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Perlmutter Overview



NERSC is the mission High Performance 
Computing facility for the DOE SC
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7,000 Users
800 Projects
700 Codes
2000 NERSC citations per year

Simulations at scale

Data analysis support for 
DOE’s experimental and 
observational facilities
Photo Credit: CAMERA



NERSC has a dual mission to advance science 
and the state-of-the-art in supercomputing
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• We	collaborate	with	computer	companies	
years	before	a	system’s	delivery	to	deploy	
advanced	systems	with	new	capabilities	at	
large	scale

• We	provide	a	highly	customized	software	and	
programming	environment	for	science	
applications

• We	are	tightly	coupled	with	the	workflows	of	
DOE’s	experimental	and	observational	facilities		
– ingesting	tens	of	terabytes	of	data	each	day

• Our	staff	provide	advanced	application	and	
system	performance	expertise	to	users



• Winner	of	2011	Nobel	Prize	in	
Physics	for	discovery	of	the	
accelerating	expansion	of	the	
universe.

• Supernova	Cosmology	Project,	
lead	by	Perlmutter,	was	a	
pioneer	in	using	NERSC	
supercomputers	to	combine	
large	scale	simulations	with	
experimental	data	analysis	

• Login	“saul.nersc.gov”

NERSC-9	will	be	named	after	Saul	Perlmutter
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NERSC Systems Roadmap

NERSC-7: Edison
2.5 PFs 
Multi-core CPU
3MW

NERSC-8: Cori 
30PFs 
Manycore CPU
4MW

2013 2016 2024

NERSC-9: Perlmutter
3-4x Cori
CPU and GPU nodes 
>5 MW

2021

NERSC-10
ExaSystem
~20MW
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LLNL
IBM/NVIDIA 

P9/Volta

Perlmutter is a Pre-Exascale System

Crossroads

Frontier

Pre-Exascale Systems Exascale Systems

Argonne
IBM BG/Q

Argonne
Intel/Cray KNL

ORNL
Cray/NVidia K20

LBNL
Cray/Intel Xeon/KNL

LBNL
Cray/NVIDIA/AMD

LANL/SNL
TBD
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Intel/Cray

ORNL
Cray/AMD

LLNL
Cray/?

LANL/SNL
Cray/Intel Xeon/KNL

2013 2016 2018 2020 2021-2023

Summit
ORNL

IBM/NVIDIA 
P9/Volta

LLNL
IBM BG/Q

Sequoia

CORI

A21

Trinity

Theta

Mira

Titan

Sierra



Perlmutter:	A	System	Optimized	for	Science

● GPU-accelerated	and	CPU-only	nodes	
meet	the	needs	of	large	scale	
simulation	and	data	analysis	from	
experimental	facilities

● Cray	“Slingshot”	- High-performance,	
scalable,	low-latency	Ethernet-
compatible	network

● Single-tier	All-Flash	Lustre	based	HPC	
file	system,	6x	Cori’s	bandwidth

● Dedicated	login	and	high	memory	
nodes	to	support	complex	workflows



COE Activities



– Quarterly	hackathons	with	NERSC,	Cray,	
NVIDIA	engineer

– General	programming,	performance	
and	tools	training

– Training	events,	such	as	the	CUDA	
Training	Series.

– Early	access	to	Perlmutter
– Early	access	to	Cori’s	GPU	testbed

Vendor	Resources	Available	to	NESAP	Teams
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• One	hackathon	per	quarter	from	2019-2021
– 3-4	code	teams	per	hackathon
– Priority	given	to	NESAP	teams

• NERSC,	Cray,	NVIDIA	attendance
• 6-week	‘ramp-up’	period	with	code	team+Cray/NVIDIA	for	~6	

weeks	leading	up	to	hackathon
– Ensures	everyone	is	fully	prepared	to	work	on	hackathon	

day	1
• Tutorials/deep	dives	into	GPU	programming	models,	profiling	

tools,	etc.
• Access	to	Cori	GPU	nodes

NERSC-9	Application	Transition	COE	Hackathons



Data Analytics Stack and IO 
Considerations



● Software 
○ Optimized analytics libraries, includes Cray Analytics 

stack
○ Collaboration with NVIDIA for Python-based data 

analytics support
○ Support for containers

● Perlmutter will aid complex end-to-end workflows 
● Slurm co-scheduling of multiple resources and real-

time/deadline scheduling
● Workflow nodes: container-based services

○ Connections to scalable, user workflow pool 
(via Spin) with network/scheduler access

