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The Roofline Chronical
2005 - 2011 2013 - 2016 2017 - 2019 Future
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§ Developed foundations for 
the Roofline Model

§ Applied to kernels 
using canonical 
flops and bytes

§ Developed performance counter 
Rooflines for CPUs and GPUs

§ Roofline for Simulations and
Machine Learning

§ Incorporated VPU%, divides, 
integer operations

§ FPGAs, CGRAs, AI
processors, …

§ Asymmetric memory 
hierarchies

§ Horizontal data movement
§ Effects of extreme

heterogeneity
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§ Created the ERT prototype 
for CPUs and GPUs

§ Quantified 
CUDA UVM 
effects

§ Collaboration with CRD, Intel
and NVIDIA on hierarchical 
Roofline

§ Integer/instruction/non-FP
Rooflines

§ Rooflines that serialize data 
transfers (vs. assume 
overlap) 

§ Integration with 
compilers/runtimes

Pr
od

uc
tio

n § Roofline model incorporated into 
Intel Advisor

§ Installed at NERSC, LANL, etc

§ Roofline for GPUs 
(multiple vendors)

§ Roofline for FPGAs/CGRAs
§ Integer/instruction/non-FP 

Rooflines
§ CISC/DL instructions
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The Roofline People
Researchers…
• Sam Williams (Roofline Lead, LBL/CRD)
• Doug Doefler (LBL/NERSC)
• Khaled Ibrahim (LBL/CRD)
• Nan Ding (LBL/CRD)
• Yunsong Wang (LBL/NERSC)
• Jack Deslippe (LBL/NERSC)
• Lenny Oliker (RAPIDS deputy, LBL/CRD)
• Terry Ligocki (LBL/CRD)
• Brian Van Straalen (LBL/CRD)
• Aleksandar Ilic (INESC, Portugal) 
• Diogo Marques (INESC, Portugal) 

Vendors/Industry…
• Zakhar Matveev (Intel)
• Max Katz, Magnus Strengert (NVIDIA)
• Constantios Evangelinos (IBM)
• Protonu Basu (Facebook; formerly LBL/CRD)
• Linda Lo (Facebook; formerly U. Utah)
• David Patterson (Google, formerly UC 

Berkeley)
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What is Roofline?



Performance Modelling
Modern architectures are complicated!    A holistic view is important!

1.	https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor
2.	http://on-demand.gputechconf.com/gtc/2016/presentation/s6659-avinash-baliga-perfworks.pdf

Intel Haswell CPU1

NVIDIA Volta GPU2



Performance Modelling
§ Many components contribute to the kernel run time
§ An interplay of application characteristics and machine characteristics 

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
MPI Message Size

MPI Send:Wait ratio
#MPI Wait’s

IO

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
Network Bandwidth
Network Gap
Network Latency
File systems

Roofline Model
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Roofline Performance Model

§ Sustainable performance is bound by

§ Arithmetic Intensity (AI) =  

FLOPs / Bytes

§ How did this come about?
à A CPU DRAM example

Peak GFLOP/s

At
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in
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le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’
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Bandwidth-bound Compute-bound

Peak GFLOP/sGFLOP/s = min AI * Peak GB/s



(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)
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= max

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)
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= min

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM) CPU

(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)Peak GFLOP/s#FP ops

Time (#FP ops / #Bytes) * Peak GB/s
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(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s

Arithmetic Intensity (AI) = FLOPs / Bytes (as presented to DRAM )

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)
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Roofline Performance Model

§ Thus we obtain the model as

where Arithmetic Intensity (AI) is  

FLOPs / Bytes

• Machine Balance (FLOPs/Byte) = 
8.9 (V100, DP, HBM) or 5.1 (KNL, DP, HBM)

Peak GFLOP/s

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

10

Bandwidth-bound Compute-bound

Peak GFLOP/sGFLOP/s = min AI * Peak GB/s



Roofline Performance Model

• A throughput-oriented model
– tracks rates not times, i.e. GFLOP/s, GB/s, not seconds 

• An abstraction over 
– architectures, ISA (CPU, GPU, Haswell, KNL, Pascal, Volta)
– programming models, programming languages 
– numerical algorithms, problem sizes

• In log-log scale to easily extrapolate performance along Moore’s Law
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What can Roofline do?



