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The Roofline Chronical

Research

Prototype

Production
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2005 - 2011

= Developed foundations for
the Roofline Model ...
= Applied to kernels .
using canonical
flops and bytes

Generic Machine

Office of

2013 - 2016

= Created the ERT prototype
for CPUs and GPUs
= Quantified e
CUDAUVM
effects sV

2017 - 2019

Developed performance counter
Rooflines for CPUs and GPUs
Roofline for Simulations and
Machine Learning
Incorporated VPU%, divides,
integer operations

Collaboration with CRD, Intel
and NVIDIA on hierarchical
Roofline

Roofline model incorporated into
Intel Advisor
Installed at NERSC, LANL, etc
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Future

FPGAs, CGRAs, Al
processors, ...
Asymmetric memory
hierarchies

Horizontal data movement
Effects of extreme
heterogeneity

Integer/instruction/non-FP
Rooflines

Rooflines that serialize data
transfers (vs. assume
overlap)

Integration with
compilers/runtimes

Roofline for GPUs
(multiple vendors)
Roofline for FPGAs/CGRAs
Integer/instruction/non-FP
Rooflines

CISC/DL instructions
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Researchers... Vendors/Industry...

«  Sam Williams (Roofline Lead, LBL/CRD) - Zakhar Matveev (Intel)
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What is Roofline?
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Performance Modelling

Modern architectures are complicated!

| How much data is transfered between memory levels?

u
41
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CARM

U.S. DEPARTMENT OF Office of

ENERGY Science

NVIDIA Volta GPU? i

Instruction Issue-Efficiency
Instruction Pipeline Statistics
Stall Reasons

A holistic view is important!

|
Intel Haswell CPU!

utilization utilization

Cache I-iit/Miss
Utilization
Efficiency

Cache Hit/Miss Utiliiation
Utilization by Op Type
Utilization by Client

1. https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor
2. http://on-demand.gputechconf.com/gtc/2016/presentation/s6659-avinash-baliga-perfworks.pdf
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Performance Modelling

= Many components contribute to the kernel run time
= An interplay of application characteristics and machine characteristics

e = Roofline Model
#FP operations FLOP/s \/

f
: Cache data movement Cache GB/s |
| DRAM data movement DRAM GB/s |
‘. PCle data movement PCle ba r_1d_w_|d_th_
MPI Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
#MPI Wait's Network Latency

IO File systems
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Roofline Performance Model NEF

= Sustainable performance is bound by A

Peak GFLOP/s Peak GFLOP/s
FLOP/s = mi
GFLOP/s mln<[AI * Peak GB/s

= Arithmetic Intensity (Al) =

Attainable GFLOP/s

FLOPs / Bytes

= How did this come about? Arithmetic Intensity (FLOP:Byte)
- A CPU DRAM example Transition @ Al ==

Peak GFLOP/s | Peak GB/s ==
‘Machine Balance’
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(CPU DRAM) Roofline

= One could hope to always attain peak performance (FLOP/s)
= However, finite locality (reuse) and bandwidth limit performance.

= Assume:
Idealized processor/caches
Cold start (data in DRAM) cPU
(compute, FLOP/s)
DRAM Bandwidth
#FP ops / Peak GFLOP/s (GBs)
Time = max DRAM
#Bytes | Peak GB/s (data, GB)
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(CPU DRAM) Roofline NEF

= One could hope to always attain peak performance (FLOP/s)
= However, finite locality (reuse) and bandwidth limit performance.

= Assume:
Idealized processor/caches
Cold start (data in DRAM) cPU
(compute, FLOP/s)
DRAM Bandwidth

i 1/ Peak GFLOP/s (GBis)

Time _ max

FP - DI:AM

#FP ops #Bytes | #FP ops / Peak GB/s (data, GB)
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(CPU DRAM) Roofline

= One could hope to always attain peak performance (FLOP/s)
= However, finite locality (reuse) and bandwidth limit performance.

= Assume:
Idealized processor/caches
Cold start (data in DRAM) cPU
(compute, FLOP/s)
DRAM Bandwidth
Peak GFLOP (GBIS)
#FP ops _ . eak GFLOP/s
Time ™" e
(#FP ops / #Bytes) * Peak GB/s (data, GB)
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(CPU DRAM) Roofline NEF

= One could hope to always attain peak performance (FLOP/s)
= However, finite locality (reuse) and bandwidth limit performance.

= Assume:
Idealized processor/caches
Cold start (data in DRAM) cPU
(compute, FLOP/s)
DRAM Bandwidth
Peak GFLOP/s (G55
GFLOP/s = min DRAM
Al * Peak GB/s (data, GB)

Arithmetic Intensity (Al) = FLOPs / Bytes (as presented to DRAM )
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Roofline Performance Model NS

= Thus we obtain the model as A

Peak GFLOP/s Peak GFLOP/s
GFLOP/s = min([AI * Peak GB/s é
where Arithmetic Intensity (Al) is ;;
FLOPs / Bytes §
Machine Balance (FLOPs/Byte) = Arithmetic Intensity (FLOF’::Byte>
8.9 (V100, DP, HBM) or 5.1 (KNL, DP, HBM) Transition @ Al ==

Peak GFLOP/s | Peak GB/s ==
‘Machine Balance’
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Roofline Performance Model

A throughput-oriented model
- tracks rates not times, i.e. GFLOP/s, GB/s, not seconds

An abstraction over
- architectures, ISA (CPU, GPU, Haswell, KNL, Pascal, Volta)
- programming models, programming languages
- numerical algorithms, problem sizes

In log-log scale to easily extrapolate performance along Moore’s Law

EEEEEEEEEEEE Ofﬂce of
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What can Roofli
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Roofline is Useful for...

