
Charlene Yang
Application Performance Specialist

NERSC, LBNL

The Current and Future of Roofline

The Roofline Chronical
2005 - 2011 2013 - 2016 2017 - 2019 Future

R
es

ea
rc

h

§ Developed foundations for
the Roofline Model

§ Applied to kernels
using canonical
flops and bytes

§ Developed performance counter
Rooflines for CPUs and GPUs

§ Roofline for Simulations and
Machine Learning

§ Incorporated VPU%, divides,
integer operations

§ FPGAs, CGRAs, AI
processors, …

§ Asymmetric memory
hierarchies

§ Horizontal data movement
§ Effects of extreme

heterogeneity

Pr
ot

ot
yp

e

§ Created the ERT prototype
for CPUs and GPUs

§ Quantified
CUDA UVM
effects

§ Collaboration with CRD, Intel
and NVIDIA on hierarchical
Roofline

§ Integer/instruction/non-FP
Rooflines

§ Rooflines that serialize data
transfers (vs. assume
overlap)

§ Integration with
compilers/runtimes

Pr
od

uc
tio

n § Roofline model incorporated into
Intel Advisor

§ Installed at NERSC, LANL, etc

§ Roofline for GPUs
(multiple vendors)

§ Roofline for FPGAs/CGRAs
§ Integer/instruction/non-FP

Rooflines
§ CISC/DL instructions

1

The Roofline People
Researchers…
• Sam Williams (Roofline Lead, LBL/CRD)
• Doug Doefler (LBL/NERSC)
• Khaled Ibrahim (LBL/CRD)
• Nan Ding (LBL/CRD)
• Yunsong Wang (LBL/NERSC)
• Jack Deslippe (LBL/NERSC)
• Lenny Oliker (RAPIDS deputy, LBL/CRD)
• Terry Ligocki (LBL/CRD)
• Brian Van Straalen (LBL/CRD)
• Aleksandar Ilic (INESC, Portugal)
• Diogo Marques (INESC, Portugal)

Vendors/Industry…
• Zakhar Matveev (Intel)
• Max Katz, Magnus Strengert (NVIDIA)
• Constantios Evangelinos (IBM)
• Protonu Basu (Facebook; formerly LBL/CRD)
• Linda Lo (Facebook; formerly U. Utah)
• David Patterson (Google, formerly UC

Berkeley)

2

What is Roofline?

Performance Modelling
Modern architectures are complicated! A holistic view is important!

1.	https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor
2.	http://on-demand.gputechconf.com/gtc/2016/presentation/s6659-avinash-baliga-perfworks.pdf

Intel Haswell CPU1

NVIDIA Volta GPU2

Performance Modelling
§ Many components contribute to the kernel run time
§ An interplay of application characteristics and machine characteristics

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
MPI Message Size

MPI Send:Wait ratio
#MPI Wait’s

IO

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
Network Bandwidth
Network Gap
Network Latency
File systems

Roofline Model

4

Roofline Performance Model

§ Sustainable performance is bound by

§ Arithmetic Intensity (AI) =

FLOPs / Bytes

§ How did this come about?
à A CPU DRAM example

Peak GFLOP/s

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

5

Bandwidth-bound Compute-bound

Peak GFLOP/sGFLOP/s = min AI * Peak GB/s

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

6

= max

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

7

= min

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM) CPU

(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)Peak GFLOP/s#FP ops

Time (#FP ops / #Bytes) * Peak GB/s

8

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s

Arithmetic Intensity (AI) = FLOPs / Bytes (as presented to DRAM)

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

9

Roofline Performance Model

§ Thus we obtain the model as

where Arithmetic Intensity (AI) is

FLOPs / Bytes

• Machine Balance (FLOPs/Byte) =
8.9 (V100, DP, HBM) or 5.1 (KNL, DP, HBM)

Peak GFLOP/s

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

10

Bandwidth-bound Compute-bound

Peak GFLOP/sGFLOP/s = min AI * Peak GB/s

Roofline Performance Model

• A throughput-oriented model
– tracks rates not times, i.e. GFLOP/s, GB/s, not seconds

• An abstraction over
– architectures, ISA (CPU, GPU, Haswell, KNL, Pascal, Volta)
– programming models, programming languages
– numerical algorithms, problem sizes

• In log-log scale to easily extrapolate performance along Moore’s Law

11

What can Roofline do?