● High-availability workflow architecture and system 
resiliency for real-time use-cases

Analytics	and	Workflow	Integration
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All-flash	file	system

4.0 TB/s to Lustre

Logins, DTNs, Workflows

All-Flash Lustre Storage

CPU + GPU Nodes

Community FS
> 100 PB, > 100 GB/s

Terabits/sec to
ESnet, ALS, ...

• Fast across	many	dimensions
– >	4	TB/s	sustained	bandwidth
– >	7,000,000	IOPS
– >	3,200,000	file	creates/sec

• Usable for	NERSC	users
– >	30	PB	usable	capacity
– Familiar	Lustre	interfaces
– New	data	movement	capabilities

• Optimized for	data	workloads
– NEW	small-file	I/O	improvements
– NEW	features	for	high	IOPS,	non-

sequential	I/O



● Usual best practices apply for best performance
○ Use Lustre file striping
○ Avoid opening many files at once
○ Avoid using small files and small reads/writes

● ...but Perlmutter will be more forgiving
○ Forget to stripe?  Lustre Progressive File Layouts will do it 

for you automatically
○ Have many files?  Lustre Distributed Namespace adds more 

metadata processing muscle
○ Must do small I/O?  Lustre Data-on-MDT stores smaller files 

on IOPS-optimized storage

Maximizing	I/O	Performance



Data	Movement

● Project file system replaced 
with Community file system

● NERSC-Cray collaboration 
will simplify data motion 
between Perlmutter & 
Community FS

● Feedback on how your 
workflow moves data between 
tiers will help define this data 
movement API

cscratch
(30 PB)

project
(12 PB)

archive
(150 PB)

Burst Buffer
(1.8 PB) Perlmutter

(30 PB)

Community
(>100 PB)

archive
(>>150 PB)

Cori Perlmutter



Programming & 
Performance Portability



Exposing Parallelism

CPU (KNL)
● 68 cores
● 4 threads each
● 512-bit vectors
● pipelined 

instructions
● double precision

○ ~2000 way 
parallelism (68*4*8)

GPU (V100)
● 80 SM
● 64 warps per SM
● 32 threads per 

warp
● double precision

○ ~150,000+ way 
parallelism 
(80*64*32)



Data Locality

GPU Bus has low bandwidth compared to HBM.

Need to carefully manage data locality to avoid moving 
data back and forth often.

UVM can “potentially” help, but still need to think!



Performance Portability Strategy
Threads and Vectors (SMT, SIMT, SIMD). 

1. SIMT ≅ SMT : What you tend to get when taking a GPU code and attempting a first pass 
portable version. This leaves SIMD on the GPU un-expressed. Leads to concept of 
coalescing.

1. SIMT ≅ SIMD : What you tend to get by default with OpenMP (!$OMP SIMD). Limits what 
you can vectorize on GPU to code with which the CPU can vectorize. 

1. Use nested parallelism to map GPU SMs/Warps to CPU Cores/Threads and threads within 
Warps to Vector lanes. Still lose flexibility on the GPU.



Abstractions and parallelism

Abstract operations for variable-width vectors

Example: Gromacs “cluster” pair-list adapts to 
128, 256, 512-bit simd and 32 way SIMT by 
resizing the cluster.

Porting to new arch = implement abstract 
interface with intrinsics

*Effectiveness of this strategy depends on 
number of performance critical kernels



Roofline on NVIDIA GPUs

We have proposed a methodology 
to construct a hierarchical Roofline 
● that incorporates the full 

memory hierarchy  
○ L1, L2, HBM, System 

Memory (NVLink/PCIe) 
● and instruction types, data 

types…
○ FMA/no-FMA/IntOps/…
○ FP64, FP32, FP16, …
○ CUDA core/Tensor core



Roofline on NVIDIA GPUs

Analyze performance and track optimization on both traditional HPC 
and Machine Learning applications. Left: Sigma-GPP from BerkeleyGW. 
Right: 2D convolution kernel from ResNet50 using TensorFlow.