Identifying performance bottlenecks & motivating software optimizations

Understanding performance differences between architectures, programming
models, implementations, etc

Determining when we’re done optimizing code
- Assess performance relative to machine capabilities
- Motivate need for algorithmic changes

Predicting performance on future machines / architectures
- Set realistic performance expectations
— Drive for HW/SW Co-Design

EEEEEEEEEEEE Ofﬂce of
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Activities on Roofline

Current, Future
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The Roofline Tree

Brings People Together
NESAP
CRD
Intel
NVIDIA
all HPCers

ntegration

ENERGY e of Roofline Performance Model




1. Performance Optimization

NESAP, Hierarchical Roofline, Roofline drives optimization
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Roofline Drives Optimization =
The Roofline Model Haswell Roofline Optimization Path
helps you identify the bottlenecks .
guides you through optimization 1000 /—' - ILP
. - - AVX
tells you when to stop : - o ==BGW
< 100 /5) 3,4 "
9 5 2
G 1/
An example: 10
NESAP for Cori - BerkeleyGW ,
(NERSC Exascale Scientific Application Program)
0.01 2 5 0.1 2 5 1 2 5 10 2 5 100

Arithmetic Intensity
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Roofline Example: BerkeleyGW

a

Optimization Path for Kernel-C (Sigma):
1. Add OpenMP
2. Initial Vectorization
loop reordering
conditional removal
3. Cache-Blocking
4. Improved Vectorization
divides
5. Hyper-threading

Walltime (Sec)

EEEEEEEEEEEE Off| ce Of

ENERGY Science
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200

Sigma Optimization Process

m Haswell
® KNL (DDR)
m KNL (HBM)

150
100

50

4 5

1 2 3

Optimization Step




1.1 Roofline Variations
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Roofline Performance Model

= This is a single Roofline

=  What about the memory hierarchy,
different execution configurations,
and instruction mixes?

- Hierarchical Roofline
- Multiple compute ceilings

U.S. DEPARTMENT OF Office of

ENERGY Science 16

A

Peak GFLOP/s

Attainable GFLOP/s

|
andwidth-bound | Compute-bound
<«<T>

Arithmetic Intensity (FLOP:'Byte)

1
Transition @ Al ==
Peak GFLOP/s | Peak GB/s ==
‘Machine Balance’

BERKELEY LAB
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Hierarchical Roofline

>
<
o
o

Superposition of multiple Rooflines
- Incorporates full memory hierarchy
— Arithmetic Intensity =
FLOPs / Bytes, 4/, o/upwy/

Attainable GFLOP/s

Each kernel will have multiple Al’'s

but one observed GFLOP/s performance

Hierarchical Roofline tells you about cache locality

EEEEEEEEEEEE Ofﬂce of
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Cache-Aware Roofline Model (CARM) (e

Hierarchical Roofline Cache-Aware Roofline
»T A
Peak Flopl’s Peak Flop/s
v : I R |
Q. Q.
k) I k)
L 11 L
2 : 2 Observed'performance
2 o is closer to DRAM line
= : ' Capacity misses reduce = Zss cache locality)
g DRAM Al and performance g
Multiple Al’s....
) i:ggfff'\élaozo :4— Single Al based on flop:L1 bytes
0. 11 0.20 > 0.11 >
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)
U.S. DEPARTMENT OF Ofﬂce of 7_point Stencil
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Hierarchical VS Cache-Aware

Captures cache effects = Captures cache effects

Al is Flop:Bytes after being filtered by = Alis Flop:Bytes as presented to the L1
lower cache levels cache (plus non-temporal stores)
Multiple Arithmetic Intensities = Single Arithmetic Intensity

(one per level of memory)

Al dependent on problem size = Al independent of problem size
(capacity misses reduce Al)

Memory/Cache/Locality effects are = Memory/Cache/Locality effects are
observed as decreased Al observed as decreased performance
Requires performance counters or = Requires static analysis or binary
cache simulator to correctly measure Al instrumentation to measure Al

EEEEEEEEEEEE Office of '": A
ENERGY Science 19 36 ’\l;\g
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Multiple Compute Ceilings

Impact of execution configuration #cru

Threaded Peak

Actual
Concurrency

Concurrency affects your peak
- OpenMP thread concurrency
- SM occupancy
- load balance
- threadblock/thread configuration

Single Thread

Attainable GFLOP/s

Arithmetic Intensity (FLOP:Byte)

Performance is bound by the actual concurrency ceiling

EEEEEEEEEEEE Ofﬂce of
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Multiple Compute Ceilings

Impact of instruction mix A

FMA.f64 Peak

Applications are usually a mix Partial FMA

of FMA.f64, ADD.f64, MUL.f64...

ADD.f64 Peak

Attainable GFLOP/s

Performance is a weighted average
.. bound by a partial FMA ceiling

Arithmetic Intensity (FLOP:Byte)

EEEEEEEEEEEE Ofﬂce of
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1.2 Roofline Drives Optimization
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General Optimization Strategy

= Broadly speaking, three approaches
to improving performance:

EEEEEEEEEEEE Ofﬂce of

ENERGY Science
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Attainable FLOP/s

Peak FLOP/s

Arithmetic Intensity (FLOP:Byte)




General Optimization Strategy

= Broadly speaking, three approaches A
to improving performance:

= Maximize compute performance
= multithreading
= vectorization
= increase SM occupancy
= utilize FMA instructions
= minimize thread divergence

Peak FLOP/s

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)

EEEEEEEEEEEE Ofﬂce of
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General Optimization Strategy

= Broadly speaking, three approaches A
to improving performance:

= Maximize compute performance

Peak FLOP/s

= Maximize memory bandwidth
= utilize higher-level caches
= NUMA-aware allocation
= avoid H-D transfers
= avoid uncoalesced memory access

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)

EEEEEEEEEEEE Ofﬂce of
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General Optimization Strategy NEF

= Broadly speaking, three approaches A
to improving performance:
. . Peak FLOP/s
= Maximize compute performance -
3
T
» Maximize memory bandwidth 5 -
5 L2
g T 13
- >
= Improve Al é» g
« minimize data movement o 1°

. Arithmetic Intensity (FLOP:Byte)
= exploit cache reuse

U.S. DEPARTMENT OF Office of
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1.3 Example Applications

U.S. DEPARTMENT OF Office of ,j}l rhl

ENERGY Science BERKELEY LAB




Example 1: GPP, KNL, Cache Blocking Dl

Overlapping
points at

DP Vector P

MCDRAM BW ‘ 0/ 0P Vector Add P

Performance [GFLOP/sec

gppKernel-nb.f90:190] M L2
gppKernel-nb.f90:242] MCDRAM

® gppKernel-nb.f90:303] WA L1
o

v

A gppKernel-nb.f90:296] M DRAM

1072 1071

U.S. DEPARTMENT OF Ofﬂce of

ENERGY Science

100 101
Arithmetic Intensity [FLOP/Byte]

24

102

242 GFflop/s, Bound by
MCDRAM Bandwidth

Most Flops in the main

loop (O)

Read/Write 2MB of data
per inner loop iteration
> No reuse of data in
L1/L2, shown by
overlapping points at
MCDRAM bandwidth

BW Bound > Increase
MCDRAM Al by adding
cache locality

BERKELEY LAB



Example 1: GPP, KNL, Cache Blocking

DP Vector FMA Peak: 2775.8 GFLOP/s
GFLOP/s

o;a/ _pb Vector Add Peak: 138

7L

Performance [GFLOP/sec]

® gppKernel.f90:303] MW L1
B gppKernel.f90:190] W L2
v gppKernel.f90:296] MCDRAM
A gppKernel.f90:242] W DRAM
0 T T T
1010‘2 1071 100 10!