Roofline is Useful for…
• Identifying performance bottlenecks & motivating software optimizations

• Understanding performance differences between architectures, programming
models, implementations, etc

• Determining when we’re done optimizing code
– Assess performance relative to machine capabilities
– Motivate need for algorithmic changes

• Predicting performance on future machines / architectures
– Set realistic performance expectations
– Drive for HW/SW Co-Design

12

Activities on Roofline
Current, Future

The Roofline Tree

Brings People Together
• NESAP
• CRD
• Intel
• NVIDIA
• all HPCers

Roofline Performance Model

03
Performance
Portability

06
Mixed
Precision

07
Instruction
Roofline

04
Energy
Roofline

05
Scaling

Trajectories

08
ERT

01
Performance
Optimization

02
Vendor

Integration

09
Outreach

1. Performance Optimization
NESAP, Hierarchical Roofline, Roofline drives optimization

Roofline Drives Optimization

The Roofline Model
• helps you identify the bottlenecks
• guides you through optimization
• tells you when to stop

An example:
• NESAP for Cori - BerkeleyGW
(NERSC Exascale Scientific Application Program)

14

Roofline Example: BerkeleyGW

Optimization Path for Kernel-C (Sigma):
1. Add OpenMP
2. Initial Vectorization

• loop reordering
• conditional removal

3. Cache-Blocking
4. Improved Vectorization

• divides
5. Hyper-threading

15

1.1 Roofline Variations

Roofline Performance Model

§ This is a single Roofline

§ What about the memory hierarchy,
different execution configurations,
and instruction mixes?

à Hierarchical Roofline
à Multiple compute ceilings

Peak GFLOP/s

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

16

Bandwidth-bound Compute-bound

Hierarchical Roofline

• Superposition of multiple Rooflines
– Incorporates full memory hierarchy
– Arithmetic Intensity =

FLOPs / BytesL1/L2/HBM/SysMem

• Each kernel will have multiple AI’s
but one observed GFLOP/s performance

• Hierarchical Roofline tells you about cache locality

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

17

High Reuse

V100

Cache-Aware Roofline Model (CARM)

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

Single AI based on flop:L1 bytes
Multiple AI’s….
• flop:DRAM ~ 0.20
• flop:L1 ~ 0.11

Capacity misses reduce
DRAM AI and performance

Observed performance
is closer to DRAM line
(== less cache locality)

Cache-Aware RooflineHierarchical Roofline

7-point Stencil 41

Cache-AwareHierarchical vs
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to the L1
cache (plus non-temporal stores)

§ AI is Flop:Bytes after being filtered by
lower cache levels

§ Memory/Cache/Locality effects are
observed as decreased performance

§ Memory/Cache/Locality effects are
observed as decreased AI

§ Requires static analysis or binary
instrumentation to measure AI

§ Requires performance counters or
cache simulator to correctly measure AI

3619

• Impact of execution configuration

• Concurrency affects your peak
– OpenMP thread concurrency
– SM occupancy
– load balance
– threadblock/thread configuration

• Performance is bound by the actual concurrency ceiling

Threaded Peak

Multiple Compute Ceilings

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Single Thread

20

CPU

Actual
Concurrency

FMA.f64 Peak

Multiple Compute Ceilings

• Impact of instruction mix

• Applications are usually a mix
of FMA.f64, ADD.f64, MUL.f64…

• Performance is a weighted average

… bound by a partial FMA ceiling

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

ADD.f64 Peak

21

Partial FMA

1.2 Roofline Drives Optimization

General Optimization Strategy

§ Broadly speaking, three approaches
to improving performance:

Peak FLOP/s

No FMA

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

22

General Optimization Strategy

§ Broadly speaking, three approaches
to improving performance:

§ Maximize compute performance
§ multithreading
§ vectorization
§ increase SM occupancy
§ utilize FMA instructions
§ minimize thread divergence

Peak FLOP/s

No FMA

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

23

General Optimization Strategy

§ Broadly speaking, three approaches
to improving performance:

§ Maximize compute performance

§ Maximize memory bandwidth
§ utilize higher-level caches
§ NUMA-aware allocation
§ avoid H-D transfers
§ avoid uncoalesced memory access

Peak FLOP/s

No FMA

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

23

General Optimization Strategy

§ Broadly speaking, three approaches
to improving performance:

§ Maximize compute performance

§ Maximize memory bandwidth

§ Improve AI
§ minimize data movement
§ exploit cache reuse

Peak FLOP/s

No FMA

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

C
om

pu
ls

or
y

AI

C
ur

re
nt

 A
I

23

1.3 Example Applications

Example 1: GPP, KNL, Cache Blocking

242 GFflop/s, Bound by
MCDRAM Bandwidth

Most Flops in the main
loop (⭕)

Read/Write 2MB of data
per inner loop iteration
➤ No reuse of data in
L1/L2, shown by
overlapping points at
MCDRAM bandwidth

BW Bound ➤ Increase
MCDRAM AI by adding
cache locality

Overlapping
points at
MCDRAM BW

24

Example 1: GPP, KNL, Cache Blocking

Cache blocking implemented
to achieve L2 data reuse

3x Increase in MCDRAM AI

Performance increased from
242 to 287 GFlop/s (+18%)

Why not 3x Flops increase?
➤ Not BW bound any more,
divide, shuffle and unpack
instructions involved

• T. Koskela, Z. Matveev, C. Yang, A. Adetokunbo, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H. Shan, L. Oliker, J. Deslippe, R. Green,
and S. Williams, A Novel Multi-Level Integrated Roofline Model Approach for Performance Characterization, ISC’2018 Research Paper,
Jun 24-28 2018, Frankfurt

Example 1: GPP, V100, Hierarchical

Three experiments to study the effects of
• cache reuse (varying nw from 1 to 6)
• instruction mix (FMA vs. Mul/Add)
• memory coalescing

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do ig = 1, ncouls #threadIdx.x
do iw = 1, nw #unrolled

compute; reductions

• Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for
the NERSC-9 Perlmutter System", Cray User Group (CUG), May 2019.

Example 2: XGC1, KNL

(Left) Hotspots for unoptimized XGC1 on 1024 Cori KNL nodes in Quad-Flat mode;
(Right) Speedup in XGC1 Electron Push routine after back porting the optimizations made in ToyPush kernel

3x

27

Example 2: ToyPush from XGC1

• Force Kernel:
• close to vector add peak
• not much optimization done

• Interpolate Kernel:
• L1 blocking, indirect memory access
• memory alignment, more efficient vectorization
• 10x speedup, closer to vector FMA peak

• Search Kernel:
• multiple exits, simd private, enable vectorization
• 3x speedup, closer to L2 bandwidth roof

• Code is available at
• https://github.com/tkoskela/toypush

Force Calc.
Interpolate
Search

Marker size ~= CPU time

28

Example 3: conv2d from TensorFlow

• Kernel tf.nn.conv2d

https://www.tensorflow.org

29

Example 3: conv2d from TensorFlow

exec_op:
• forward pass -- conv in 2D
• backward pass -- conv + derivative
• calibrate -- tensor generation

#generate random input tensor
input_image = tf.random_uniform(shape=input_size, minval=0., maxval=1., dtype=dtype)
#create network
output_result = conv2d(input_image, ’NHWC’, kernel_size, stride_size, dtype)

#choose operation depending on pass
if pass=="forward":

with tf.device(gpu_dev):
exec_op = output_result

elif pass=="backward":
with tf.device(gpu_dev):
opt = tf.train.Gradient\

DescentOptimizer(0.5)
exec_op = opt.compute\

_gradients(output_result)
elif pass=="calibrate":

with tf.device(gpu_dev):
exec_op = input_image

30

Example 3: conv2d from TensorFlow

• Each TensorFlow kernel translates to a series of subkernels
– padding, shuffling, data conversion, etc

• TensorFlow based on heuristics decides what subkernels to call

• cuDNN also has some algorithm selection mechanism

• We INCLUDE the housekeeping subkernels in our measurements,
but EXCLUDE the autotuning subkernels

• C. Yang, S. Williams, Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter
System, CUG’2019, May 5-9 2019, Montreal, Canada

Example 3: TF / Forward Pass

#Filters
o Intensity ∝ #Filters
o Low L2 data locality
o Some use of TC’s (>FP16

FMA)… partial TC ceiling

#Kernel Size
o Intensity ∝ kernel size
o Low L2 data locality
o Autotuner switched FP32

algorithm to FFT at 9x9
o Some use of TC’s (>FP16

FMA)… partial TC ceiling

#Batch Size
o Constant performance(no!)
o FP16 performance anti-

correlated with batch size
o Performance << TC peak
o Transformation kernels
o Low L2 locality

32

Example 3: TF / Backward Pass

#Batch Size
o Autotuner chose different

(better) algorithm for FP32
with batch size = 64 (boost)

#Filters
o Close to FP16 TC peak
o Close to FP32 FMA peak

#Kernel Size
o Good FP32 performance

trend (almost peak)
o Autotuner chose to run

9x9 FP16 in FP32 !!