Roofline is Useful for…
• Identifying performance bottlenecks & motivating software optimizations

• Understanding performance differences between architectures, programming 
models, implementations, etc

• Determining when we’re done optimizing code
– Assess performance relative to machine capabilities
– Motivate need for algorithmic changes

• Predicting performance on future machines / architectures
– Set realistic performance expectations
– Drive for HW/SW Co-Design
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Activities on Roofline
Current, Future



The Roofline Tree

Brings People Together
• NESAP
• CRD
• Intel
• NVIDIA
• all HPCers

Roofline Performance Model

03
Performance
Portability

06
Mixed
Precision

07
Instruction
Roofline

04
Energy
Roofline

05
Scaling

Trajectories

08
ERT

01
Performance
Optimization

02
Vendor

Integration

09
Outreach



1. Performance Optimization
NESAP, Hierarchical Roofline, Roofline drives optimization



Roofline Drives Optimization

The Roofline Model  
• helps you identify the bottlenecks 
• guides you through optimization
• tells you when to stop 

An example:
• NESAP for Cori - BerkeleyGW
(NERSC Exascale Scientific Application Program)
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Roofline Example: BerkeleyGW

Optimization Path for Kernel-C (Sigma):
1. Add OpenMP
2. Initial Vectorization 

• loop reordering
• conditional removal

3. Cache-Blocking
4. Improved Vectorization 

• divides
5. Hyper-threading
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1.1 Roofline Variations



Roofline Performance Model

§ This is a single Roofline

§ What about the memory hierarchy, 
different execution configurations, 
and instruction mixes?

à Hierarchical Roofline
à Multiple compute ceilings

Peak GFLOP/s

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’
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Bandwidth-bound Compute-bound



Hierarchical Roofline

• Superposition of multiple Rooflines
– Incorporates full memory hierarchy 
– Arithmetic Intensity =

FLOPs / BytesL1/L2/HBM/SysMem

• Each kernel will have multiple AI’s 
but one observed GFLOP/s performance

• Hierarchical Roofline tells you about cache locality

At
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in
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le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s
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High Reuse

V100



Cache-Aware Roofline Model (CARM)

Peak Flop/s
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0.11
Arithmetic Intensity (Flop:Byte)

0.20

Peak Flop/s

At
ta
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le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

Single AI based on flop:L1 bytes
Multiple AI’s….
• flop:DRAM ~ 0.20
• flop:L1 ~ 0.11

Capacity misses reduce
DRAM AI and performance

Observed performance
is closer to DRAM line
(== less cache locality)

Cache-Aware RooflineHierarchical Roofline

7-point Stencil 41



Cache-AwareHierarchical          vs
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to the L1 
cache (plus non-temporal stores)

§ AI is Flop:Bytes after being filtered by 
lower cache levels

§ Memory/Cache/Locality effects are 
observed as decreased performance

§ Memory/Cache/Locality effects are 
observed as decreased AI

§ Requires static analysis or binary
instrumentation to measure AI

§ Requires performance counters or
cache simulator to correctly measure AI

3619



• Impact of execution configuration

• Concurrency affects your peak 
– OpenMP thread concurrency 
– SM occupancy
– load balance
– threadblock/thread configuration

• Performance is bound by the actual concurrency ceiling

Threaded Peak

Multiple Compute Ceilings

At
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le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Single Thread
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CPU

Actual 
Concurrency



FMA.f64 Peak

Multiple Compute Ceilings

• Impact of instruction mix

• Applications are usually a mix 
of FMA.f64, ADD.f64, MUL.f64…

• Performance is a weighted average

… bound by a partial FMA ceiling
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O

P/
s

Arithmetic Intensity (FLOP:Byte)

ADD.f64 Peak

21

Partial FMA



1.2 Roofline Drives Optimization



General Optimization Strategy  

§ Broadly speaking, three approaches 
to improving performance:

Peak FLOP/s

No FMA
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s

Arithmetic Intensity (FLOP:Byte)
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General Optimization Strategy 

§ Broadly speaking, three approaches 
to improving performance:

§ Maximize compute performance
§ multithreading
§ vectorization
§ increase SM occupancy
§ utilize FMA instructions
§ minimize thread divergence

Peak FLOP/s

No FMA

At
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in
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le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)
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General Optimization Strategy 

§ Broadly speaking, three approaches     
to improving performance:

§ Maximize compute performance 

§ Maximize memory bandwidth
§ utilize higher-level caches
§ NUMA-aware allocation
§ avoid H-D transfers
§ avoid uncoalesced memory access

Peak FLOP/s

No FMA

At
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le
 F
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P/

s

Arithmetic Intensity (FLOP:Byte)

23



General Optimization Strategy 

§ Broadly speaking, three approaches 
to improving performance:

§ Maximize compute performance 

§ Maximize memory bandwidth 

§ Improve AI
§ minimize data movement 
§ exploit cache reuse

Peak FLOP/s

No FMA

At
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s

Arithmetic Intensity (FLOP:Byte)

C
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y 

AI

C
ur
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nt

 A
I
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1.3 Example Applications



Example 1: GPP, KNL, Cache Blocking

242 GFflop/s, Bound by 
MCDRAM Bandwidth

Most Flops in the main 
loop (⭕)

Read/Write 2MB of data 
per inner loop iteration 
➤ No reuse of data in 
L1/L2, shown by 
overlapping points at 
MCDRAM bandwidth

BW Bound ➤ Increase 
MCDRAM AI by adding 
cache locality

Overlapping 
points at 
MCDRAM BW
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Example 1: GPP, KNL, Cache Blocking

Cache blocking implemented 
to achieve L2 data reuse

3x Increase in MCDRAM AI

Performance increased from 
242 to 287 GFlop/s (+18%)

Why not 3x Flops increase? 
➤ Not BW bound any more,   
divide, shuffle and unpack 
instructions involved

• T. Koskela, Z. Matveev, C. Yang, A. Adetokunbo, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H. Shan, L. Oliker, J. Deslippe, R. Green, 
and S. Williams, A Novel Multi-Level Integrated Roofline Model Approach for Performance Characterization, ISC’2018 Research Paper, 
Jun 24-28 2018, Frankfurt



Example 1: GPP, V100, Hierarchical

Three experiments to study the effects of 
• cache reuse (varying nw from 1 to 6)
• instruction mix (FMA vs. Mul/Add)
• memory coalescing 

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do ig = 1, ncouls #threadIdx.x
do iw = 1, nw #unrolled

compute; reductions

• Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for 
the NERSC-9 Perlmutter System", Cray User Group (CUG), May 2019.



Example 2: XGC1, KNL

(Left) Hotspots for unoptimized XGC1 on 1024 Cori KNL nodes in Quad-Flat mode; 
(Right) Speedup in XGC1 Electron Push routine after back porting the optimizations made in ToyPush kernel 

3x
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Example 2: ToyPush from XGC1

• Force Kernel:  
• close to vector add peak
• not much optimization done

• Interpolate Kernel: 
• L1 blocking, indirect memory access
• memory alignment, more efficient vectorization
• 10x speedup, closer to vector FMA peak

• Search Kernel: 
• multiple exits, simd private, enable vectorization
• 3x speedup, closer to L2 bandwidth roof

• Code is available at 
• https://github.com/tkoskela/toypush

Force Calc.
Interpolate
Search

Marker size ~= CPU time
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Example 3: conv2d from TensorFlow

• Kernel tf.nn.conv2d  

https://www.tensorflow.org
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Example 3: conv2d from TensorFlow

exec_op:
• forward pass -- conv in 2D
• backward pass -- conv + derivative
• calibrate -- tensor generation 

#generate random input tensor
input_image = tf.random_uniform(shape=input_size, minval=0., maxval=1., dtype=dtype)
#create network
output_result = conv2d(input_image, ’NHWC’, kernel_size, stride_size, dtype) 

#choose operation depending on pass
if pass=="forward":

with tf.device(gpu_dev):
exec_op = output_result

elif pass=="backward":
with tf.device(gpu_dev):
opt = tf.train.Gradient\

DescentOptimizer(0.5)
exec_op = opt.compute\

_gradients(output_result)
elif pass=="calibrate":

with tf.device(gpu_dev):
exec_op = input_image
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Example 3: conv2d from TensorFlow

