
Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

Achieving Performance Portability on Hybrid GPU-CPU
Architectures for a Large Scale Materials Science Code: the

BerkeleyGW Case Study

Mauro Del Ben1, Charlene Yang2

1Computational Research Division, Lawrence Berkeley National Laboratory
2National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory

2020 Performance, Portability, and Productivity in HPC Forum
01-02 September 2020, Virtual

1



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

Materials Science/Chemistry at Exascale

Mat. Sci & Chem apps, such as VASP, Quantum ESPRESSO, NWChem, GAMESS, QMCPACK,
BerkeleyGW, and CP2K are among the most heavily used DOE facilities.

Used to design and understand the fundamental components of novel devices

Applications: Quantum Computers, Batteries, Photovoltaics, Catalysis, Hydrogen
Storage, Carbon Sequestration, etc...

Density Functional Theory (DFT): computational workhorse for over three decades

2



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

Accurate Electronic Excited-State Properties of Materials: Beyond DFT

Example: Divacancy point defect in crystalline silicon, prototype of a solid-state QBit.

Accurate predictions requires:

Accuracy beyond standard (DFT) approaches → GW and GW + BSE

System size beyond previous simulations → Many thousands of atoms

3



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

The GW Method: State of the Art

The GW method represents one of the most effective and accurate approach to
predict excited-state properties in a wide range of materials

Application of GW to thousands atoms systems still a challenge

Reduce time to solution and extend applicability:

Develop methods to reduce prefactor and scaling with system size

Improve performance of existing implementation

HPC on the Path to Exascale → GPUs

In this talk the portability strategies employed to implement GPU support for the
BerkeleyGW software package will be discussed.

4



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

The BerkeleyGW Software Package

https://berkeleygw.org/

Compute the electronic excited-state properties of materi-
als via GW , Bethe-Salpeter equation (BSE) and beyond.

Basic algorithmic kernels:

Large distributed matrix multiplication (short and fat)

Large distributed linear algebra (LU decomposition,
matrix invesion, eigenproblems, etc. . . )

Non-distributed fast Fourier transformations (FFT)

Dimensionality reduction and low-rank approximations

BerkeleyGW workflow for the GW+BSE procedure.

Four major modules, epsilon and sigma perform the GW part of the workflow

5

https://berkeleygw.org/


Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

Porting BerkeleyGW on Hybrid Architecture

Design: Fast development of porting strategy

Employ a collection of miniapps/kernels simulating the full app running at scale
Assess performance/reliability/interoperability of programming models

Implementation: Achieving best performance → Keep device busy + Hide latency

Exploit asynchronous operations for memcopy and kernels execution
Keep data on device → avoid useless memcopy
Use streams (queues) → high concurrency on device
Enable independent execution on host and device → overlap MPI communication
Exploit available optimized libraries

Assess Improvements: Benchmark collection for performance assessment

Systematically assess performance (strong scaling, weak scaling, FLOP rate, etc..)
Well defined metrics: FLOPs, memory usage, I/O requirements , etc...

6



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

The espilon and sigma Modules

7



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

The GW Method in BerkeleyGW: The espilon and sigma Modules

Solve Dyson’s equation:ï
−1

2
∇2 + VNuc + VH + Σ(En)

ò
φn = Enφn, (1)

Σ(En) → self-energy (non-Hermitian, non-local, energy-dependent operator)

Two Major Computational Bottlenecks:

1 espilon: Polarizability / Dielectric Function ε → O(N4)

2 sigma: Self-Energy Σ (screened-Coulomb interaction) from ε → O(N4)

8



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

espilon: Computational Kernels

Three Major Computational Kernels:

Matrix Elements (MTXEL) → O(N3 logN)

Fast Fourier Transformations (FFTs)
Node local cuFFT library

Static Polarizability (CHI-0) → O(N4)

Large distributed matrix multiplications (short and fat)
Most computationally intensive kernel (100s k rows and 10s M cols)
Node local cuBLAS library (for the ZGEMMs)

Inverse Dielectric Function (inversion): Matrix Inversion → O(N3)

Performed on host using ScalaPACK (for now)
Small fraction of total execution time

espilon exploits accelerated libraries (cuFFT, cuBLAS): achieve best performance →
control memory usage, optimize data transfer and inter-node communication patterns

9



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

espilon: CHI-0 Kernel

Data layout (left) and non-blocking cyclic communication pattern (right) for CHI-0 kernel.