33

Summary

• Useful for characterization as well as optimization of HPC
applications

• Roofline has a wide applicability
– different architectures (KNL, V100, …)
– different algorithms (Simulation, Machine Learning, …)

34

2. Vendor Integration
Intel VTune, LIKWID, Intel Advisor, NVIDIA nvprof

Pen and Paper

§ Example #1: STREAM Triad

• 2 FLOPs per iteration
• Transfer 24 bytes per iteration

• read X[i], Y[i], and write Z[i]

• AI = 0.083 FLOPs per byte
• Memory bound

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (Flop:Byte)

TRIAD

GFLOP/s ≤ AI * DRAM GB/s

for(i=0;i<N;i++){
Z[i] = X[i] + alpha*Y[i];

}

0.083

Peak FLOP/s

1035

5.1

Pen and Paper
§ Example #2: 7-pt stencil

• 7 FLOPs; 8 memory references (7 reads, 1 store) per pt
• Cache can filter all but 1 read and 1 write per pt
• AI = 0.44 FLOPs per byte
• Memory bound, but 5x the GFLOP/s rate

At
ta

in
ab

le
 F

LO
P/

s

7-point Stencil

GFLOP/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak FLOP/s

for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

new[k][j][i] = -6.0*old[k][j][i]
+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

1136

5.1

Pen and Paper

• Not scalable for real-life applications

• Millions of lines of code; mix of different languages

• Complicated modern architecture
– memory hierarchy, caching effects
– ISA

• Different problem sizes

37

We Need Tools!

38

• Roofline ceilings
– vendor specifications
– empirical measurements

• ERT
• https://bitbucket.org/be

rkeleylab/cs-roofline-
toolkit

We Need Tools!

39

Where to put these dots?

Require three raw measurements:
– Runtime
– FLOPs
– Bytes (on each cache level)

In order to calculate AI and GFLOP/s:

We Need Tools!

Performance	=	
FLOPs
Runtime

		

Arithmetic	Intensity	=	
FLOPs

Data	Movement

(GFLOP/s)

(FLOPs/Byte)

40

Where to put these dots?

Methodology to Construct Roofline

1. Collect Roofline ceilings
– compute (FMA/no FMA) and bandwidth (DRAM, L2, …)
– ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit

2. Collect application performance
– FLOPs, bytes (DRAM, L2, …), runtime
– SDE, VTune, LIKWID, Advisor, nvprof, …

3. Plot Roofline with Python Matplotlib (or other tools of your preference)
– arithmetic intensity, GFLOP/s performance, ceilings
– example scripts: https://github.com/cyanguwa/nersc-roofline

41

2.1 Intel CPUs and NVIDIA GPUs

Data Collection on Intel CPUs

The not-so-automated way 1:
• Intel SDE for FLOPs (emulation)
• Intel VTune for DRAM bytes (HW counters)
• Runtime

• DRAM Roofline only

• Used by NESAP for Cori
– NERSC Exascale Science Application Program
– http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

42

Data Collection on Intel CPUs

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"
1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"2P
 H

SW
K

N
L

MFDn PICSAREMGeo

DRAM Rooflines of NESAP Codes

Data Collection on Intel CPUs

The not-so-automated way 2:
• LIKWID for FLOPs and bytes

– Both are based on HW counters
• Runtime

• Hierarchical Roofline

• Limited by quality of HW counters
• High-level characterization, no callstack

8

16

32

64

128

256

512

1024

H
P

G
M

G
 (

3
2

P
x1

T
)

H
P

G
M

G
 (

4
P

x8
T

)

C
o

m
b

u
st

o
r (

3
2

P
x1

T
)

C
o

m
b

u
st

o
r (

4
P

x8
T

)