U.S. DEPARTMENT OF Ofﬂce of

ENERGY Science

Arithmetic Intensity [FLOP/Byte]

Jun 24-28 2018, Frankfurt

102

T. Koskela, Z. Matveeyv, C. Yang, A. Adetokunbo, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H. Shan, L. Oliker, J. Deslippe, R. Green,
and S. Williams, A Novel Multi-Level Integrated Roofline Model Approach for Performance Characterization, ISC’2018 Research Paper,

Cache blocking implemented
to achieve L2 data reuse

3x Increase in

Performance increased from
242 to 287 GFlop/s (+18%)

Why not 3x Flops increase?
> Not BW bound any more,
divide, shuffle and unpack
instructions involved

BERKELEY LAB
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Example 1: GPP, V100, Hierarchical NEF

Three experiments to study the effects of do band = 1, nbands #blockIdx. x

- cache reuse (varying nw from 1 to 6) do igp = 1, ngpown  #blockIdx.y

- instruction mix (FMA vs. Mul/Add) do ;g :Wll rlwozvlws zzgiiiclizgxx

*  memory coalescmg compute; reductions
10¢
\?
104 Qéb 10% o
FMA: 7068.9 GFLOP
0" FMA: 7068.9 GFLOP/s 68.9 GFLOPs QG” FMA: 7068.9 GFLOP/s
o 0% _ / % FMA: 5655.1 GFLOP _ >
& W ) 3 w2
¢ |y g . ¢y
9 No-FMA: 3535.8 GFLOP/s ] v ¢ S Vi ﬂo-FMA: 3535.8 GFLOP/s
5 ry No-FMA: 3535.8 GFLOP/s e
= =) i [
g g g
= © ©
© £ £
£ : s
e % £
K a ® Stridel
T 103 - = = 3
a 10 L] o nw=1 A nw=4 e nw=1 nw=4 10 - Ll m  Stride 2
. L2 = onw=2 ¢ nw=5 - FMA m ow=2 @ nw=5 mm 2 v Strided
B HBM ¥V nw=3 > nw=6 1 No-FMA v nw=3  » nw=6 mm HBM A Stride 8
10°
10° 10! 102 10! 10? 10! 102
Arithmetic Intensity [FLOPs/Byte] Arithmetic Intensity [FLOPs/Byte] Arithmetic Intensity [FLOPs/Byte]
. - . . . . . . . . = A
U-C.DEPARTMENT OF _ | Officeiof | - Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for .:h”m
ENERGY Science the NERSC-9 Perlmutter System", Cray User Group (CUG), May 2019.

BERKELEY LAB




Example 2: XGC1, KNL

® Electron Push
® lon Push

® Electron Charge
® lon Charge

@ Poisson Solve
® Collision

@ Particle Shift

Time (s)

600.00 I Baseline
B Optimized
450.00
300.00 3x
150.00
0.00 -_II_—_ s
Electron Push Electron Charge Poisson Solve Particle Shift

lon Push lon Charge Collision

(Left) Hotspots for unoptimized XGC1 on 1024 Cori KNL nodes in Quad-Flat mode;
(Right) Speedup in XGC1 Electron Push routine after back porting the optimizations made in ToyPush kernel

U.S. DEPARTMENT OF Office of

ENERGY Science
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Example 2: ToyPush from XGC1 NEF

GFLOP/S

FoceCat | Warkersize = CPUtme

___Vector FMA Add Peak

101l i //.A Ector Add Peak_
- % o S

W ~-Scalar Add Peak

z: A ; S R N

1072 107 10°
Arithmetic Intensity

U.S. DEPARTMENT OF Office of

ENERGY Science
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Force Kernel:
close to vector add peak
not much optimization done

Interpolate Kernel:

L1 blocking, indirect memory access

memory alignment, more efficient vectorization
10x speedup, closer to vector FMA peak

Search Kernel:
multiple exits, simd private, enable vectorization
3x speedup, closer to L2 bandwidth roof

Code is available at
https://github.com/tkoskela/toypush




Example 3: conv2d from TensorFlow m

input

Kernel tf.nn.conv2d

T Ay

TensorFlow B % z ?‘5
U

https://www.tensorflow.org

C—1Kg—1Kw-—1

nhwc— Y T Y Anh—l—khw—i—wthkhk' me

m=0 kh—o k'
EEEEEEEEEEEE Office of
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Example 3: conv2d from TensorFlow NE

#ichoose operation depending on pass
exec_op. if pass=="forward":
with tf.device (gpu_dev):

- forward pass -- conv in 2D exec_op = output result

-  backward pass -- conv + derivative |elif pass=="backward":
with tf.device (gpu dev):

- calibrate -- tensor generation opt = tf.train.Gradient\
DescentOptimizer (0.5)
exec_op = opt.compute)
_gradients (output_result)
elif pass=="calibrate":
with tf.device (gpu_dev):
exec_op = input image

#igenerate random input tensor

input _image = tf.random uniform(shape=input size, minval=0., maxval=l., dtype=dtype)
ficreate network

output_result = conv2d(input_image, ’'NHWC’,6 kernel size, stride_size, dtype)

U.S. DEPARTMENT OF Office of
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Example 3: conv2d from TensorFlow NE

Each TensorFlow kernel translates to a series of subkernels
- padding, shuffling, data conversion, eic

-  TensorFlow based on heuristics decides what subkernels to call

- cuDNN also has some algorithm selection mechanism

- We INCLUDE the housekeeping subkernels in our measurements,
but EXCLUDE the autotuning subkernels

U.S. DEPARTMENT OF Office of + C.Yang, S. Williams, Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for the NERSC-9 Perimutter
ENERGY Science System, CUG’2019, May 5-9 2019, Montreal, Canada