Performance Portability Options

● Abstractions
○ identify and use appropriate abstractions to flexibly 

expose the parallelism in a problem
○ account for potential switch in algorithm

● Use a library when possible
● Programming model support

○ C++ templates with CUDA/ CPU intrinsics, Kokkos, 
Raja, OpenMP, OpenACC, CUDA Fortran, and more



Engaging	around	Performance	Portability

NERSC	is	working	with	PGI	to	
enable	OpenMP	GPU	
acceleration	with	PGI	compilers
● Ensures	continuity	of	

OpenMP	added	to	NERSC	
apps	for	N8

● Co-design	with	PGI	to	
prioritize	OpenMP	
features	for	GPU

● Use	lessons	learned	to	
influence	future	versions	
of	OpenMP

● Monitoring	SOLLVE	efforts

NERSC	collaboarting	with	OLCF	and	ALCF	on	
development	of	performanceportability.org

● Are you part of an 
ECP ST project? 
Interested in 
contributing a 
NERSC hosted 
training?

● kokkos, flang, 
SLATE, CI/Gitlab, 
spack 



OpenMP for GPUs

● OpenMP 5.0 improvements for accelerators
○ Unified memory support
○ Implicit declare target

● NERSC is collaborating with NVIDIA and OpenMP 
committee to enable OpenMP GPU acceleration in 
PGI compilers
○ Co-design with application requirements

● Tell us your experience!
○ Techniques that work? Failures?



Application readiness



NERSC’s	Challenge

How to enable NERSC’s diverse community of 7,000 
users, 750 projects, and 700 codes to run on advanced 
architectures like Perlmutter and beyond?

Application	Readiness	Strategy	for	Perlmutter
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GPU	Readiness	Among	NERSC	Codes	(Aug’17	- Jul’18)
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GPU Status & Description Fraction

Enabled: 
Most features are ported 
and performant

32%

Kernels:
Ports of some kernels have 
been documented.

10%

Proxy: 
Kernels in related codes 
have been ported

19%

Unlikely:
A GPU port would require 
major effort.

14%

Unknown: 
GPU readiness cannot be 
assessed at this time.

25%

Breakdown of Hours at NERSC

A	number	of	applications	in	NERSC	
workload	are	GPU	enabled	already.	

We	will	leverage	existing	GPU	codes	
from	CAAR	+	Community



How	to	transition	a	workload	with	700	Apps?	NESAP
• ~25	Projects	selected	from	competitive	application	

process	with	reviews
• ~15	postdoctoral	fellows
• Deep	partnerships	with	every	SC	Office	area
• Leverage	vendor	expertise	and	hack-a-thons
• Knowledge	transfer	through	documentation	and	

training	for	all	users
• Optimize	codes	with	improvements	relevant	to	

multiple	architectures

Application	Readiness	Strategy	for	Perlmutter
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NERSC Exascale Science Application Program (NESAP)

Simulation
~12 Apps

Data Analysis
~8 Apps

Learning
~5 Apps

● Based on successful NESAP for Cori program, similar to CAAR and ESP
● Details: https://www.nersc.gov/users/application-performance/nesap/

Selected ECP NESAP engagements

WDMAPP Subsurface EXAALT

NWChemEx ExaBiome ExaFEL

WarpX (AMReX) ExaLearn



NESAP	2	Timeline
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NESAP 2 NESAP For Data
(6 Existing Apps)

2018                      2019                          2020                        2021

NESAP 1  

Early Access

COE hack-a-thon’s 
Begin

Code Team Selection (Dec. 2018)

Finalize Edison Reference Numbers



Application readiness: 
case studies



ExaBiome



Microbiomes

● Microbes:	these	are	single	cell	organism,	e.g.	viruses,	bacteria
● Microbiomes:	communities	of	microbial	species	living	in	our	environment.
● Metagenomics:	genome	sequencing	of	these	communities	(growing	

exponentially)



ExaBiome software stack

● MetaHipMer:	optimized	for	assembling	metagenomes.											
● diBELLA:	Long	read	aligner.
● PISA:	protein	clustering



Smith-Waterman, the core of all the assembly

This alignment information is used to stitch together
different overlapping parts of the genome or determine 
similarity among proteins.