M
F

IX
 (

3
2

P
x1

T
)

N
yx

 (
3

2
P

x1
T

)

N
yx

 (
4

P
x8

T
)

P
e

le
L

M
 (3

2
P

x1
T

)

W
a

rp
X

 (
3

2
P

x1
T

)

W
a

rp
X

 (
4

P
x8

T
)

B
a
n
d
w

id
th

(G
B

/s
)

AMReX Application Characterization
(2Px16c HSW == Cori Phase 1)

L2
L3
DRAM
Roofline

https://github.com/RRZE-HPC/likwid

44

Data Collection on Intel CPUs

The fully automated way:
• Intel Advisor, Roofline feature
• Instrument applications automatically

– one dot per loop nest/function
• FLOPs, bytes and runtime

• Hierarchical Roofline

• Integrates with other Advisor capabilities
• Benchmarks target system

Memory-bound, invest into
cache blocking etc

Compute bound: invest
into SIMD,..

45

Data Collection on Intel CPUs

New features in Intel Advisor 2019
(picture courtesy of Z. Matveev)

46

https://software.intel.com
/en-us/intel-advisor-
2019-release-notes

Data Collection on NVIDIA GPUs
• Still manual at this stage, but…

• Runtime:
– Internal timers or nvprof --print-gpu-trace

• FLOPs:
– DP/SP/HP counters and metrics, nvprof --metrics

‘flop_count_dp/sp/hp’ or `tensor_precision_fu_utilization’

• Bytes for different cache levels:
– Bytes = (read transactions + write transactions) x transaction size
– nvprof --metrics ‘metric_name’ e.g. gld/gst_transactions

• Hierarchical Roofline
47

The Roofline Tree

Brings People Together
• NESAP
• CRD
• Intel
• NVIDIA
• all HPCers

Roofline Performance Model

03
Performance
Portability

06
Mixed
Precision

07
Instruction
Roofline

04
Energy
Roofline

05
Scaling

Trajectories

08
ERT

01
Performance
Optimization

02
Vendor

Integration

09
Outreach

3. Performance Portability
Definition, Metric, Roofline, KNL, V100

Introduction
• No consensus on the definition or metric for performance portability
• But Pennycook et al…

• Application’s Efficiency ?
– application performance on platform 𝑖 / peak performance of platform 𝑖
– application performance on platform 𝑖 / application’s best performance

on all platforms of interest 𝑯

𝜱 𝑎, 𝑝,𝑯 = A
|𝑯|

∑ D
𝒆𝒊(𝒂,𝒑)

�
L∈𝑯

		if	𝑖	is	supported,	∀𝑖 ∈ 𝑯	

0												otherwise																		

S. J. Pennycook, J. D. Sewall, and V. Lee, “A metric for performance portability,” arXiv:1611.07409, 2016.

Application’s Efficiency on platform 𝒊

Architectural Efficiency

Application Efficiency

Introduction
• No consensus on the definition or metric for performance portability
• But Pennycook et al…

• Architectural Efficiency [Williams et al]

𝜱 𝑎, 𝑝,𝑯 = A
|𝑯|

∑ D
ST(U,V)

�
L∈𝑯

		if	𝑖	is	supported,	∀𝑖 ∈ 𝑯	

0												otherwise																		

𝑒L 𝑎, 𝑝 =
𝑃L(𝑎, 𝑝)

min	(𝐹L, 	𝐵L	×	𝐼L(𝑎, 𝑝))

Max Attainable Performance defined by
Roofline

Actual Application Performance

• S. J. Pennycook, J. D. Sewall, and V. Lee, “A metric for performance portability,” arXiv:1611.07409, 2016.
• S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual performance model for multicore architectures,” Communications

of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

Introduction
• No consensus on the definition or metric for performance portability
• But Pennycook et al…

• Architectural Efficiency [Williams et al]

Peak FLOP/s

Peak Bandwidth
Arithmetic Intensity

𝜱 𝑎, 𝑝,𝑯 = A
|𝑯|

∑ D
ST(U,V)

�
L∈𝑯

		if	𝑖	is	supported,	∀𝑖 ∈ 𝑯	

0												otherwise																		

𝑒L 𝑎, 𝑝 =
𝑃L(𝑎, 𝑝)

min	(𝐹L, 	𝐵L	×	𝐼L(𝑎, 𝑝))