Example 3: TF / Forward Pass NG

J

FP32 batch size 16 Tensor Core (FP16): 125.0 TFLOP/s FP32 #filters 64 Tensor Core (FP16): 125.0 TFLOP/s FP32 kemel size 3x3 Tensor Core (FP16): 125.0 TFLOP/s
. O FP32 batch size 32 @ ® © . O FP32 #filters 128 v © © 10°1 O FP32 kernel size 7x7 P Y P\
10°{ 5 FP32 batch size 64 & & & 10°1 5 Fp32 #filters 256 & ) & v FP32 kernel size 9x9 & o2 o
® FP16 batch size 16 ) ) 2 FP32 #filters 512 S ) 2 o FPlokemelsize3x3 5 '»"‘va &
| J W% el v i . 3
% m  FP16 batch size 32 «;‘"’ .,‘? étb = ® FP16 #filters 64 'é’; f\? é‘_b = m  FP16 kernel size 7x7 \__\ 9, \# f'/ FMA (FP16): 28.3 TFLOP/s
& Vv FP16 batch size 64 ' NS K g W FP16 #filters 128 o N7 & s ¥ FP16 kernel size 9x9 ™
~ ~
5 - L1 FMA (FP16): 28.3 TFLOP/s 5 N i:g :?:tm ﬁf‘;’ Vf 1/‘ FMA (FP16): 28.3 TFLOP/s 5 - / / / A No-FMA (FP16): 14.1 TFLOP/s
- -2 - . iers Y or] =12 FMA (FP32): 14.1 TFLOP/S
5 . HBM 2 - L g . HBM 3
g " No-FMA (FP16): 14.1 TFLOP/s £ - No-FMA (FP16): 14.1 TFLOP/s g £ //HNOAFMA I T ITIION:
E - E - E ot T
8 /e FMA (FP32): 14.1 TFLOP/S 8 - M FMA (FP32): 14.1 TFLOP/s s
i/ :
& & &
o) No-FMA (FP32): 7.1 TFLOP/s 17717 No-FMA (FP32): 7.1 TFLOP/s
10°
10 100 10! 10 10% 10- 100 10! 107

10° 107! 10° 10! 10? 10°
Arithmetic Intensity [FLOP/Byte]

#Batch Size #Filters #Kernel Size
o Constant performance(no!) o Intensity cc #Filters o Intensity o< kernel size
o FP16 performance anti- o Low L2 data locality o Low L2 data locality
correlated with batch size o Some use of TC’s (>FP16 o Autotuner switched FP32
o Performance << TC peak FMA)... partial TC ceiling algorithm to FFT at 9x9
o Transformation kernels o Some use of TC's (>FP16
o Low L2 locality FMA)... partial TC ceiling

Arithmetic Intensity [FLOP/Byte] Arithmetic Intensity [FLOP/Byte]

U.S. DEPARTMENT OF Office of
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Example 3: TF / Backward Pass NG

FP32 batch size 16 Tensor Core (FP16): 125.0 TFLOP/s FP32 #filters 64 Tensor Core (FP16): 125.0 TFLOP/s FP32 kemel size 3x3 Tensor Core (FP16): 125.0 TFLOP/s
;| O FP32 batch size 32 o | O FP32 #filters 128 s | O FP32kernel size 7x7 @
10°1 & FP32 batch size 64 10°1 o Fp32 #filters 256 10°1 5 FP32 kernel size 9x9 &)

® FP16 batch size 16 FP32 #filters 512 ® FP16 kernel size 3x3

- m  FP16 batch size 32 - ® FP16 #filters 64 5 - m FP16 kernel size 7x7
a ¥ FP16 batch size 64 o W FP16 #filters 128 ~ v a ¥ FP16 kernel size 9x9
S S A S /le
= - Ll FMA (FP16): 28.3 TFLOP/s = v FP16 #filters 256 MA (FP16): 28.3 TFLOP/s T - Ll (FP16): 28.3 TFLOP/s
o o [©)
< - 2 < A FP16 #filters 512 < - 2
g I ]
§ - HEM No-FMA (FP16): 14.1 TFLOP/s H - L1 No-FMA (FP16): 14.1 TFLOP/s g - HEM No-FMA (FP16): 14.1 TFLOP/s |
E N FMA (FP32): 14.1 TFLOP/s E -2 y v FMA (FP32): 14.1 TFLOP/s E —FMA|(FP32): 14.1 TFLOP/S |
£ 10¢ 2 10*{ mmm HBM / / £ 10¢
@ @ @
& & &

/ //é No-FMA (FP32): 7.1 TFLOP/S / //;// No-FMA (FP32): 7.1 TFLOP/S / /// No-FMA (FP32): 7.1 TFLOP/S

10° 107! 10° 10! 10? 10°

Arlthmellc Intensny [FLOP/Byte] Arithmetic Intensity [FLOP/Byte]

Arithmetic Intensity [FLOP/Byte]

#Batch Size #Filters #Kernel Size

o Autotuner chose different o Close to FP16 TC peak o Good FP32 performance

(better) algorithm for FP32 o Close to FP32 FMA peak trend (almost peak)
with batch size = 64 (boost) o Autotuner chose to run

9x9 FP16 in FP32 !!

U.S. DEPARTMENT OF Ofﬂce of ~
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Summary

Useful for characterization as well as optimization of HPC
applications

Roofline has a wide applicability
- different architectures (KNL, V100, ...)
- different algorithms (Simulation, Machine Learning, ...)

EEEEEEEEEEEE Ofﬂce of
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2. Vendor Integration

Intel VTune, LIKWID, Intel Advisor, NVIDIA nvprof

EEEEEEEEEEEE Ofﬂce of

ENERGY Science




Y 4
J

Pen and Paper

= Example #1: STREAM Triad

for(i=0;i<N;i++){ A

Zz[1] = X[1] + alpha*Y[i];
¥ Peak FLOP/s

2 FLOPs per iteration
Transfer 24 bytes per iteration
- read X[i], Y[i]l, and write Z]i]

Attainable FLOP/s

RIAD |

1
0.083 5.1 >
Arithmetic Intensity (Flop:Byte)

Al = 0.083 FLOPs per byte
Memory bound

U.S. DEPARTMENT OF OﬁICGOf
@ ENERGY <o 3s 10 |



Pen and Paper A

= Example #2: 7-pt stencil
« 7 FLOPs; 8 memory references (7 reads, 1 store) per pt
« Cache canfilter all but 1 read and 1 write per pt A
« Al =0.44 FLOPs per byte
Memory bound, but 5x the GFLOP/s rate Peak FLOP/s

for(k=1;k<dim+1;k++){

for(j=1;j<dim+1l;j++){

for(i=1;i<dim+1;i++){

new[k][j][i] = -6.0*old[k 1[j 1[i ]
old[k 1[3 I[i-1]

GFLOIP/S < Al * DRAM GB/s

|
7-point Stencil
|

Attainable FLOP/s

old[k 1[j 1[i+1]
old[k J[j-1][1 ]
old[k J[j+1][1 ]
old[k-11[7 I[i ]
old[k+1]1[3 1[1 1;

0.083 044 5.1
) Arithmetic Intensity (Flop:Byte)
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Pen and Paper

Not scalable for real-life applications

Millions of lines of code; mix of different languages

Complicated modern architecture
- memory hierarchy, caching effects
- ISA

Different problem sizes

EEEEEEEEEEEE Ofﬂce of
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We Need Tools!