Offloading Data Preparation: Data preparation in χ0 layout is performed on GPU after

offloading M (potential memory bottleneck)

Batching Mechanism: Offload columns of M columns depending on device’s maximum

memory (avoid hitting OOM), repeat communication pattern for each batch

Non-Blocking Cyclic Communication: Perform communication over a ring topology

allowing to overlap ZGEMM on GPU and MPI communication on host

10



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

sigma

sigma computes a set (10− 1000) self-energy matrix elements {Σlm} to solve the
Dyson’s equation. Working equation with Generalized Plasmon Pole model (GPP):

Σlm(E) =
1

2

∑
n

∑
GG′

M−Gnl PGG′ [E − εn]v(G′)M−G
′

nm

P[E − εn] → computed on the fly using ε−1 matrix (from epsilon) and band energy εn

The evaluation of each Σlm represents a data reduction across different matrices with
a complex matrix-vector interdependence → the GPP kennel

sigma implements a two level paralleization:

Inter-pool parallelization: Pools working independently on a subset of {Σlm}
Intra-pool parallelization: Evaluation of each Σlm within a pool

11



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

sigma: the GPP kennel

For large scale applications, almost the entire computational workload in sigma is
performed by the GPP kennel → developed our own kernel

loop G′ < Ndistr
G

. loop G < NG

. . loop n < Ndistr.
b−block

. . . Contract PGG′ with M l
Gn and Mm

G′n

. . . Accumulate σb−block (shared memory)

Reduce σ over GPU thread blocks, CUDA streams, and MPI ranks

The first two loops are collapsed, the Ndist
b loop is unrolled on each thread

The n loop is divided into band blocks (Ndistr
b−block size to fit L1/L2 caches)

Each band block is placed on different CUDA stream (concurrent execution)

Partial reduction on GPU and finalized on host, overlap data-transfer/computation

Non-blocking cyclic communication: overlap computation/communication

12



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

Performance Results

13



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

Benchmarks for Performance Measurement

Parameters Si-214 Si-510 Si-998 SiC-998 Si-2742

Nspin 1 1 1 2 (↑/↓) 1

Nψ
G 31,463 74,653 145,837 422,789 363,477

NG 11,075 26,529 51,627 149,397 141,505

Nb 6,397 15,045 29,346 16,153 80,694

Nv 428 1,020 1,996 1,997/1,995 5,484

Nc 5,969 14,025 27,350 14,156/14,158 75,210

NΣ Variable, up to 128 per spin

Epsilon PFLOPs 2.5 80.5 1164 10,091 66,070

Epsilon Memory (TB) 0.45 6.07 45.1 135 934

Sigma PFLOPs 0.127 1.71 12.6 58.2 260.7

Sigma Memory (GB) 6.19 34.3 133.8 791.4 1006

↑ and ↓ represent spin up and spin down (when Nspin = 2). For Sigma PFLOPs are given per self-energy matrix

element, and that the Sigma Memory is per pool, accounting for device memory only.

Both epsilon and sigma for the largest applications require for their completion
a minimum amount of FLOPs on the order of tens of ExaFLOPs.

14



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

GPU vs CPU Speedup

MTXEL CHI-0 Invert Total

CPU Only 616 1120 10.3 1794

GPU Host-Prep 24.2 100.4 9.3 146.3

GPU Full-Offload 24.4 47.7 9.6 96.3

Runtime comparison (in seconds) of CPU and
GPU implementations for epsilon on Cori-GPU
(2 nodes) at NERSC for Si-214. Epsilon ex-
hibits an overall 18.6× speedup.