49

• Bottleneck shifts at 𝒏𝒘 = 𝟐 on KNL vs. V100 (no-FMA performance)
• Easier to achieve no-FMA ceiling on V100 than KNL, due to higher ratio

of instruction issue bandwidth vs. instruction execution bandwidth

Bottleneck Changes

• C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo, B. Friesen, B. Cook, D. Doerfler, L. Oliker, J. Deslippe, S. Williams, An
Empirical Roofline Methodology for Quantitatively Assessing Performance Portability, SC’2018 P3HPC Workshop, Nov 11-16 2018, Dallas

• No FMA: performance portability consistently > 80%
• FMA: benefit is far less than 2x at high 𝒏𝒘; architectural efficiency suffers

(so does performance portability)
• Could regain some architectural efficiency if non-floating-point vector

operations were considered

Architectural Efficiency 𝑛𝑤 = 1 𝑛𝑤 = 2 𝑛𝑤 = 3 𝑛𝑤 = 4 𝑛𝑤 = 5 𝑛𝑤 = 6

FMA
KNL 84.98% 77.50% 66.77% 55.28% 46.56% 39.65%
V100 97.36% 91.50% 76.70% 65.44% 65.07% 66.38%

Performance Portability 90.76% 83.92% 71.39% 59.93% 54.28% 49.65%

No-FMA
KNL 82.06% 72.95% 73.74% 78.72% 81.28% 82.81%
V100 92.88% 92.88% 97.43% 98.91% 1 99.73%

Performance Portability 87.14% 81.72% 83.95% 87.67% 89.93% 90.49%

Bottleneck Changes

51

Summary

• Roofline is very powerful in capturing changes in machine and application
characteristics such as

– compute/bandwidth bound, problem size
– instruction issue bandwidth, strided memory access

• It is important to
– measure bandwidth/compute ceilings empirically
– account for non-multiply/add instructions appropriately
– select relevant ceilings in performance analysis and performance

portability analysis

54

4. Energy Roofline
Performance, Power Consumption, Energy Efficiency

Energy Roofline - GEMM

Cache-aware Roofline Models

• A. Ilic, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrading the loft”, IEEE Computer Architecture Letters (2013)
• A. Ilic, F. Pratas and L. Sousa, “Beyond the Roofline: Cache-aware Power & Energy-Efficiency…”, IEEE Transactions on Computers (2017)

VERSION OPTIMIZATION STRATEGY

1 Basic implementation: Row-major matrices

2 Improved memory access by transposing B matrix

3, 4, 5 Blocking for caches: L3 (pt. 3), L2 (pt. 4) and L1 (pt. 5)

6 Highly optimized Intel MKL implementation

• Power Consumption based on CARM
– Relates Watts with FLOPs/bytes
– Defines power envelope for different

types of FP and memory operations

Use Cases
Application Characterization

Online Monitoring

• Ilic, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Cache-aware Power & Energy-Efficiency Modeling…”, IEEE Transactions on Computers (2017)
• Antão, D., et.al.,“Monitoring Performance and Power for Application Characterization with CARM”, PPAM’13

2-4

2-2

20

22

24

2-7 2-6 2-5 2-4 2-3 2-2 2-1 20 21

Pe
rf

or
m

an
ce

 [G
�o

ps
/s

]

Operational Intensity [�ops/byte]

AVX MAD

AVX MUL/SSE MAD

SSE MUL/DBL MAD

DBL MUL

DRAM

tonto
vdot

vmmul
gamess

gromacs
namd

povray
spvdot

spvvmul
milc

soplex
GemsFDTD

dgemm
lu

calculix
2d�tc
3d�tc

spmmul
vvmul

zeusmp
cactusADM

leslie3d
lbm

DBL SSE AVX

Arithmetic Intensity [flops/byte]
 23

 24

 25

 26

 27

 28

2-7 2-6 2-5 2-4 2-3 2-2 2-1

Po
w

er
 [W

]

Operational Intensity [�ops/byte]

L1 (AVX LD)

L1 (DBL)

L1 (DBL MUL)

DRAM (AVX)

L3 (AVX)

DRAM (DBL)

L1 (AVX LD+ST)

Arithmetic Intensity [flops/byte]