Performance [GFLOP/sec]

104 4

FMA: 7068.9 GFLOP/s

No-

FMA: 3535.8 GFLOP/s

103 4

100 10t
Arithmetic Intensity [FLOPs/Byte]

U.S. DEPARTMENT OF Office of

ENERGY Science
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Roofline ceilings

- vendor specifications

- empirical measurements
- ERT

- https://bitbucket.org/be
rkeleylab/cs-roofline-
toolkit




We Need Tools!

Performance [GFLOP/sec]

104 -
FMA: 7068.9 GFLOP/s

No-FMA: 3535.8 GFLOP/s

Where to put these dots?

3 |
10 L1

[ W
I HBM ® Kernel

10° 10t 102
Arithmetic Intensity [FLOPs/Byte]

~

U.S. DEPARTMENT OF Office of
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Performance [GFLOP/sec]

We Need Tools! NEF

Require three raw measurements:
— Runtime
1044 \2

& — FLOPs

S FMA: 7068.9 GFLOP/s

f”«" / / — Bytes (on each cache level)
\,/»‘.
No-FMA: 3535.8 GFLOP/s

In order to calculate Al and GFLOP/s:

Where to put these dots? , , , FLOPs
10°] . Arithmetic Intensity = Data Moverment
s (FLOPs/Byte)
I HBM ® Kernel FLOP
; ; S
10° 10! 102
rithmetic Intensi S e Performance - Y
Arithmetic Intensity [FLOPs/Byte] Runtime

(GFLOP/s)

U.S. DEPARTMENT OF Office of
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Methodology to Construct Roofline NE

1. Collect Roofline ceilings
- compute (FMA/no FMA) and bandwidth (DRAM, L2, ...)
- ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit

2. Collect application performance
- FLOPs, bytes (DRAM, L2, ...), runtime
- SDE, VTune, LIKWID, Advisor, nvprof, ...

3. Plot Roofline with Python Matplotlib (or other tools of your preference)
- arithmetic intensity, GFLOP/s performance, ceilings
- example scripts: https://github.com/cyanguwa/nersc-roofline

EEEEEEEEEEEE Ofﬂce of
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2.1 Intel CPUs and NVIDIA GPUs
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Data Collection on Intel CPUs NER

The not-so-automated way 1:

- Intel SDE for FLOPs (emulation)

+ Intel VTune for DRAM bytes (HW counters)
- Runtime

- DRAM Roofline only

- Used by NESAP for Cori =

- NERSC Exascale Science Application Program
- http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

U.S. DEPARTMENT OF Office of
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2P HSW

KNL

Data Collection on Intel CPUs

NEF

MFDn

10000
1000 o
5 / «===Roofline Model
9 100 & = *wo/FMA
'8 A
G /Q/ i 1RHS
10 A 4RHS
< 8RHS
1 T T :
0.01 0.1 1 10
Arithmetic Intensity (FLOP/byte)
10000
1000 /
S / ===Roofline Model
g 100 = =wo/FMA
© f il 1RHS
10 / A 4RHS
© 8RHS
1 T T )
0.01 0.1 1 10

U.S. DEPARTMENT OF

ENERGY Science

Arithmetic Intensity (FLOP/byte)

Office of

GFLOP/s

GFLOP/s

10000

1000

100

10

1

0.1 1

10000

1000

100

10

1

EMGeo

===Roofline Model
= *wo/FMA

& Original

A SELL

¢ SB

4 SELL+SB

© nRHS+SELL+SB

10
Arithmetic Intensity (FLOP/byte)

===Roofline Model
= =wo/FMA

& Original

A SELL

¢ SB

4 SELL+SB

© nRHS+SELL+SB

0.1 1 10
Arithmetic Intensity (FLOP/byte)

GFLOP/s

GFLOP/s

10000

1000

100

10

1

10000

1000

100

10

1

DRAM Rooflines of NESAP Codes

PICSAR

@  e==Roofline Model
= =wo/FMA
@
= A i Original
A w/Tiling
¢ w/Tiling+Vect
0.1 1 10
Arithmetic Intensity (FLOP/byte)
«===Roofline Model
= *wo/FMA
= % /
A i Original
L A w/Tiling
¢ w/Tiling+Vect
0.1 1 10

Arithmetic Intensity (FLOP/byte)

N
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Data Collection on Intel CPUs NER

AMReX Application Characterization

The not-so-automated way 2: 1024 S
==lL3
- LIKWID for FLOPs and bytes 512 R otine
- Both are based on HW counters ém
- ~ 128
- Runtime 5
2 64
2
3 32
- Hierarchical Roofline o
8 —_ —_ — —_ —_— —_ —_ —_ —_ —
. Limited by quality of HW counters EEEEEEERER
. - . co ¢ 5 £ x x £ = x %
- High-level characterization, no callstack I I L B B
T s 8 o

https://qgithub.com/RRZE-HPC/likwid

U.S. DEPARTMENT OF Office of
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Data Collection on Intel CPUs

The fully automated way:

- Intel Advisor, Roofline feature
- Instrument applications automatically
- one dot per loop nest/function
- FLOPSs, bytes and runtime
- Hierarchical Roofline
- Integrates with other Advisor capabilities

Benchmarks target system

U.S. DEPARTMENT OF Office of

ENERGY Science 45

1B~ | [ Use Single-Threaded Roofs ©

i p— i e A
o o705
ool

0d68s1

W ® e B @ OStatSuneyAnalysis|v & @
Start Survey Analysis

Start Trip Counts and FLOP Analysis
Start Roofline Analysis

Welcome | €000 X

[ @] Etapsed time: 8.80s

FILTER:| All Modules ~ E Start Memory Access Patterns Analysis  lhreads v]| Loads and stores v

Start Dependencies Analysis
Start Suitability Analysis
s

B/Summary | & Survey &
{4 Performance (GFLOF>)

Use Single-Threaded Roofs @

0.01
0.01 0.1 1 10 1000 10000 1.0e+5
Self Elapsed Time: 2,110 s  Total Time: 7.580 s Arithmetic Intei

Source | Top Down | Code Analyics | Assemiy [

Address |Line
function ) 0x4107d0 Block 1: 146029716

0x4107d0 492 pushq %rbp 0.020s 0.020s
0x4107d1 492 mov %rsp, %rbp 0.010s 0.010s
0x4107d4 492 sub $0x210, %rsp