• Each TensorFlow kernel translates to a series of subkernels
– padding, shuffling, data conversion, etc

• TensorFlow based on heuristics decides what subkernels to call

• cuDNN also has some algorithm selection mechanism 

• We INCLUDE the housekeeping subkernels in our measurements, 
but EXCLUDE the autotuning subkernels

• C. Yang, S. Williams, Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter
System, CUG’2019, May 5-9 2019, Montreal, Canada



Example 3: TF / Forward Pass

#Filters
o Intensity ∝ #Filters
o Low L2 data locality
o Some use of TC’s (>FP16 

FMA)… partial TC ceiling

#Kernel Size
o Intensity ∝ kernel size
o Low L2 data locality
o Autotuner switched FP32 

algorithm to FFT at 9x9
o Some use of TC’s (>FP16 

FMA)… partial TC ceiling

#Batch Size
o Constant performance(no!)
o FP16 performance anti-

correlated with batch size
o Performance << TC peak
o Transformation kernels
o Low L2 locality
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Example 3: TF / Backward Pass

#Batch Size
o Autotuner chose different 

(better) algorithm for FP32 
with batch size = 64 (boost)

#Filters
o Close to FP16 TC peak
o Close to FP32 FMA peak

#Kernel Size
o Good FP32 performance 

trend (almost peak)
o Autotuner chose to run 

9x9 FP16 in FP32 !!
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Summary

• Useful for characterization as well as optimization of HPC 
applications

• Roofline has a wide applicability 
– different architectures (KNL, V100, …)
– different algorithms (Simulation, Machine Learning, …) 
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2. Vendor Integration
Intel VTune, LIKWID, Intel Advisor, NVIDIA nvprof



Pen and Paper

§ Example #1:    STREAM Triad

• 2 FLOPs per iteration
• Transfer 24 bytes per iteration 

• read X[i], Y[i], and write Z[i]

• AI = 0.083 FLOPs per byte 
• Memory bound

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (Flop:Byte)

TRIAD

GFLOP/s ≤ AI * DRAM GB/s

for(i=0;i<N;i++){
Z[i] = X[i] + alpha*Y[i];

}

0.083

Peak FLOP/s
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Pen and Paper
§ Example #2:    7-pt stencil

• 7 FLOPs; 8 memory references (7 reads, 1 store) per pt
• Cache can filter all but 1 read and 1 write per pt
• AI = 0.44 FLOPs per byte 
• Memory bound, but 5x the GFLOP/s rate

At
ta

in
ab

le
 F

LO
P/

s

7-point Stencil

GFLOP/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak FLOP/s

for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

new[k][j][i] = -6.0*old[k  ][j  ][i ] 
+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

1136
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Pen and Paper

• Not scalable for real-life applications

• Millions of lines of code; mix of different languages

• Complicated modern architecture
– memory hierarchy, caching effects 
– ISA

• Different problem sizes
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We Need Tools!

38

• Roofline ceilings
– vendor specifications
– empirical measurements

• ERT
• https://bitbucket.org/be

rkeleylab/cs-roofline-
toolkit



We Need Tools!

39

Where to put these dots?



Require three raw measurements:
– Runtime
– FLOPs
– Bytes (on each cache level)

In order to calculate AI and GFLOP/s:

We Need Tools!

Performance	=	
FLOPs
Runtime

		

Arithmetic	Intensity	=	
FLOPs

Data	Movement

(GFLOP/s)

(FLOPs/Byte)

40

Where to put these dots?



Methodology to Construct Roofline 

1. Collect Roofline ceilings
– compute (FMA/no FMA) and bandwidth (DRAM, L2, …)
– ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit 

2. Collect application performance
– FLOPs, bytes (DRAM, L2, …), runtime
– SDE, VTune, LIKWID, Advisor, nvprof, …

3. Plot Roofline with Python Matplotlib (or other tools of your preference)
– arithmetic intensity, GFLOP/s performance, ceilings
– example scripts: https://github.com/cyanguwa/nersc-roofline
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2.1 Intel CPUs and NVIDIA GPUs



