
Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

S21353:
Accelerating Large-Scale GW Calculations in Material Science

Mauro Del Ben1, Charlene Yang2

1Computational Research Division, Lawrence Berkeley National Laboratory
2National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory

March 25, 2020

GPU Technology Conference (GTC), San Jose

1

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Outlook

Motivation and Introduction

BerkeleyGW Software Package → Portability Strategy

GPU support for epsilon

GPU support for sigma

Large Scale Application

Summary

2

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Accurate Optical and Electronic Properties of Complex Materials

Complex Materials: unique electronic and optical triggered by symmetry breaking

Important implications in many fields:

Quantum Computing

Energy Storage/Conversion

Photovoltaics

Nanoelectronics

Catalysis Example: schematic representation of the electronic structure of a
divacancy in crystalline Silicon

Accurate predictions requires:

Accuracy beyond standard (DFT) approaches → GW and GW + BSE

System size beyond conventional simulations → Thousands of atoms

3

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Introduction: The GW Method

GW method represents the state of the art most effective and accurate approach to
predict excited-state properties in a wide range of materials

Solve Dyson’s equation:ï
−1

2
∇2 + VNuc + VH + Σ(En)

ò
φn = Enφn, (1)

Σ(En) → self-energy (non-Hermitian, non-local, energy-dependent operator)

Bottlenecks:

1 Evaluation of the Polarizability → O(N4) static and/or frequency dependent

2 Evaluation of the Self-Energy (Σ) → O(N3)−O(N4)

4

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

State of the Art

Application of GW to thousands atoms systems still a challenge

Reduce time to solution and extend applicability:

Improve single node performance and parallel scalability

Develop methods to reduce prefactor and scaling with system size

HPC on the Path to Exascale: Hybrid Architectures

Code optimization for HPC applications will be focused on hybrid GPU-CPU systems,
in this talk some of the portability strategies to implement GPU support for the
BerkeleyGW software package will be discussed.

5

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

The BerkeleyGW Software Package

https://berkeleygw.org/

Compute electron excited-state properties of materials via GW , Bethe-Salpeter
equation (BSE) and beyond

Parallelization: Hybrid MPI / OpenMP (CPU) / GPU (Cuda, OpenACC)

On many-core architectures: scaling up to 100,000’s cores achieving high fraction
of peak performance

Basic algorithmic kernels:
Large distributed matrix multiplication (tall and skinny matrices)
Large distributed linear algebra (LU decomposition, invesion, eigenproblems, etc. . .)
Non-distributed fast Fourier transformations (FFT)
Dimensionality reduction and low-rank approximations

6

https://berkeleygw.org/

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

The BerkeleyGW Workflow

Four major executables:

epsilon → Polarizability and
Dielectric function of the material

sigma → GW quasi-particles energy
(band structure)

kernel → BSE matrix elements

absorption → Interpolate BSE kernel
matrix elements and solve BSE

epsilon and sigma perform the GW part of the workflow → Full GPU support for
both executables

7

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Portability Strategy on Hybrid Architecture: Combining the Strengths

CPU - Speed

Task Parallelism

GPU - Throughput

Data Parallelism

Images from Wikipedia

8

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Portability Strategy on Hybrid Architecture

Achieving best performance → Keep device busy + Hide latency

Use miniapps siulating full app running at scale to develop best porting strategy

Take advantage of asynchronous operations for memcopy and kernels execution

Keep data on device → implement intermediate kernels → avoid useless memcopy

Use streams (queues) to enable high concurrency on device

Enable for independent execution on host and device (overlap communication)

If possible use available optimized libraries

9

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Portability Strategy: Benchmark for Performance Measurement

Assessing performance across architecture and track improvements:

Systematically assess performance (strong scaling, weak scaling, etc..)

Well defined metrics: Flops, memory usage, I/O requirements , etc...

Divac-Si-214 Divac-Si-510 Divac-Si-998

Nψ
G 31,463 74,653 145,837

Nχ
G 11,075 26,529 51,627

Nn 6,397 15,045 29,346

Nv 428 1,020 1,996

Nc 5,969 14,025 27,350

Neig 3,500 7,000 14,000

Nω 10 10 10

Epsilon Min PFlops 5.8 157.9 2335.7

Epsilon Min Memory (Tb) 0.6 7.7 57.5

Divacancy defect in Silicon, three supercell, with 214, 510 and 998 atoms respectively
10

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Baseline Performance

Strong Scaling for the epsilon code measured on Edison@NERSC (Cray XC30, Ivy
Bridge processors)

11

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

GPU support for epsilon

12

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Introduction: The GW Method

Solve Dyson’s equation:ï
−1

2
∇2 + VNuc + VH + Σ(En)

ò
φn = Enφn, (2)

Σ(En) → self-energy (non-Hermitian, non-local, energy-dependent operator)

In BerkeleyGW:

1 espilon: Evaluation of Polarizability / Dielectric Function ε → O(N4)

2 sigma: Evaluation of Self-Energy (Σ) → O(N3)−O(N4)