Assembly Total Time % Self Time

AY
freeeee ““‘
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Data Collection on Intel CPUs

New features in Intel Advisor 2019
(picture courtesy of Z. Matveev)

Step 1. Compiler diagnostics + Performance Data + Guidance: detect problem and recommend how to fix
SIMD efficiency information it
https://software.intel.com B e e v -
e _ Tnce.by moving

- i - i - ¢ i Step 2. “Precise” Trip Counts & FLOPs. i <
/en US/'ntel adVISOr \l‘ . Renovated Summary Wlth Characterize o appllca *« Roofline for INT OP/S \‘
\ T e . . . . |
201 9-re|ease-notes | Memory/Cache utilization . N | Isr::rg;:ted Traffic Simulator and Memory \
“ * Python prof.l ling support N o \, * Integrated Roofline (preview), Roofline ‘\
| ’YNNI,,,?nalyFﬁ;s;;a S Ca——r g | ~ Guidance “

Basic Support for DNN / ML frameworks |

« “Em Interactive(!) HTML expo
e . ‘ . - b —
5 DA . . hL ..

Step 3. Loop-Carried Dependency Analysis

Step 4. Memory Access Patterns Analysis
("' - — Vﬂﬁ/i\/~
|
P
| MAC OS* viewer | SteName  Sources Modules  State
\ o
| : | site2 dqtest2 cpp dqtest2 v Not a problem
. 1
\ Function call counts | ez S P Lo [E—
| L cite2 > 0 ® swider Type
‘\ ° Python Apl V site2 dqtest2 cpp dqtest2 R New T e e
\ 7 B N AR lagtest2 | New  |EEEE
= T 77 0 Wiite afterwee o site2 dqtest2 cpp dqtes2  ReNew s
P6 @  Write after read dependency site2 dqtest2 cpp dqtest2 R New bes g s
P7 @  Wiite after read dependency site2 dqtest2 cpp. idle.h dqtest2 R New @23 @ 00 Unit stride runCRawloops.cod38  Icals.exe
P0 @ 2 Varioble stride runCRowloops.cocs28 lcals.exe
U.S. DEPARTMENT OF Office of
ENERG Y  science
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2

Data Collection on NVIDIA GPUs \

Still manual at this stage, but...

Runtime:
- Internal timers or nvprof --print-gpu-trace

FLOPs:

- DP/SP/HP counters and metrics, nvprof --metrics
‘flop count dp/sp/hp’ or "tensor precision fu utilization’

Bytes for different cache levels:
- Bytes = (read transactions + write transactions) x transaction size

- nvprof --metrics ‘metric_name’ e.9. gld/gst transactions

Hierarchical Roofline

EEEEEEEEEEEE Ofﬂce of
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The Roofline Tree

Brings People Together
NESAP
CRD
Intel
NVIDIA
all HPCers

ntegration

ENERGY e of Roofline Performance Model




3. Performance Portability

Definition, Metric, Roofline, KNL, V100
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Introduction =
- No consensus on the definition or metric for performance portability
- But Pennycook et al... ( IH]|
if i is supported, Vi € H
D(a,p,H) =+ Zieﬂﬁ
\ 0 otherwise
Application’s Efficiency on platform i

- Application’s Efficiency ? Architectural Efficiency

- application performance on platform i / peak performance of platform i
- application performance on platform i / application’s best performance

on all platforms of interest H \ Application Efficiency

U.S. DEPARTMENT OF Office of S-J. Pennycook, J. D. Sewall, and V. Lee, “A metric for performance portability,” arXiv:1611.07409, 2016. ...:... m
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Introduction NE

- No consensus on the definition or metric for performance portability
- But Pennycook et al... (

|H|
if i is supported, Vi € H
¢(ar P; H) — < Zie]—[@
\ 0 otherwise

- Architectural Efficiency [Williams et al]
Actual Application Performance

P(a,p)~

min(F;, B; X Ii%?))

Max Attainable Performance defined by
Roofline

€ (a, p) -

U.S. DEPARTMENT OF Office of * S.J.Pennycook, J. D. Sewall, and V. Lee, “A metric for performance portability,” arXiv:1611.07409, 2016.
ENE GY Science ° S Wiliams, A. Waterman, and D. Patterson, “Roofline: An insightful visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65-76, 2009.




N\

Introduction =
No consensus on the definition or metric for performance portability
But Pennycook et al... ( H]|
if i is supported, Vi € H
¢(ar P; H) — < Zie]—[@
\ 0 otherwise

Architectural Efficiency [Williams et al]

e (ap) = P;(a,p)
(& P) =i F;, B; X I;(a,p))

Peak FLOP/s \ Arithmetic Intensity

Peak Bandwidth

EEEEEEEEEEEE Ofﬁce Of
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Bottleneck Changes

Bottleneck shifts at nw = 2 on KNL vs. V100 (no-FMA performance)

Easier to achieve no-FMA ceiling on V100 than KNL, due to higher ratio
of instruction issue bandwidth vs. instruction execution bandwidth

103

Performance [GFLOP/sec]

KNL

FMA: 2390.1 GFLOP/s

/ No-FMA: 959.5 GFLOP/s

bods

® nw=l1 nw=4
B FMA m nw=2 & nw=5
1 No-FMA Y nw=3 > nw=6

10°

10!
Arithmetic Intensity [FLOPs/Byte]

Performance [GFLOP/sec]

104

103

V100

FMA: 7068.9 GFLOP/s

o>

No-FMA: 3535.8 GFLOP/s

® nw=l1 nw=4
B FMA m nw=2 & nw=5
1 No-FMA Y nw=3 [>

10t 102
Arithmetic Intensity [FLOPs/Byte]

U.S. DEPARTMENT OF Office of
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C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo, B. Friesen, B. Cook, D. Doerfler, L. Oliker, J. Deslippe, S. Williams, An
Empirical Roofline Methodology for Quantitatively Assessing Performance Portability, SC’2018 P3HPC Workshop, Nov 11-16 2018, Dallas




Bottleneck Changes

Y 4

No FMA: performance portability consistently > 80%

FMA: benefit is far less than 2x at high nw; architectural efficiency suffers

(so does performance portability)

Could regain some architectural efficiency if non-floating-point vector

operations were considered

| Architectural Efficiency [nw =1 |nw=2 Jnw=3 lnw=4 [mw=5 |mw=6_

KNL 84.98%

FMA V100 97.36%
Performance Portability 90.76%

KNL 82.06%

No-FMA V100 92.88%

Performance Portability 87.14%

77.50%
91.50%
83.92%
72.95%
92.88%

81.72%

66.77%
76.70%

71.39%
73.74%
97.43%

83.95%

55.28%
65.44%

59.93%
78.72%
98.91%

87.67%

46.56%
65.07%
54.28%
81.28%
1
89.93%

39.65%
66.38%

49.65%
82.81%
99.73%

90.49%

EEEEEEEEEEEE Offlce of
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Summary