Data Collection on Intel CPUs

The not-so-automated way 1:
• Intel SDE for FLOPs  (emulation)
• Intel VTune for DRAM bytes (HW counters)
• Runtime

• DRAM Roofline only

• Used by NESAP for Cori
– NERSC Exascale Science Application Program
– http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
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Data Collection on Intel CPUs
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Data Collection on Intel CPUs

The not-so-automated way 2:
• LIKWID for FLOPs and bytes

– Both are based on HW counters
• Runtime

• Hierarchical Roofline

• Limited by quality of HW counters
• High-level characterization, no callstack
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Data Collection on Intel CPUs

The fully automated way:
• Intel Advisor, Roofline feature
• Instrument applications automatically

– one dot per loop nest/function
• FLOPs, bytes and runtime

• Hierarchical Roofline

• Integrates with other Advisor capabilities
• Benchmarks target system 

Memory-bound, invest into 
cache blocking etc

Compute bound: invest 
into SIMD,..
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Data Collection on Intel CPUs

New features in Intel Advisor 2019
(picture courtesy of Z. Matveev)

46

https://software.intel.com
/en-us/intel-advisor-
2019-release-notes



Data Collection on NVIDIA GPUs
• Still manual at this stage, but…

• Runtime: 
– Internal timers or nvprof --print-gpu-trace 

• FLOPs:
– DP/SP/HP counters and metrics, nvprof --metrics 

‘flop_count_dp/sp/hp’ or `tensor_precision_fu_utilization’

• Bytes for different cache levels:
– Bytes = (read transactions + write transactions) x transaction size
– nvprof --metrics ‘metric_name’ e.g. gld/gst_transactions

• Hierarchical Roofline
47



The Roofline Tree

Brings People Together
• NESAP
• CRD
• Intel
• NVIDIA
• all HPCers
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3. Performance Portability
Definition, Metric, Roofline, KNL, V100



Introduction
• No consensus on the definition or metric for performance portability
• But Pennycook et al…

• Application’s Efficiency ?
– application performance on platform 𝑖 / peak performance of platform 𝑖
– application performance on platform 𝑖 / application’s best performance 

on all platforms of interest 𝑯

𝜱 𝑎, 𝑝,𝑯 = A
|𝑯|

∑ D
𝒆𝒊(𝒂,𝒑)

�
L∈𝑯

		if	𝑖	is	supported,	∀𝑖 ∈ 𝑯	

0												otherwise																		

S. J. Pennycook, J. D. Sewall, and V. Lee, “A metric for performance portability,” arXiv:1611.07409, 2016.

Application’s Efficiency on platform 𝒊

Architectural Efficiency

Application Efficiency



Introduction
• No consensus on the definition or metric for performance portability
• But Pennycook et al…

• Architectural Efficiency [Williams et al]

𝜱 𝑎, 𝑝,𝑯 = A
|𝑯|

∑ D
ST(U,V)

�
L∈𝑯

		if	𝑖	is	supported,	∀𝑖 ∈ 𝑯	

0												otherwise																		

𝑒L 𝑎, 𝑝 =
𝑃L(𝑎, 𝑝)

min	(𝐹L, 	𝐵L	×	𝐼L(𝑎, 𝑝))

Max Attainable Performance defined by 
Roofline

Actual Application Performance

• S. J. Pennycook, J. D. Sewall, and V. Lee, “A metric for performance portability,” arXiv:1611.07409, 2016.
• S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual performance model for multicore architectures,” Communications 

of the ACM, vol. 52, no. 4, pp. 65–76, 2009.



Introduction
• No consensus on the definition or metric for performance portability
• But Pennycook et al…

• Architectural Efficiency [Williams et al]

Peak FLOP/s

Peak Bandwidth
Arithmetic Intensity

𝜱 𝑎, 𝑝,𝑯 = A
|𝑯|

∑ D
ST(U,V)