Dynamic Programing 
MatrixMajority of the ExaBiome tools make use of

Smith-Waterman algorithm at their core.
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• Because of convoluted dependencies, 
parallelism exists only along the 
minor-diagonal.

• Amount of parallelism varies as the 
algorithm progresses.

• Cell dependencies make the memory 
accesses a challenge on GPU.

Smith Waterman: Challenges
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How to handle dependencies?
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The problem of non-coalesced memory accesses

1 2 3 4 5 6

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

Thread-1
200 bytes

Row Major Indexing

• Threads access locations length(query)*2 bytes apart 
while cache line is 128 bytes long.

• This leads to non-coalesced memory accesses.

Thread-2



When only a portion of matrix is required

sh_new

sh_prev

sh_prev_prev
_prev_prev

_prev

_new

• Using the valid array to identify the active threads, helps correctly identifying the 
dependencies and enables using shuffle synch in scoring phase.

• Effectively storing the DP table-arrays in registers instead of shared memory
Inter-warp values are 
shared using shared memory

Phasing-out threads need to spill their registers.



When complete matrix needs to be stored

Lookup 
Table

i+j = diagonal ID

Diagonal 
offset

Compute 
offset

Element 
offset +

Diagonal Major Indexing



Comparison with Shared Memory Approach

Total Alignments: 1 million Contig Size: 1024 Query Size: 128



Scaling across multiple GPUs

Total Alignments: 10 million Contig Size: 1024 Query Size: 128



GPU-Klign Workflow

Reads Index Alignments

Reads Index Alignments

Reads Index Alignments

n 
ra

nk
s

contigs

contigs

contigs

When batch size is large enough, 
GPU-Kernel is launched.

GPU Global memory is equally 
partitioned among sharing ranks

n/G ranks share a 
GPU. Where G is
the number of GPUs 
available.



Klign vs GPU-Klign

Smith-Waterman takes 
up about 41% of total time.

Smith-Waterman takes 
up about 5% of total time.



EXAALT



EXAALT ECP APP
● ECP EXAALT project seeks to extend the accuracy, length and time 

scales of material science simulations for fission/fusion reactors using 

LAMMPS MD

● Primary KPP target is MD of nuclear fusion material that uses the 

SNAP interatomic potential in LAMMPS

○ Performance directly depends on a single node performance of 

SNAP



TestSNAP

• TestSNAP	- an	independent	

standalone	app	for	SNAP	module	in	

LAMMPS

• Testbed	for	various	parallelization	

and	optimization	strategies

• Successful	optimizations	are	merged	

into	LAMMPS

for(num_atoms) // loop over atoms
{

build_neighborlist(); //build neighborlist for each atom
compute_ui();
compute_yi();
for(num_nbors) //loop over neighbors
{

compute_duidrj();
compute_dbidrj();
update_force(); //update force for (atom,nbor) pair

}
}



TestSNAP	refactored
for(num_atoms)
{

build_neighborlist();
compute_ui();
compute_yi();
for(num_nbors)
{

compute_duidrj();
compute_dbidrj();
update_force(); 

}
}



Distribute	work	across	atom	dimension

• Break up the compute kernels 

• Store atom specific information 

across kernels

• Increases memory footprint

• Distribute the atom specific work in 

each kernel over the threadblocks 

and threads of a threadblock



Collapse	atom	and	neighbor	loops

Distribute the works across atom and 

neighbor loops



Column	major	data	access	
Accessing the data in a column major 

fashion gave us a ~2X performance 

boost



Reverse	loop	order

● Reverse the loops to make atom 

index as the fastest moving index

○ Gave a 2x performance 

boost



TestSNAP updates in LAMMPS/SNAP

● All the updates from 

TestSNAP have been 

successfully 

included in 

LAMMPS/SNAP.
Baseline



AMReX



AMReX: Block-Structured
AMR Co-Design Center

● Mesh, Particle, AMR, Linear Solvers, Cut-
Cell Embedded Boundary

● Written in C++ (also an option for using 
Fortran interfaces)

● MPI + X
○ OpenMP on CPU
○ CUDA, HIP, DPC++ internally on GPU
○ Support for OpenACC, OpenMP on GPU

● Solution of parabolic and elliptic systems 
using geometric multigrid solvers

● Support for multiple load balancing 
strategies 

● Native I/O format – supported by Visit, 
Paraview, yt



AMReX: Implementing on GPUs
Overall Strategy: Put floating point data (mesh values, particle data) on the 
accelerator and leave it there. Move as little as possible throughout.