Dielectric Function ε and its inverse needed to compute the self-energy Σ

13

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Epsilon Code: Inverse Dielectric Matrix ε−1

Input: ψmk, εmk, {q-points}, {ωi}
1 Calculate plane-waves matrix elements (FFT’s):

MG
jak(q) = 〈ψjk+q| ei(G+q)·r |ψak〉

2 Calculate Static RPA polarizability (Matrix-Multiplication):

χ(q, ωi) = M(q)†∆jak(εjk, εak,q, ω = 0)M(q)

∆ diagonal matrix

3 Low rank approximation for the frequency dependent part (ω 6= 0)

4 Dielectric matrix ε and inversion: ε−1(q, ωi) = (I − vχ(q, ωi))
−1

Five major computational kernels: (1) Matrix Elements, (2) Static Polarizability, (3)
Diagonalization, (4) Basis Transformation and (5) Frequency Dependence

14

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Epsilon: Hybrid GPU-CPU Implementation

1 Matrix Elements (MTXEL): Unfavorable O(N3) vs O(N3 logN) data/flops

cuFFT library → no benefit by just linking
Asynchronous data transfer → pinned host memory/data streams

2 Static Polarizability (CHI-0): Favorable O(N3) vs O(N4) data/flops

Use cuBLAS library → Asynchronous host to device data transfer
Non-blocking cyclic MPI communication scheme
Overlap CPU-communication/GPU-computation

3 Diagonalization (Diag): O(N3) → ELPA
4 Basis Transformation (Transf): O(N4) memory bottlenecks for both host/device

Batch communication over eigenvectors → control host memory usage
Batch computation over wavefunctions → control device memory usage

5 Frequency Dependence (CHI-Freq): O(N4) multiple matrix multiplications

Smaller matrices (NG/Nb ' 5− 10) at multiple frequencies
Data streams over frequency index → allows for concurrent execution on device

15

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Epsilon: CPU-Only vs Hybrid GPU-CPU (Summit@OLCF)

Same as left plot, zoomed in.

Summit node: 2 IBM POWER9 CPUs (21 cores each) and 6 NVIDIA V100 (Volta) GPUs, aggregate
performance 42 TFlops. Cori-GPU node: 2 sockets of 20-core Intel Skylake + 8 NVIDIA Volta GPUs.

Overall 15x speed-up for the hybrid implementation vs CPU-only

16

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Summit@OLCF: Strong Scaling

17

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Summit@OLCF: Weak Scaling

Favorable O(N3) vs O(N4) scaling of memory vs Flops, larger batch sizes by
increasing computational resources proportionally to Flops

18

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Comparison Across Architectures: Time to Solution vs Power

Average power per node (from Top500 website), Edison: 0.67 kW, Summit 2.12 kW.

19

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

GPU support for sigma

20

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Introduction: The GW Method

Solve Dyson’s equation:ï
−1

2
∇2 + VNuc + VH + Σ(En)

ò
φn = Enφn, (3)

Σ(En) → self-energy (non-Hermitian, non-local, energy-dependent operator)

In BerkeleyGW:

1 espilon: Evaluation of Polarizability Dielectric Function ε → O(N4)

2 sigma: Evaluation of Self-Energy (Σ) → O(N3)−O(N4)

21

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

The Self-Energy Matrix Elements Σlm(E)

Self-Energy matrix element for a given pair of orbital functions {φl, φm}

Σlm(E) =
i

2π

∫ ∞
0

dω
∑
n

∑
GG′

M−Gnl
ε−1GG′(ω) · v(G′)

E − En − ω
M−G

′
nm

Frequency Treatment:

Full-Frequency (FF):

Analytical integration over frequency
Require frequency dependent dielectric matrix

Generalized Plasmon Pole (GPP) Model:

Analytical approximation to the frequency dependence
Require only the static dielectric matrix

22

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

The Generalized Plasmon Pole Model (GPP)

For the Coulomb-Hole (CH) term (similar expression for the SX):

ΣCH
lm (E) =

1

2

∑
n

∑
GG′

M−Gnl
Ω2
GG′(1− i tanφGG′)

ω̃GG′(E − εn − ω̃GG′)
v(G′)M−G

′
nm

=
1

2

∑
n

∑
GG′

M−Gnl P
CH
GG′ [E − εn]v(G′)M−G

′
nm

Ω, ω̃ and φ → effective bare plasma frequency, GPP mode frequency and phase of renormalized Ω2

Coupling between [E − εn] and GG′ → can not be reformulated as a matrix
multiplication (contrary to the FF case)

Basic algorithm motif:

For each n → matrix-vector multiplication
Dot product
Reduction over n

23

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Sigma GPP Code: Two Level Parallelization

Schematic example of the data layout and operations for task 0 at the second cycle of the process’s loop of the parallel algorithm.