�
L∈𝑯

		if	𝑖	is	supported,	∀𝑖 ∈ 𝑯	

0												otherwise																		

𝑒L 𝑎, 𝑝 =
𝑃L(𝑎, 𝑝)

min	(𝐹L, 	𝐵L	×	𝐼L(𝑎, 𝑝))
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• Bottleneck shifts at 𝒏𝒘 = 𝟐 on KNL vs. V100 (no-FMA performance)
• Easier to achieve no-FMA ceiling on V100 than KNL, due to higher ratio 

of instruction issue bandwidth vs. instruction execution bandwidth

Bottleneck Changes

• C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo, B. Friesen, B. Cook, D. Doerfler, L. Oliker, J. Deslippe, S. Williams, An 
Empirical Roofline Methodology for Quantitatively Assessing Performance Portability, SC’2018 P3HPC Workshop, Nov 11-16 2018, Dallas



• No FMA: performance portability consistently > 80%
• FMA: benefit is far less than 2x at high 𝒏𝒘; architectural efficiency suffers   

(so does performance portability)
• Could regain some architectural efficiency if non-floating-point vector 

operations were considered

Architectural Efficiency 𝑛𝑤 = 1 𝑛𝑤 = 2 𝑛𝑤 = 3 𝑛𝑤 = 4 𝑛𝑤 = 5 𝑛𝑤 = 6

FMA
KNL 84.98% 77.50% 66.77% 55.28% 46.56% 39.65% 
V100 97.36% 91.50% 76.70% 65.44% 65.07% 66.38% 

Performance Portability 90.76% 83.92% 71.39% 59.93% 54.28% 49.65% 

No-FMA
KNL 82.06% 72.95% 73.74% 78.72% 81.28% 82.81% 
V100 92.88% 92.88% 97.43% 98.91% 1 99.73% 

Performance Portability 87.14% 81.72% 83.95% 87.67% 89.93% 90.49% 

Bottleneck Changes
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Summary

• Roofline is very powerful in capturing changes in machine and application 
characteristics such as

– compute/bandwidth bound, problem size 
– instruction issue bandwidth, strided memory access 

• It is important to 
– measure bandwidth/compute ceilings empirically
– account for non-multiply/add instructions appropriately
– select relevant ceilings in performance analysis and performance 

portability analysis
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4. Energy Roofline
Performance, Power Consumption, Energy Efficiency



Energy Roofline - GEMM

Cache-aware Roofline Models

• A. Ilic, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrading the loft”, IEEE Computer Architecture Letters (2013)
• A. Ilic, F. Pratas and L. Sousa, “Beyond the Roofline: Cache-aware Power & Energy-Efficiency…”, IEEE Transactions on Computers (2017) 

VERSION OPTIMIZATION STRATEGY

1 Basic implementation: Row-major matrices  

2 Improved memory access by transposing B matrix

3, 4, 5 Blocking for caches: L3 (pt. 3), L2 (pt. 4) and L1 (pt. 5)

6 Highly optimized Intel MKL implementation

• Power Consumption based on CARM
– Relates Watts with FLOPs/bytes
– Defines power envelope for different

types of FP and memory operations



Use Cases
Application Characterization

Online Monitoring

• Ilic, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Cache-aware Power & Energy-Efficiency Modeling…”, IEEE Transactions on Computers (2017)   
• Antão, D., et.al.,“Monitoring Performance and Power for Application Characterization with CARM”, PPAM’13

2-4

2-2

20

22

24

2-7 2-6 2-5 2-4 2-3 2-2 2-1 20 21

Pe
rf

or
m

an
ce

 [G
�o

ps
/s

]

Operational Intensity [�ops/byte]

AVX MAD

AVX MUL/SSE MAD

SSE MUL/DBL MAD

DBL MUL

DRAM

tonto
vdot

vmmul
gamess

gromacs
namd

povray
spvdot

spvvmul
milc

soplex
GemsFDTD

dgemm
lu

calculix
2d�tc
3d�tc

spmmul
vvmul

zeusmp
cactusADM

leslie3d
lbm

DBL SSE AVX

Arithmetic Intensity [flops/byte]
 23

 24

 25

 26

 27

 28

2-7 2-6 2-5 2-4 2-3 2-2 2-1

Po
w

er
 [W

]

Operational Intensity [�ops/byte]

L1 (AVX LD)

L1 (DBL)

L1 (DBL MUL)

DRAM (AVX)

L3 (AVX)

DRAM (DBL)

L1 (AVX LD+ST)

Arithmetic Intensity [flops/byte]

