 we get

26 M 7 — cos ¢ cos ¢
Avp == : f : 2.2.
o bV [TI“)--277<:0595+1+72 1442 (2:2.7a)
2GM sin ¢ sin ¢
Avg = = - AR 2.70
v bV [U2—277005¢+1+7'2 1+73] )

The equations of motion for the disk particles are obtained by first assuming they
were in circular orbits prior to receiving the impulse. After the interaction a particle
orbit is described as executing epicyclic motion about a guiding center on a circular

orbit of radius Ry. The value of Ry is obtained by determining the radius of the
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circular orbit that has the same angular momentum as the particle after it received
the impulse. The specific angular momentum, /;, of a particle after the impulsc is the
sum of its initial angular momentum and the change in angular momentum delivered

by the intruder,
lz = RO vc’ﬂ "l" R[] A’U¢ s (2.2.8)

where Ry is the initial radius and v, g is the initial circular speed. The angular momen-
tum associated with the guiding center’s circular orbit is Ry ve g, Where vc 4 is the orbital
speed of the guiding center. Equating the two expressions for the angular momentun

and solving for R, yields

w0 Av |
R, = Ro (1"—0 + L‘*”) . (2.2.9)

Ve,g Ve,g

At this point the analysis is significantly simplified if it is assumed that the disk
galaxy particles move in a potential which produces a rotation curve which is constant
with radius. This is a reasonable simplification since most disk galaxies arc observed to
have constant rotation velocities over all but the inner portions of their disks. Under

this assumption the previous equation becomes

Av
R, = Ry (1 + '”“‘) (2.2.10)

where v, is the constant circular speed in the disk. The radial position of a particle 1s

written as

R =Ry, + Apsin(xt + ¥) (2.2.11)
where & is the epicycle frequency (determined by the potential) and Ag and ¥ are
constants to be determined. For a particle which was initially at coordinates (Ro, ¢o)
we demand that R(t=0)= Ry and R(t=0) = Awvg, note that k = v/2vc/R, and find, to

lowest order in velocities,

Awvgy
tan¥ = —v2 : 2.2.12
an V2 Avg ( )
Equivalently, we can write
. A
sin® = —/2 . (2.2.13)

A /QAU;fS + A"2R ,
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and
cos T = ——2VF (2.2.14)
A /2Av§ + Avy
The amplitude to first order is
|A7] -
Ap=R : 2.2.15
r=Ro 7 ( )
where |A?| = 4 /2./3'0(?5 + Av%. The expression for the radius then becomes
Av .
R:Ro[ + ¢+ A5 Ism(ht—{—lIJ) (2.2.16)
\/_Uc

The expression for the angular coordinate is found by demanding that angular momen-
tum be conserved along the post-collision orbit. Equating the angular momentum after

the collision with the angular momentum of the new guiding center yields
SR’ = v,R, . (2.2.17)

Substituting the expression for R and keeping terms only to first order yields

$ [l 2A .
¢ = ;y 1- RUR sin(kt + ¥)| . (2.2.18)
This is integrated to give
( t 2A Ve
¢ = Yl + R: cos (kt + ) + constant . (2.2.19)
R(] K:RO

The constant is obtained by setting ¢(0) = ¢o, which yields

A 4/ A A%
6= do— —2 4 22 (1 - ”¢) + 12 s (wt 4 0) | (2.2.20)

Ue Ry Ve Ve
The following dimensionless parameters, which will prove useful later, are defined

2GM

= 2.2.

X bV v, (2:2.21a)
R
Mmaz = "b“” (2.2.21b)
Py O
T= Mmaz Rma:c (22210)
ot

=7 (2.2.21d)

27{Rmax
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where Ryqr is the maximum radial extent of the disk. Physically, X is a parameter
describing the “strength” of the interaction — X/2v is the maximum possible value
of the velocity impulse in units of the (constant) circular speed in the disk. For the
approximations to be formally valid X /2y must be less than one. 9pm4z is the maximum
extent of the disk in units of the impact parameter, and 4/ is the ratio of the intruder
softening length to the maximum disk radius. 7 measures time in units of the rotation
period of the outer edge of the disk.