Runtime comparison of sigma on CPU
on Cori Haswell and GPU on Summit
(CUDA/OpenACC) for the Si-510 system (4
Σ elements). A 1-to-1 node comparison give a
86× speedup.

CUDA and OpenACC implementation are
within 10% in runtime.

15



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

Weak Scaling

Weak scaling performance of epsilon
on Summit. The number of GPUs
is scaled according to the computa-
tional complexity O(N4) of CHI-0.

Weak scaling performance of sigma
on Summit. The number of GPUs is
scaled according to the O(N3) com-
putational complexity in Cases A, B
and C, and to the number of Σ ma-
trix elements in Cases C, D and E.

16



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

epsilon: Strong Scaling and Flop Rate

SiC-998: 15 mins total on 1600 Summit nodes (9600 GPUs). CHI-0: 18.9 PFLOP/s (27% of peak)

Si-2742: 33 mins total on 4000 Summit nodes (24000 GPUs). CHI-0: 54.8 PFLOP/s (31.4% of peak)

17



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

sigma: Strong Scaling and Flop Rate

Scaling up to 4560 Summit nodes (27,360 GPU’s) 99% of entire Summit. GPP kernel performance for
Si-2742 system: 78.0 PFLOP/s (39.2% of peak)

18



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

Optimizing sigma for Large Scale Applications

Improve I/O exploiting solid-state device memory (SSD)
Data are prepared into a distributed form before the run
Preparation need to be performed only once for each pool size at no cost
Data are pre-staged to node-local SSD memory before execution
At execution each MPI task read data in distributed form directly from local SSD

Improve GPP kernel performance
To reduce data movement, the outer collapsed GG′ loop is tiled with small blocks,
allowing G and G′ local arrays to be kept at least on L2 cache
Some small, frequently used arrays are kept into GPU’s shared memory
Parameters such as number of thread blocks / threads per block / number of CUDA
streams / band-block size are optimized to problem size to achieve best performance
Pool size is tailored to Summit’s cabinet size to optimize communication
performance

Results obtained with the optimized sigma are labelled with ∗

19



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

Optimized (∗) sigma: Strong Scaling and Flop Rate

Scaling up to 4608 Summit nodes (27,648 GPU’s) 100% of entire Summit. Overall time to solution
330s, I/O time 23s. GPP kernel performance for Si-2742 system: 102.1 PFLOP/s (50.9% of peak).

20



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

Summary

Porting BerkeleyGW on GPUs:

More than 10× acceleration compare to CPU architectures

Good strong / weak scaling with high fraction of peak performance

Excellent time to solution for systems made of thousands of atoms

We also show that OpenACC can achieve similar performance as CUDA providing a proof of concept
that a directive-based programming model (syntactically similar to OpenMP) can be nearly as
performant as a vendor specific programming model (CUDA). This is a promising avenue for portability
strategies for large scale legacy codes especially looking forward to all major DOE pre-exascale and
exascale super computers such as Perlmutter, Frontier, El Capitan and Aurora.

21



Introduction BerkeleyGW: Portability Strategy espilon and sigma Modules Performance Results Summary

Thank You!

Collaborators: Charlene Yang (NERSC), Zhenglu Li (UC Berkeley & LBNL), Felipe H. da Jornada

(Stanford University), Steven G. Louie (UC Berkeley & LBNL) and Jack Deslippe (NERSC).

Acknowledgments: This work was supported by the Center for Computational Study of Excited-State

Phenomena in Energy Materials (C2SEPEM) at Lawrence Berkeley National Laboratory (LBNL), which

is funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences

and Engineering Division under Contract No. DE-AC02-05CH11231, as part of the Computational Ma-

terials Sciences Program. Computational resources were provided by Oak Ridge Leadership Computing

Facility through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE)

program, which is a DOE Office of Science User Facility supported under Contract No. DE-AC05-

00OR22725. Computational resources were also provided by the National Energy Research Scientific

Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of

Energy under Contract No. DE-AC02-05CH11231.

22


	Introduction
	BerkeleyGW: Portability Strategy
	espilon and sigma Modules
	Performance Results
	Summary