CPU: Few slower, 
generalized threads.

GPU: Many faster, 
specialized threads.

• Solution Control
• Communication

And other serial or metadata calculations.

• Load Balancing
• I/O

• Particle Calculations
• Stencil Operations

And other highly parallelizable algorithms.

• Linear Solvers

• Eliminate dependencies (e.g. Thrust, 
compiler without any Fortran compiler).

• User-proof API. (Can’t do it wrong).

• Optimizing communication (currently 
the biggest single bottleneck).

• Simultaneous CPU & GPU work w/ 
C++ threads (e.g. I/O).



A Porting Example: Before and After

CPU version
Elixir	for	
temporary	
arrays

Call functions 
on each grid.

Tile	only
if	on	the	CPU

Loop	
over	
grids

OpenMP	
across	tiles

AMReX	in	2018,	early	2019: AMReX	in	2020:

Array4s	for	
indexing.



for (MFIter fai(*this); fai.isValid(); ++fai)
{

const Box& gbx = fai.fabbox();
const Box& vbx = fai.validbox();
BoxList blst = amrex::boxDiff(gbx,vbx);
const int nboxes = blst.size();
if (nboxes > 0)
{

AsyncArray<Box> async_boxes(blst.data().data(), nboxes);
Box const* pboxes = async_boxes.data();

long ncells = 0;
for (const auto& b : blst) {

ncells += b.numPts();
}

auto fab = this->array(fai);
AMREX_FOR_1D ( ncells, icell,
{

const Dim3 cell = amrex::getCell(pboxes, nboxes, icell).dim3();
for (int n = strt_comp; n < strt_comp+ncomp; ++n) {

fab(cell.x,cell.y,cell.z,n) = val;
}

});
}

}

Old	GPU	Version:	
1) CPU:	calculate	a	list	of	boundary	boxes,
2) GPU:	launch	and	set	the	value	on	only	those	

boxes.	

New	GPU	Version:
1) Immediately	launch	over	entire	FAB’s	

box.	
2) If	thread’s	cell	is	outside	the	valid	box	

(so,	it’s	a	ghost	cell)	set	the	value.

Performance Example: setBndry

for (MFIter fai(*this); fai.isValid(); ++fai)
{

const Box& gbx = fai.fabbox();
const Box& vbx = fai.validbox();
auto fab = this->array(fai);

AMREX_PARALLEL_FOR_4D(gbx, ncomp, i, j, k, n,
{

if (!(vbx.contains({i, j, k})))
{

fab(i,j,k,n) = val;
}

});
}

- 50% - 150% faster 
on the GPU.

- Considerably 
slower on the CPU.

- Merging kernel 
does NOT improve 
performance of 
either.



AMReX is a platform for testing advanced 
features on production-scale simulations.

● Comparison of CUDA graph build 
methods vs. using a fused kernel 
launch methodology.

● Recording with dependencies and well 
defined simultaneous work gives 
better performance in all aspects.

● AMReX fused kernels are currently 
better, but only barely. Keeping an eye 
on further developments to ensure 
optimal communication performance.

❖ AMReX is also a platform to test (CUDA vs. HIP vs. DPC++) & C++ portability.
❖ Additional advanced NVIDIA libraries we want to test: NVSHMEM, Optix.