Dimensionless velocity impulses are defined to be

Avp 79 — €OS Po cos ¢
Aug = — = [ R w——— = =5 , (2.2.22q)
¢ Ty — <7jo €Os i P S e S B
Awvy sin ¢ sin ¢
— ' 0 0
Auy=—2 = _ [ — e (2.2.22b)
VeX Mg —2m0cos o+ 1+ 905, 14+7 N5,

A
|Ad| = IUCZI = /2002 + Aud, (2.2.22¢)

and the equations of motion are written, in terms of the ratio of radius to impact

paramecter, 7, and angular position, ¢, as

Al .
7 = 10 {1 + XAug + Xl\/;' sin (27r\/§”;’]‘“” (1 — xAug) T+ qx)} (2.2.23a)
\ _

Nmax

(1 — XAu¢) 7 + X|Ati| cos (2#\/577"“” (1 — XAuQ'-,) T+ IIJ) )

70
(2.2.23b)

¢ = do— XAup+2m
o

Note that these equations of motion depend only on the initial coordinates, (g, ¢o),

and the three parameters X, nmaz, and «'.

2.2.3. Surface Density

With the particle positions as functions of time and their original coordinates, we
can demand that the mass, d}M, in a small area be conserved and get an expression for

the surface density, X.

dM =S (R, ,t) RARdé = S (Ro, ¢o) RodRo ddy . (2.2.24)
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The coordinates are related through the determinant of the Jacobian matrix, J, by
dRd¢ = |J|dRydgg, (2.2.25)
and the surface density is
, RO -1
Y (R, ¢) = X (Ro, ¢0) T |77 (2.2.26)

Formally the surface density goes to infinity at the zeros of the Jacobian. These points
correspond to the caustics described by Struck-Marcell (1990) and Struck-Marcell &
Lotan (1990) - regions where orbits overlap. In real galaxies these infinities are sup-
pressed since (1) the density distribution is made up of discrete stars, more than one of
which cannot occupy the same location, and (2) the stars are initially spread in phase
space by virtue of a non-zero velocity dispersion. Hydrodynamic pressure forces (oper-
ating in three dimensions) help prevent infinite densities in the gascous component of
galaxies. Nevertheless, high densities are reached when gas interacts in these regions

will be shown in Section 4.4.1.2.

2.3. Kinematic Response of the Disk

After the collision, the transient disk morphology at any given time is a function
of the three parameters which represent the impact parameter, the “strength” and the
central concentration of the intruder. The best way to get a feel for how the three
parameters affect the collision is to plot a sample of disk “stars” for different values of

the parameters.

2.3.1. A Survey of Forms

The form of the equations of motion in Equations 2.2.23 allows investigation of
distant collisions by setting 7maz < 1. More central collisions can be modeled by
considering larger values of fmaz. The other two parameters which govern the kinematic

response of the disk are X, the ratio of the magnitude of the velocity impulse to v,
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(the circular speed in the disk), and the ratio 7' = a/Rmpqr describing the central
concentration of the Plummer model.

In Fig. 2.3.1 the response of stars to the velocity impulse is plotted at one-half a
rotation period of the outer edge of the disk. The disk’s rotation is counterclockwise.
Initial positions for 10* “stars” are randomly chosen and plotted according to the model
at 7 = 0.5. (Radii  were chosen randomly in the interval [0 : maz], which produces a
surface density that falls off as 1/7, and is useful for illustrating particle kinematics.) In
cach column of Fig. 2.3.1 the strength of the interaction, X, and the softening parameter,
', are held constant as the impact parameter is varied, taking values of 2.0, 1.0, 0.5, and
0.25 in units of the disk maximum radius (ie., Jmaz = .5,1,2,4). The impact distance
from the center of the disk is indicated by the arrow at the bottom of cach panel. The
impact point can be located by mentally translating the arrow upward until one end
lies on the disk center. The scale is the same for all plots in Fig. 2.3.1. The central
concentration, ', has the value 0.4 in Fig. 2.3.1 (a), 0.2 in Fig. 2.3.1 (b), and 0.8 in
Fig. 2.3.1 (¢). Representative values of X = 0.25,0.50, and 0.75 were chosen for display.
The most extreme combination of parameters strictly invalidates the assumptions in
small regions of the disk, but does not generally affect the overall morphology of the

system.
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Figure 2.3.1: (a) Plots of disk particle positions as predi—cted by the
analytic model. The impact parameter, indicated by the arrow, varies

down each column. The “strength” decrcases along cach row.