2-8

2-6

2-4

2-2

20

2-8 2-7 2-6 2-5 2-4 2-3 2-2 2-1 20 21 22

En
er

gy
 E
�

ci
en

cy
 [G

�o
ps

/J]

Operational Intensity [�ops/byte]

AVX MAD
AVX MUL/SSE MAD
SSE MUL/DBL MAD

DBL MUL

DRAM

Arithmetic Intensity [flops/byte]

2-1

20

21

22

23

2-5 2-4 2-3

Pe
rf

or
m

an
ce

 [G
�o

ps
/s

]

Operational Intensity [�ops/byte]

SSE MUL

DBL MULL1 (SSE)

L1 (DBL)

DRAM (SSE)DRAM (DBL)

DBL SSE AVX

Arithmetic Intensity [flops/byte]

 23

 24

 25

 26

 27

 28

2-4 2-3 2-2

Po
w

er
 [W

]

Operational Intensity [�ops/byte]

L1

L1 (MUL)

L2
L3

DRAM

Arithmetic Intensity [flops/byte]

20

21

2-2 2-1 20

En
er

gy
 E
�

ci
en

cy
 [G

�o
ps

/J]

Operational Intensity [�ops/byte]

L1 (AVX MAD)

L2
L3

Arithmetic Intensity [flops/byte]

5. Scaling Trajectories
What’s causing bad scaling from Roofline point of view?

Roofline Scaling Trajectories

• We often plot performance as
a function of thread concurrency

– Carries no insight or analysis
– Provides no actionable info

#Threads
1 2 4 8 16 32 64

58

Roofline Scaling Trajectories
§ We often plot performance as a

function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.

§ Use Roofline to analyze thread
(or process) scalability
o 2D scatter plot of performance as a

function of intensity and concurrency
o Identify loss in performance due to

increased cache pressure (data
movement)

• Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A Method for Parallel Application and Architectural Performance
Analysis", HPBench, July 2018

6. Mixed Precision
FP64, FP32, FP16, CPU, GPU

Mixed Precision

Benefits of reduced/mixed precision:
● From FP64 to FP32

○ 2x due to bandwidth savings or
compute unit availability

○ similar for network communication
● More support on modern architectures

○ ~15x FP16 over FP64 for some ops

NESAP collaboration with CRD (Costin Iancu)
and NVIDIA (Chris Newburn)

FP16 Peak

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

FP64 Peak

Mixed Precision

60

7. Instruction Roofline
FLOP, INTOP, IPC

Instruction Roofline
§ FP instructions can be the

minority in many HPC codes
§ Emerging domains have ~no FP

o Graphs
o Hash tables
o Bloom filters
o Searches

§ FLOPs is agnostic of precision,
scalar/vectors/tensors, …

At
ta

in
ab

le
 V

U
O

P/
s

Arithmetic Intensity
(FLOP:Byte -> VUOP:Byte)

§ Instruction Roofline

Peak VUOP/s

61

VUOP RooflineFLOP Roofline

§ FMA cuts Arithmetic Intensity in
half (half the number of VUOPS)

§ FMA doesn’t change Arithmetic
Intensity (FMA == FMUL+FADD)

§ Vector integer operations
increases Arithmetic Intensity

§ Vector integer operations don’t
change Arithmetic Intensity

§ Changing precision doesn’t change
Arithmetic Intensity

§ Reducing precision (64b, 32b, 16b)
increases Arithmetic Intensity

§ vectors/tensors reduce Arithmetic
Intensity (SIMD cuts VUOPS by 8x)

§ Vectors/tensors don’t change
Arithmetic Intensity

Ø Tells us about VPU/pipeline
utilization and bottlenecks

Ø Tells us about performance

62

Instruction Roofline

VUOPs-based RooflineFLOPs-based Roofline

8. Empirical Roofline Toolkit (ERT)
Machine Characterization, Peak FLOP/s, Bandwidths

Empirical vs. Theoretical Ceilings
Theoretical compute ceiling on KNL:

Theoretical compute ceiling on V100:
𝟔𝟒	cores	×	𝟖	DP/vector	×	𝟐	FLOPs/FMA	×	𝟐	vectors	×	𝟏. 𝟐	GHz	 = 𝟐. 𝟒𝟔	TFLOP/s

𝟖𝟎	SMs	×	𝟑𝟐	FP64	cores/SM	×	𝟐	FLOPs/FMA	×	𝟏. 𝟓𝟑GHz = 𝟕. 𝟖𝟑	TFLOP/s

10%3%

10%22%

63 Voltar at UOregonCori KNL partition

Machine Characterization
• ERT can’t detect all the ceilings yet - IN DEVELOPMENT!