Roofline is very powerful in capturing changes in machine and application
characteristics such as

- compute/bandwidth bound, problem size
— instruction issue bandwidth, strided memory access

It is important to
- measure bandwidth/compute ceilings empirically
— account for non-multiply/add instructions appropriately

- select relevant ceilings in performance analysis and performance
portability analysis

EEEEEEEEEEEE Ofﬂce of
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4. Energy Roofline

Performance, Power Consumption, Energy Efficiency
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u N - % »
Energy Roofline - GEMM \
| Cache-aware Roofline Models |
60 — 92
w 27 AVX MAD _ 3 2 C 7 AVX MAD
3 56 < E 56 o
g2 ) & 2°
G s 3 52 5
g D 48 8272
g 54l & kS 14
: T L ¢
g 53 Performance 2 .0 32'4 ”" Energy-Efficiency
g CARM 40 s CARM
Q 22 . i 1 | 1 | | | 36 i 26 1 I I |
-4 2 0 2 4 - - -
2 2 2 2 2 26 24 2220 22 24 26 28 2-4 22 20 22 24
Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte]

Arithmetic Intensity [flops/byte]

+ Power Consumption based on CARM

. 1 Basic implementation: Row-major matrices

B Relates WattS Wlth FLOPS/byteS 2 Improved memory access by transposing B matrix

— Defines power envelope for different 3,45  Blocking for caches: L3 (pt. 3), L2 (pt. 4) and L1 (pt. 5)
types Of FP and memory Operations 6 Highly optimized Intel MKL implementation

u.s. DEPARTMENTOF | (O)ffice of * A. llic, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrading the loft”, IEEE Computer Architecture Letters (2013)
EN GY Science * A llic, F. Pratas and L. Sousa, “Beyond the Roofline: Cache-aware Power & Energy-Efficiency...”, IEEE Transactions on Computers (2017)




> 4
)
J

Use Cases

| Application Characterization |

AVX MAD
——— o >
g4 [ DBLSSEL AW ““AVX MUL/SSE.MAD 28
) SSE MUL/DBL MAD 3
2 27 5
St T e T o L &
5 = S
o ' z ~
) u @ Z 26 .- 2
g 2 mes @ e B H == 2
g romacs < S DRAM (DBL) g
£ oot @ e Q = 25 (DBL) £
g oy W wma Y L 3
222 @ s g e ¢ » a
o mic A leslied § S
Gems?g":; X o L1 (DBL MUL) )
24 _ i P \ ! . ) PEY L . . . . . f . . . . . . . . . ,
Arithmetic Intensity [flops/byte] 20 21 27 Arithmetic Intensity [flops/byte] _ 21 28 27 26 25 24 23 22 21 20 o1 32
Operational Intensity [flops/byte] Operational Intensity [flops/byte] Avrithmetic Intensity [flops/byte]
3
’ SSENE L1 (AVX MAD)
— = L2
7 251 L P
3 8 -
2 _ & -
©) g > e
)
< ] H
5 H 2
g 2 g
s il i ’
5o apan B2 3 -
2 P
& P
oRAM CS 7
2-1 L I} 20 d L I
25 24 23 22 21 20
Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte] Arithmetic Intensity [flops/byte]

£:8.DEFARINEAT OF Office of « llic, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Cache-aware Power & Energy-Efficiency Modeling...”, IEEE Transactions on Computers (2017) .,.’:h”*ﬁ
ENERGY Science ¢ Antao, D., et.al.,“Monitoring Performance and Power for Application Characterization with CARM”, PPAM’13
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5. Scaling Trajectories

What’s causing bad scaling from Roofline point of view?
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Roofline Scaling Trajectories

roofline_summary_sp_|Ibl

We often plot performance as

a function of thread concurrency =1
- - - - °
- Carries no insight or analysis -
- Provides no actionable info S |

GFlop/s
E} )

10.0

1.0

0.1

#Threads
EEEEEEEEEEEE Office of
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Roofline Scaling Trajectories NEF

roofline_summary_sp_Ibl

= \We often plot performance as a

function of thread concurrency g | [o Clssa VFMA (1229)
) ) . ) o -A-- ass
o Carries no insight or analysis - = Class C
o Provides no actionable information. 2 | ©32) (77)
1°_ O(b Cb‘€32
. » $\ iy
= Use Roofline to analyze thread 3 S
- 2 “5\ (\DD ) 92)
(or process) scalability G S @» t ha
|/ -
o 2D scatter plot of performance as a *
function of intensity and concurrency e
o ldentify loss in performance due to
increased cache pressure (data - |
movement) e | | T T T T 1 |
0.01  0.05 0.50 5.00 50.00
Arithmetic Intensity (Flops/Byte)
oooooooooooo Office of * Khaled lbrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A Method for Parallel Application and Architectural Performance

ENERGY Bchanioe Analysis", HPBench, July 2018



6. Mixed Precision

FP64, FP32, FP16, CPU, GPU
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Mixed Precision

Benefits of reduced/mixed precision:
e From FP64 to FP32 A
o 2x due to bandwidth savings or
compute unit availability
o similar for network communication
e More support on modern architectures
o ~15x FP16 over FP64 for some ops

FP16 Peak
Mixed Precision

FP64 Peak

Attainable GFLOP/s

NESAP collaboration with CRD (Costin lancu)
and NVIDIA (Chris Newburn)

EEEEEEEEEEEE Ofﬂce of
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7. Instruction Roofline

FLOP, INTOP, IPC

U.S. DEPARTMENT OF Office of

ENERGY Science




Instruction Roofline NEF

= FP instructions can be the

minority in many HPC codes 1

= Emerging domains have ~no FP Peak VUOP!s
o Graphs é
o Hash tables % | :
o Bloom filters 8 ' |
o Searches '§ | :

= FLOPs is agnostic of precision, i E
scalar/vectors/tensors, : : >

Arithmetic Intensity
. . FLOP:Byte -> VUOP:Byte)
= Instruction Roofline (FLOFEY

EEEEEEEEEEEE Ofﬂce of
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Instruction Roofline

> 4
J

FLOPs-based Roofline

= FMA doesn’t change Arithmetic
Intensity (FMA == FMUL+FADD)