The

paramcter ¥ = 0.4. See the text for a further explanation.
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The dependence of morphology on the three parameters is shown in Fig. 2.3.1.
More damage is done to the disks as the strength, X, and the central concentration of
the intruder (smaller 4') increase. The non-penetrating collisions (the first two rows
in Fig. 2.3.1, ie. mas = 1,0.5) produce two-armed spiral features as exhibited in the
n-body experiments of Toomre (1978). In the cases where the impact point is one-
quarter the disk radius (row 4), rings form, although in the strongest interaction at
this impact parameter fmes = HX = 0.75. = 0.2 in Fig. 2.3.1 (b)) an arm also
extends outward through the disk. At intermediate impact parameters a one-armed
spiral pattern is more prevalent. With decreasing impact parameter a transition is scen
that goes from two-armed spiral, through one-armed spirals, to formation of a ring.
The transition from spiral to ring patterns appears to take place at impact parameters
somewhere near 0.25 of a disk radius depending on the strength and concentration of
the intruder, approximately in agreement with the results of the n-body experiments
of Lynds & Toomre (1976) and especially Toomre (1978). This agrecment exists even
though Lynds & Toomre considered parabolic collisions with a 2:1 mass ratio between
the galaxies, a situation in which one might not expect the impulse approximation to

be applicable.

This transition can be understood qualitatively by considering the magnitude and
directions of the imposed velocity impulses. In all cases there is a velocity component
that produces a compression toward the line connecting the disk center and the intruder.
When the center of the intruder does not penetrate the disk, there is only simple tidal
stretching along this same line. Differential rotation shears this elongated form into
a two-armed spiral pattern. When the intruder center penctrates the disk, however,
on one side there is a compression, rather than a stretching, toward the impact point.
The arm on that side of the disk disappears, being replaced by an arc that can appear
as an inner ring, leaving the galaxy with one arm. As the impact point moves more

toward the center, axisymmetry is approached and arms are replaced by rings.

As the strength parameter decreases the galaxies become less distorted and the

morphologies tend toward more symmetric forms. Likewise, as the intruder becomes
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more extended at the same strength, ncarly symmetric rings appear more often. Note
that the strong collision half way out in the disk with an extended intruder (X =
0.75,4' = 0.8 in Fig. 2.3.1 (c¢)) forms a ring.

The morphologies produced in the grazing encounters (9mqz =1, .5) correspond closely
to those found numerically by Byrd & Howard (1992) in a collision inclined by 40° to
the disk normal. Their Figure 3 exhibits the same near and far side arm structure as
seen the model discussed here. Byrd & Howard suggest that encounters at approxi-
mately 60° from the disk are most common and are important for the formation of
grand design spirals. The ring and arm morphology evident in Barnes’ (1992) n-body

study (see his Figure 3) also mimics forms produced by the model.

2.3.2. Lifetimes of Features

Kinematic features typically appear to remain in the disk for tens of rotation periods
of the outer disk before phase mixing washes out all obvious patterns (see Section
4.4.1.1). With galactic disk rotation periods on the order of a few 10% years, then
kinematic features persist for 10° to 10!° years. It might be expected that dynamical
processes would completely dominate the disk in a much shorter time, and Sundelius
et al. (1987) have shown numerically that tidal arms can last some 3 x 10° years
for a typical galaxy. Byrd & Howard (1992) conclude that these perturbations are
important in driving spiral structure. Presumably processes such as swing amplification
(Toomre 1981) are contributing to the longevity of the spiral structure in the dynamical
simulations. But even in the absence of dynamics, a single passage of a low-mass

intruder can initiate a very long-lived dramatic morphological response.
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2.4. Summary

A kinematic model was derived for the collision of disk galaxy with a small, fast
spherical galaxy which moves parallel to the disk galaxy’s rotation axis, but does not
pass through the center of the disk. This model shows that the the morphological forms
found in the n-body experiments of Toomre (1978) and Byrd & Howard (1992) can be
understood in terms of stars executing epicyclic oscillations about a circular guiding
center in the plane of the disk after receiving a velocity impulse from a second galaxy.
Use of these analytic expressions provide a convenient and computationally inexpensive
method to search parameter space in preparation for full n-body/gas dynamics models
of observed systems. The resulting morphologies depend on the “strength” parameter
(which includes the mass and relative velocity of the intruder), the impact parameter,
and the central concentration of the intruder. Distant encounters produce transient
two-armed spiral features, collisions through the outer parts of the disk make onec-

armed spirals, and central collisions produce rings.