– Haswell/KNL: L1, L2, L3/HBM, DDR
– V100: L2, HBM, DDR

• Our goal is to incorporate
– the full memory hierarchy
– instruction mix (e.g. FMA/no-FMA)
– data type (e.g. FP64, FP32, FP16)
– compute units

(e.g. CPU/CUDA core/Tensor core)

• Ceilings can be omitted if irrelevant

Empirical Roofline Toolkit (ERT). https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

9. Outreach
Tutorials, Talks, Publications, Collaboration

Tutorials

• T. Koskela, A. Ilic, Z. Matveev, S. Williams, P. Thierry, C. Yang, Performance Tuning of Scientific
Codes with the Roofline Model, SC’2017 Half-Day Tutorial, Nov 12-17 2017, Denver

• T. Koskela, A. Ilic, Z. Matveev, R. Belenov, C. Yang, L. Sousa, A Practical Approach to Application
Performance tuning with the Roofline Model, ISC’2018 Half-Day Tutorial, Jun 24-28 2018, Frankfurt

• S. Williams, A. Ilic, Z. Matveev, C. Yang, Performance Tuning of Scientific Codes with the Roofline
Model, SC’2018 Half-Day Tutorial, Nov 11-16 2018, Dallas

• S. Williams, J. Deslippe, C. Yang, P. Basu, Performance Tuning of Scientific Codes with the Roofline
Model, Exascale Computing Project 2nd Annual Meeting, Feb 5-9, 2018, Knoxville

• C. Yang, Z. Matveev, A. Ilic, D. Marques, Performance Optimization of Scientific Codes with the
Roofline Model, ISC’2019 Half-Day Tutorial, Jun 16-20 2019, Frankfurt

• S. Williams, J. Deslippe, C. Yang, Performance Tuning of Scientific Codes with the Roofline Model,
Exascale Computing Project (ECP) Annual Meeting, Jan 14-18, 2019, Houston

65

Talks

• C. Yang, S. Williams, Performance Analysis of GPU-Accelerated Applications using the Roofline
Model, GTC’2019, Mar 17-21 2019, San Jose

• C. Yang, Roofline Performance Analysis with nvprof, NERSC/NVIDIA F2F, Feb 7 2019, Berkeley
• C. Yang, S. Williams, Performance tools and performance counters, Intel PathForward Hack-a-Thon,

Apr 10-12 2018, Santa Clara
• C. Yang, Performance Analysis of GPU-Accelerated Applications using the Roofline Model, Cray

COE Webinar, Apr 11 2019, Berkeley
• J. Pennycook, C. Yang, J. Deslippe, Quantitatively Assessing Performance Portability with Roofline,

IDEAS webinar, Jan 23 2019, https://ideas-productivity.org/
• C. Yang, T. Kurth, Roofline Performance Model and Intel Advisor, Performance Analysis and

Modeling (PAM) Workshop, Feb 14-15 2018, Brookhaven National Laboratory
• C. Yang, Introduction to Performance & Scalability Tools, DOE CSGF Annual Review, Jul 15-19 2018,

Arlington
• C. Yang, Using Intel Tools at NERSC, Intel KNL Training, May 22-23 2019, Berkeley

66

All Publications…

LBNL CRD Roofline Research:

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/publications/

Collaborate with us!

67

Closing

Roofline Helps

• Drive performance optimization
– Application characterization, application readiness

• Create a dialogue between Applied Maths and CS
– Communication-avoiding algorithms, high-order methods,

new algorithms

• Facilitate cross-architecture comparisons for procurements
– CPUs, GPUs, other accelerators

68

Acknowledgement

• This material is based upon work supported by the Advanced Scientific
Computing Research Program in the U.S. Department of Energy, Office
of Science, under Award Number DE-AC02-05CH11231.

• This material is based upon work supported by the DOE RAPIDS SciDAC
Institute.

• This research used resources of the National Energy Research Scientific
Computing Center (NERSC), which is supported by the Office of Science
of the U.S. Department of Energy under contract DE-AC02- 05CH11231.

69

Thank You