Testing CUDA Graphs for Halo Distribution algorithm:



AMReX used by six ECP applications

Combustion	(Pele)
Astrophysics	(Castro) Cosmology	(Nyx)

Accelerators	(WarpX)

Multiphase	flow	(MFIX-Exa)

Non-ECP	applications
● Phase	field	models
● Microfluids
● Ionic	liquids
● Non-Newtonian	flow
● Fluid-structure	

interaction Exawind

● Shock	physics
● Cellular	automata
● Low	Mach	number	

astrophysics
● Defense	science



WarpX
● Original GPU strategy was using 

OpenACC in Fortran functions.
● Converted to AMReX's C++ lambda 

based approach.
○ Thrust vectors as particle containers 

used too much memory
○ AMReX's PODVector class mitigates 

memory usage issue  allowing for runs 
with more particles. The latest 

● AMReX has added more features for 
random numbers and bin data structure 
to support binary collision of particles.

● KPP measurement on 2048 Summit 
nodes was over 47x compared to 
baseline.



● Castro functionality on GPUs:
○ Hydrodynamics (2nd order unsplit CTU)
○ Strang-split or Simple SDC reactions (VODE)
○ Explicit thermal diffusion
○ Poisson self-gravity with geometric multigrid
○ Stellar equations of state

● Ongoing/Future GPU ports:
■ Flux-limited diffusion radiation
■ 4th-order SDC for hydro + reactions

● Castro GPU strategy:
○ CUDA Fortran kernels loop through cells in boxes
○ Python preprocessor script inserts GPU kernels
○ Future migration to AMReX C++ lambda launches

● ECP-funded developments: (Exastar Collaboration)
○ Coupled to Thornado (ORNL) for two-moment neutrino 

radiation transport for core-collapse supernovae
○ Thornado accelerated with OpenACC & OpenMP

Castro: Open-Source Astrophysical Radiation 
Hydrodynamics



Nyx
● GPU capabilities

○ Dark matter particles (AMReX NeighborParticleContainer)
○ Hydrodynamics (AMReX GPU memory management 

(prefetching/organizing) and kernel launch)
○ Heating-cooling reactions (AMReX Arena alloc and free, 

linking against Sundials for time integration)
● GPU challenges

○ Optimizing memory access/use when overflowing high-
bandwidth GPU memory

○ Investigating appropriate cost functions for load-balancing 
simulations where particles cluster (single grid vs dual-grid)

○ Extending different coupling strategies between advective 
and reactive terms to the GPU

● Physics modules in active development 
○ AGN feedback
○ Accounting for halos effect on 

reionization on-the-fly
○ Non-relativistic neutrinos



MFIX-Exa
● GPU computation for both the fluid and solid (particles) 

phases
○ Solvers for the fluid-phase update scheme are AMReX 

solvers 
○ Tests with 6 MPI tasks and 6 GPUs (1 GPU per MPI 

task) on a single Summit node 
○ Maximum speedup of about 53.9x for a prototypical 

CLR with respect to a simulation with 36 MPI tasks.
● Current focus

○ Embedded boundary treatment of particles
○ Multiscale models for improved efficiency in dense 

particle regions
○ New projection based algorithm



BerkeleyGW



BerkeleyGW

Many-body effects in Excited-State 
properties of complex materials
● Photovoltaics
● LEDs
● Quantum Computers
● Junctions / Interfaces
● Defect Energy Levels



BerkeleyGW  

● Material Science:  http://www.berkeleygw.org
● ~100,000 lines of code, mainly Fortran 90
● MPI, OpenMP(on CPU), CUDA/OpenACC(on GPU)
● Computational motifs:

○ Large distributed matrix multiplication (tall and skinny matrices)
○ Large distributed eigenvalue problems 
○ Fast Fourier Transformations (FFT)
○ Dimensionality reduction and low-rank approximations

● Libraries required:
○ BLAS, LAPACK, ScaLAPACK, FFTW, ELPA, PRIMME, HDF5
○ cuBLAS, cuFFT



BerkeleyGW Workflow

✓

✓



Porting and Optimization Strategies

Implementations
● CUDA (cuBLAS, cuFFT, self-written kernels), Fortran interface
● OpenACC directives, cuBLAS and cuFFT Fortran interface from PGI
● Better control of kernel execution with CUDA 

v.s.   Easier to program/portability with OpenACC
Strategies/Techniques
● Use streams for asynchronous data transfers and to increase 

concurrency 
● Use a hybrid scheme for large reductions (100s-1000s of billions)