Pool of processes each working on a subset of the total number of {Σlm(E)}, for each
Σ matrix element:

Compute matrix elements Mm/Ml distributed over columns n → MTXEL kernel
Prepare intermediates to compute PCH/SX distributed over rows G → PREP

Communication only within the pool → Broadcast or Non-Blocking Cyclic
Most of the computation is performed in the Sigma-GPP kernel

24

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

The Sigma-GPP Kernel

Outer loop over processes in the pool, at each iteration perform the contraction with
the received Mm/Ml (N tot

G , Ndistr
n) and local PCH/SX (N tot

G , Ndistr
G):

Sigma-GPP Kernel: Stride loop over col-
lapsed two outermost loops

loop my_igp < NG_distr

. loop ig < NG_tot

. . loop n1_loc < N_block_size

. . . Contract P with M

. . . Accumulate SCH and SSX

Reduce SCH and SSX over threads

for each band/thread block

On Host:

1 Loop over block of bands, one stream for each band block, for each stream launch
Sigma-GPP kernel with NTB (64) thread blocks with NT (256) threads per block

2 Synchronize communication (overlap kernel execution MPI comm.)

3 Loop over block of bands, synchronize band stream, and finalize reduction

25

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Sigma GPP Code: Profiling

Non-Blocking Cyclic communication scheme allows for overlap computation (GPU) and

communication (CPU). Also shown is the concurrent executions of Sigma-GPP kernels on device.
26

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Strong Scaling: Summit@OLCF vs Edison@NERSC

A 1:1 node comparison give over 100x speed-up on Summit vs Edison

27

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Sigma GPP Code: Flop Count

Obtaining the Flop count:

For large runs > 99% of the flops are performed by the Sigma-GPP + zgemm

kernels → neglecting the flops on host and other device kernels (FFTW, etc...)

From the scaling: Flops = a×Neqp ×Nn ×N2
G, obtain the prefactor a by fitting

the flop count for a series of calculations wrf (Neqp, Nn, N
2
G):

Flops = (agpp + azgemm)×Neqp ×Nn ×N2
G

agpp = 153.44 ; azgemm = 8

Check formula by comparing with a set of independent calculations

28

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Sigma GPP Code: Validating Flop Count Formula

System Neqp Nn NG TFlop Measured TFlop Estimated % Est./Meas.

Divac-Si-510 2 1322 3287 4.641 4.612 99.4

Divac-Si-510 2 2631 3287 9.212 9.178 99.6

Divac-Si-510 2 3223 9315 90.49 90.30 99.8

Divac-Si-510 2 4261 9315 119.54 119.37 99.8

Divac-SiC-214 4 2123 2103 6.070 6.063 99.8

Divac-SiC-214 4 1113 2945 6.259 6.234 99.6

Divac-SiC-214 4 2309 2945 12.96 12.93 99.8

Divac-SiC-214 4 3409 6979 107.23 107.22 99.9

Table: Fitting performed for the Divac-Si-214 system, the Flop count include both the

Sigma-GPP and zgemm.

29

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Flop Rate on Summit@OLCF

Summit node: 42 TFlops/s peak performance (6 GPU’s). Sigma-GPP: 1-Summit node
19.1 TFlops/s (45.5% peak) ; 32-Summit nodes 519 TFlops (38.6% peak).

30

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Large Scale Application

31

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Divacancy Defect in SiC: 998 Atoms Supercell

Prototype for solid state QBit

32

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Divacancy Defect in SiC: Calculation Size

Divac-SiC-998

Nspin 2

Nψ
G 422,789

Nχ
G 149,397

Nn 16,153

Nv 1,997 (↑) / 1,995 (↓)
Nc ∗Nv 28.2 M

Neqp 80 ×Nspin

epsilon sigma

I/O Read (Gb) 230 537

I/O write (Gb) 333 0

Min. Memory (Tb) 135 0.74 × pool

Min. Flops (EFlops) 10.1 9.31

33

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Divacancy Defect in SiC: epsilon CHI-0

On 1600 Summit Nodes (9600 GPU’s): time to solution 15 mins total

34

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Divacancy Defect in SiC: sigma GPP (80 Eqp per spin)

Scaling up to 4,560 Summit nodes (27,360 GPU’s) 99% of entire system.
35

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Divacancy Defect in SiC: sigma GPP

100 Nodes 4560 Nodes

Number of GPU’s 600 27,360

Number of Sigma-Pools 5 80

GPU’s per Pool 120 342

I/O time (s) 33 71

Compute time (s) 5575 142

36

Introduction BerkeleyGW: Portability Strategy epsilon sigma Large Scale Application Summary

Summary

GPU support in BerkeleyGW:

More than 10× acceleration compare to CPU architectures

Good strong / weak scaling with high fraction of peak performance

Order of magnitude improvement in energy per flop efficiency

Excellent time to solution for systems made of thousands of atoms

Acknowledgment: Work supported by the Center for Computational Study of Excited-State
Phenomena in Energy Materials (C2SEPEM) at LBL, funded by the U.S. DOE under Contract No.
DE-AC02-05CH11231. Computational resources provided by NERSC within NESAP program and by
OLCF within INCITE program.

37

	Introduction
	BerkeleyGW: Portability Strategy
	epsilon
	sigma
	Large Scale Application
	Summary