2-8

2-6

2-4

2-2

20

2-8 2-7 2-6 2-5 2-4 2-3 2-2 2-1 20 21 22

En
er

gy
 E
�

ci
en

cy
 [G

�o
ps

/J]

Operational Intensity [�ops/byte]

AVX MAD
AVX MUL/SSE MAD
SSE MUL/DBL MAD

DBL MUL

DRAM

Arithmetic Intensity [flops/byte]

2-1

20

21

22

23

2-5 2-4 2-3

Pe
rf

or
m

an
ce

 [G
�o

ps
/s

]

Operational Intensity [�ops/byte]

SSE MUL

DBL MULL1 (SSE)

L1 (DBL)

DRAM (SSE)DRAM (DBL)

DBL SSE AVX

Arithmetic Intensity [flops/byte]

 23

 24

 25

 26

 27

 28

2-4 2-3 2-2

Po
w

er
 [W

]

Operational Intensity [�ops/byte]

L1

L1 (MUL)

L2
L3

DRAM

Arithmetic Intensity [flops/byte]

20

21

2-2 2-1 20

En
er

gy
 E
�

ci
en

cy
 [G

�o
ps

/J]

Operational Intensity [�ops/byte]

L1 (AVX MAD)

L2
L3

Arithmetic Intensity [flops/byte]



5. Scaling Trajectories
What’s causing bad scaling from Roofline point of view?



Roofline Scaling Trajectories

• We often plot performance as 
a function of thread concurrency

– Carries no insight or analysis
– Provides no actionable info

#Threads
1 2 4 8 16 32 64
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Roofline Scaling Trajectories
§ We often plot performance as a 

function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.

§ Use Roofline to analyze thread 
(or process) scalability
o 2D scatter plot of performance as a 

function of intensity and concurrency
o Identify loss in performance due to 

increased cache pressure (data 
movement)

• Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A Method for Parallel Application and Architectural Performance 
Analysis", HPBench, July 2018



6. Mixed Precision
FP64, FP32, FP16, CPU, GPU



Mixed Precision

Benefits of reduced/mixed precision:
● From FP64 to FP32

○ 2x due to bandwidth savings or 
compute unit availability

○ similar for network communication 
● More support on modern architectures

○ ~15x FP16 over FP64 for some ops

NESAP collaboration with CRD (Costin Iancu) 
and NVIDIA (Chris Newburn)

FP16 Peak

At
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in
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le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

FP64 Peak

Mixed Precision
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7. Instruction Roofline
FLOP, INTOP, IPC



Instruction Roofline
§ FP instructions can be the 

minority in many HPC codes
§ Emerging domains have ~no FP

o Graphs
o Hash tables
o Bloom filters
o Searches

§ FLOPs is agnostic of precision, 
scalar/vectors/tensors, …

At
ta

in
ab

le
 V

U
O

P/
s

Arithmetic Intensity 
(FLOP:Byte -> VUOP:Byte)

§ Instruction Roofline

Peak VUOP/s
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VUOP RooflineFLOP Roofline

§ FMA cuts Arithmetic Intensity in 
half (half the number of VUOPS)

§ FMA doesn’t change Arithmetic 
Intensity (FMA == FMUL+FADD)

§ Vector integer operations 
increases Arithmetic Intensity

§ Vector integer operations don’t 
change Arithmetic Intensity

§ Changing precision doesn’t change 
Arithmetic Intensity

§ Reducing precision (64b, 32b, 16b) 
increases Arithmetic Intensity

§ vectors/tensors reduce Arithmetic 
Intensity (SIMD cuts VUOPS by 8x)

§ Vectors/tensors don’t change 
Arithmetic Intensity

Ø Tells us about VPU/pipeline 
utilization and bottlenecks

Ø Tells us about performance

62

Instruction Roofline

VUOPs-based RooflineFLOPs-based Roofline



8. Empirical Roofline Toolkit (ERT)
Machine Characterization, Peak FLOP/s, Bandwidths



Empirical vs. Theoretical Ceilings
Theoretical compute ceiling on KNL:

Theoretical compute ceiling on V100:
𝟔𝟒	cores	×	𝟖	DP/vector	×	𝟐	FLOPs/FMA	×	𝟐	vectors	×	𝟏. 𝟐	GHz	 = 𝟐. 𝟒𝟔	TFLOP/s

𝟖𝟎	SMs	×	𝟑𝟐	FP64	cores/SM	×	𝟐	FLOPs/FMA	×	𝟏. 𝟓𝟑GHz = 𝟕. 𝟖𝟑	TFLOP/s

10%3%

10%22%

63 Voltar at UOregonCori KNL partition



Machine Characterization
• ERT can’t detect all the ceilings yet - IN DEVELOPMENT!