○ shared memory on GPU and OpenMP on CPU
● Overlap MPI communication with GPU computation
● Use batched operation for more flexible parallelism and to save memory 



Benchmark Systems

Three benchmarks:
● Si214, Si510, Si998
● To study a divacancy defect in Silicon, a prototype of a solid state qbit

Si214          Si510               Si998 Computational Cost 



Epsilon Module (MTXEL Kernel)

● cuFFT, pinned memory, CUDA streams
● Asynchronous memory transfers, high concurrency
● Batched to avoid OOM
● CUDA kernels for element-multiply and box-vector conversion



1 2 3 4 50

Non-Blocking Cyclic Communication  
(Example Task#2, second cycle)

ipe_sendipe_rec

ipe_rec_act ipe_send_act

Epsilon Module (CHI-0 Kernel)

● cuBLAS, pinned memory, CUDA streams, async copy
● Non-Blocking cyclic communication, overlap MPI comm. with GPU compute
● Batched to avoid OOM



Epsilon Module 

CPU+GPU vs CPU-only

● MTXEL: 12x speed-up
● CHI-0: 16x speed-up 

Overall 14x!



Epsilon Module

Strong scaling and weak scaling on Summit@OLCF
Left: Good parallel efficiency; still some parallel I/O issue for large scale calculations. Right: Good 

weak scaling; as problem size increases, memory grows to O(N^3) and FLOPs to O(N^4).



Epsilon Module

● Comparison of power 
efficiency between 
Summit (V100 GPUs) and 
Edison (Xeon CPUs)

● GPUs are 16x more power 
efficient than CPUs 
consistently through 
three benchmarks!



Sigma Module (GPP Kernel)

Implementations
● CUDA, more complete than the OpenACC version as of Sept 2019

Strategies/Techniques
● Use streams for asynchronous data transfers and to increase 

concurrency 
● Use a hybrid scheme for large reductions (100s-1000s of billions)

○ shared memory on GPU and OpenMP on CPU
● Overlap MPI communication with GPU computation
● Use batched operation for more flexible parallelism and to save memory 



Sigma Module (GPP Kernel)

A 1:1 node comparison give a 33x 
speed-up of a Cori-GPU node vs a 

Stampede2-KNL node. 
(Timings are for a single k-point).

CUDA and OpenACC competing for 
best performance.



Summary



NERSC-9: A System Optimized for Science

● Cray	Shasta	System	providing	3-4x	capability	of	Cori	system
● First	NERSC	system	designed	to	meet	needs	of	both	large	scale	simulation	

and	data	analysis	from	experimental	facilities
○ Includes	both	NVIDIA	GPU-accelerated	and	AMD	CPU-only	nodes	
○ Cray	Slingshot	high-performance	network	will	support	Terabit	rate	connections	to	system
○ Optimized	data	software	stack	enabling	analytics	and	ML	at	scale
○ All-Flash	filesystem	for	I/O	acceleration

● Robust	readiness	program	for	simulation,	data	and	learning	applications	
and	complex	workflows



• Postdoctoral	fellows
– including	Grace	Hopper	fellowship

• Application	performance	specialists

NERSC	is	hiring!



Thank
You !



The end



Perlmutter was announced 30 Oct 2018
“Continued leadership in high performance computing is vital to 
America’s competitiveness, prosperity, and national security,” 
said U.S. Secretary of Energy Rick Perry. “This advanced new 
system, created in close partnership with U.S. industry, will give 
American scientists a powerful new tool of discovery and 
innovation and will be an important milestone on the road to 
the coming era of exascale computing.”

"We are very excited about the Perlmutter system," said NERSC Director 
Sudip Dosanjh. “It will provide a significant increase in capability for our 
users and a platform to continue transitioning our very broad 
workload to energy efficient architectures. The system is optimized for 
science, and we will collaborate with Cray, NVIDIA and AMD to ensure that 
Perlmutter meets the computational and data needs of our users. We 
are also launching a major power and cooling upgrade in Berkeley Lab’s 
Shyh Wang Hall, home to NERSC, to prepare the facility for Perlmutter.”