» Vectors/tensors don’t change
Arithmetic Intensity

= Vector integer operations don’t
change Arithmetic Intensity

» Reducing precision (64b, 32b, 16b)
increases Arithmetic Intensity

> Tells us about performance

EEEEEEEEEEEE Ofﬂce of

ENERGY Science

VUOPs-based Roofline

FMA cuts Arithmetic Intensity in
half (half the number of VUOPS)

vectors/tensors reduce Arithmetic
Intensity (SIMD cuts VUOPS by 8x)

Vector integer operations
increases Arithmetic Intensity

Changing precision doesn’t change
Arithmetic Intensity

» Tells us about VPU/pipeline

utilization and bottlenecks

62




8. Empirical Roofline Toolkit (ERT)

Machine Characterization, Peak FLOP/s, Bandwidths




Empirical vs. Theoretical Ceilings NE

Performance [GFLOP/sec]

Theoretical compute ceiling on KNL:
64 cores X 8 DP/vector x 2 FLOPs/FMA X 2 vectors X 1.2 GHz = 2.46 TFLOP/s
Theoretical compute ceiling on V100:
80 SMs x 32 FP64 cores/SM x 2 FLOPs/FMA x 1.53GHz = 7.83 TFLOP/s

KNL

103_

Theoretical FMA: 2457.6 GFLO

Empirical FMA: 2390.1 GFLO

3%

Theoretical No-FMA: 1228.8 GFLO

P/s]

102_

Empirical No-FMA: 959.5 GFLO

22%

—— Empirical Ceiling

-------- Theoretical Ceiling

10! 10°

10! 102 103 104

Arithmetic Intensity [FLOPs/Byte]

U.S. DEPARTMENT OF Office of

ENERGY Science

Cori KNL partition

10°

Performance [GFLOP/sec]

63

104<

103_

1027

V100

.............. Theoretical FMA: 7833.6. GELOR! 4109/
7 Empirical FMA: 7068.9 GFLOP °

Theoretical No-FMA: 3916.8 GFLOP,’|

Empirical No-FMA: 3535.8 GFLor, 10%

-------- Theoretical Ceiling
—— Empirical Ceiling

10°

10t 102 103 10 105
Arithmetic Intensity [FLOPs/Byte]

Voltar at UOregon




Machine Characterization NEH

- ERT can’t detect all the ceilings yet - IN DEVELOPMENT!
- Haswell/KNL: L1, L2, L3/HBM, DDR
- V100: L2, HBM, DDR

« Our goal is to incorporate vioo

Tensor Core(FP16): 125.0 TFLOP/s
10° /‘ ; i -/('
- the fu" memory hlerarChy FMA(FP16): 28.3 TFLOP/s

— instruction mix (e.a. FMA/no-FMA g c,/ " Aosukre16yemarea): 181 TELOPS
( g ) 510“ bg& / / /16FMA(FP32)/FMA(FP64): 7.1 TFLOP/s
- data type (e.g. FP64, FP32, FP1 6) E < No-FMA(FP64): 3.5 TFLOP/s
- compute units j
(e.g. CPU/CUDA core/Tensor core) : -
m HBM

NVLINK ® kernel

10! 10? 10° 104

- Ceilings can be omitted if irrelevant Arithmetic Intensity [FLOPs/Byte]

U.S. DEPARTMENT OF Office of

ENERGY science Empirical Roofline Toolkit (ERT). https://bitbucket.org/berkeleylab/cs-roofline-toolkit/ "tmﬂ'hl
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9. Outreach

Tutorials, Talks, Publications, Collaboration
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Tutorials NEF

T. Koskela, A. llic, Z. Matveev, S. Williams, P. Thierry, C. Yang, Performance Tuning of Scientific
Codes with the Roofline Model, SC’2017 Half-Day Tutorial, Nov 12-17 2017, Denver

+ T. Koskela, A. llic, Z. Matveev, R. Belenov, C. Yang, L. Sousa, A Practical Approach to Application
Performance tuning with the Roofline Model, ISC’2018 Half-Day Tutorial, Jun 24-28 2018, Frankfurt

* S. Williams, A. llic, Z. Matveev, C. Yang, Performance Tuning of Scientific Codes with the Roofline
Model, SC’2018 Half-Day Tutorial, Nov 11-16 2018, Dallas

+ S. Williams, J. Deslippe, C. Yang, P. Basu, Performance Tuning of Scientific Codes with the Roofline
Model, Exascale Computing Project 2nd Annual Meeting, Feb 5-9, 2018, Knoxuville

« C.Yang, Z. Matveev, A. llic, D. Marques, Performance Optimization of Scientific Codes with the
Roofline Model, ISC’2019 Half-Day Tutorial, Jun 16-20 2019, Frankfurt

* S. Williams, J. Deslippe, C. Yang, Performance Tuning of Scientific Codes with the Roofline Model,
Exascale Computing Project (ECP) Annual Meeting, Jan 14-18, 2019, Houston

U.S. DEPARTMENT OF Office of
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Talks NEF

« C.Yang, S. Williams, Performance Analysis of GPU-Accelerated Applications using the Roofline
Model, GTC’2019, Mar 17-21 2019, San Jose

+ C. Yang, Roofline Performance Analysis with nvprof, NERSC/NVIDIA F2F, Feb 7 2019, Berkeley

« C.Yang, S. Williams, Performance tools and performance counters, Intel PathForward Hack-a-Thon,
Apr 10-12 2018, Santa Clara

 C. Yang, Performance Analysis of GPU-Accelerated Applications using the Roofline Model, Cray
COE Webinar, Apr 11 2019, Berkeley

+ J. Pennycook, C. Yang, J. Deslippe, Quantitatively Assessing Performance Portability with Roofline,
IDEAS webinar, Jan 23 2019, https://ideas-productivity.org/

« C.Yang, T. Kurth, Roofline Performance Model and Intel Advisor, Performance Analysis and
Modeling (PAM) Workshop, Feb 14-15 2018, Brookhaven National Laboratory

+ C. Yang, Introduction to Performance & Scalability Tools, DOE CSGF Annual Review, Jul 15-19 2018,
Arlington

 C. Yang, Using Intel Tools at NERSC, Intel KNL Training, May 22-23 2019, Berkeley

U.S. DEPARTMENT OF Office of
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All Publications... =i:

LBNL CRD Roofline Research:

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/publications/

Collaborate with us!
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Roofline Helps

Drive performance optimization
- Application characterization, application readiness

Create a dialogue between Applied Maths and CS

- Communication-avoiding algorithms, high-order methods,
new algorithms

Facilitate cross-architecture comparisons for procurements
- CPUs, GPUs, other accelerators
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