– Haswell/KNL:   L1, L2, L3/HBM, DDR
– V100: L2, HBM, DDR

• Our goal is to incorporate 
– the full memory hierarchy 
– instruction mix (e.g. FMA/no-FMA)
– data type (e.g. FP64, FP32, FP16)
– compute units 

(e.g. CPU/CUDA core/Tensor core)

• Ceilings can be omitted if irrelevant 

Empirical Roofline Toolkit (ERT). https://bitbucket.org/berkeleylab/cs-roofline-toolkit/ 



9. Outreach
Tutorials, Talks, Publications, Collaboration



Tutorials

• T. Koskela, A. Ilic, Z. Matveev, S. Williams, P. Thierry, C. Yang, Performance Tuning of Scientific 
Codes with the Roofline Model, SC’2017 Half-Day Tutorial, Nov 12-17 2017, Denver

• T. Koskela, A. Ilic, Z. Matveev, R. Belenov, C. Yang, L. Sousa, A Practical Approach to Application 
Performance tuning with the Roofline Model, ISC’2018 Half-Day Tutorial, Jun 24-28 2018, Frankfurt

• S. Williams, A. Ilic, Z. Matveev, C. Yang, Performance Tuning of Scientific Codes with the Roofline 
Model, SC’2018 Half-Day Tutorial, Nov 11-16 2018, Dallas

• S. Williams, J. Deslippe, C. Yang, P. Basu, Performance Tuning of Scientific Codes with the Roofline 
Model, Exascale Computing Project 2nd Annual Meeting, Feb 5-9, 2018, Knoxville

• C. Yang, Z. Matveev, A. Ilic, D. Marques, Performance Optimization of Scientific Codes with the 
Roofline Model, ISC’2019 Half-Day Tutorial, Jun 16-20 2019, Frankfurt

• S. Williams, J. Deslippe, C. Yang, Performance Tuning of Scientific Codes with the Roofline Model, 
Exascale Computing Project (ECP) Annual Meeting, Jan 14-18, 2019, Houston
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Talks

• C. Yang, S. Williams, Performance Analysis of GPU-Accelerated Applications using the Roofline 
Model, GTC’2019, Mar 17-21 2019, San Jose

• C. Yang, Roofline Performance Analysis with nvprof, NERSC/NVIDIA F2F, Feb 7 2019, Berkeley
• C. Yang, S. Williams, Performance tools and performance counters, Intel PathForward Hack-a-Thon, 

Apr 10-12 2018, Santa Clara
• C. Yang, Performance Analysis of GPU-Accelerated Applications using the Roofline Model, Cray 

COE Webinar, Apr 11 2019, Berkeley
• J. Pennycook, C. Yang, J. Deslippe, Quantitatively Assessing Performance Portability with Roofline, 

IDEAS webinar, Jan 23 2019, https://ideas-productivity.org/
• C. Yang, T. Kurth, Roofline Performance Model and Intel Advisor, Performance Analysis and 

Modeling (PAM) Workshop, Feb 14-15 2018, Brookhaven National Laboratory
• C. Yang, Introduction to Performance & Scalability Tools, DOE CSGF Annual Review, Jul 15-19 2018, 

Arlington
• C. Yang, Using Intel Tools at NERSC, Intel KNL Training, May 22-23 2019, Berkeley
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All Publications…

LBNL CRD Roofline Research:

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/publications/

Collaborate with us! 
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Closing



Roofline Helps

• Drive performance optimization
– Application characterization, application readiness 

• Create a dialogue between Applied Maths and CS
– Communication-avoiding algorithms, high-order methods, 

new algorithms

• Facilitate cross-architecture comparisons for procurements
– CPUs, GPUs, other accelerators
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