Performance Analysis of GPU-Accelerated Applications using the Roofline Model

Charlene Yang
Application Performance Specialist
NERSC, LBNL
cjyang@lbl.gov
The Roofline Model

- **Roofline Model** is a throughput-oriented performance model
- Premised on the interplay between FLOP/s, bandwidth, and reuse
- Tracks rates not times
- Independent of ISA and architecture (applies to CPUs, GPUs, Google TPUs, etc…)

[Image of Roofline Model diagram]

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

One could hope to always attain peak performance (GFLOP/s) however, finite locality (reuse) and bandwidth limit performance.

Assume:
- Idealized processor/caches
- Cold start (data in DRAM)

\[
\text{Time} = \max \left\{ \frac{\#\text{FLOPs}}{\text{Peak GFLOP/s}}, \frac{\#\text{Bytes}}{\text{Peak GB/s}} \right\}
\]
(DRAM) Roofline

- One could hope to always attain peak performance (GFLOP/s)
- However, finite locality (reuse) and bandwidth limit performance.
- Assume:
 - Idealized processor/caches
 - Cold start (data in DRAM)

\[\text{GFLOP/s} = \min \left\{ \frac{\text{Peak GFLOP/s}}{\text{Al} \times \text{Peak GB/s}} \right\} \]

Arithmetic Intensity is the most important concept in Roofline.

Note, Arithmetic Intensity (Al) = FLOPs / Bytes (as presented to DRAM)
Plot Roofline bound using Arithmetic Intensity as the x-axis

Log-log scale makes it easy to doodle, extrapolate performance along Moore’s Law, etc…

Kernels with AI less than machine balance are ultimately DRAM bound (we’ll refine this later…)
Example

- Consider 3 kernels (A,B,C)
 - calculate or measure the **Arithmetic Intensity** for each
 - Determine the Roofline intercept for each kernel
 - kernels A and B are bound by memory bandwidth
 - kernel C is bound by peak FLOP/s
Scaling to Future GPUs

- Imagine you run on a future GPU with twice the peak FLOPs…
 - kernel C’s performance could double
 - kernels A and B will be no faster
Scaling to Future GPUs

- What if that future GPU also doubled its memory bandwidth...
 - kernel A and B’s performance could also double
Why is Roofline Useful?

- Imagine a mix of benchmarks or kernels...
- GFLOP/s alone may not be particularly insightful
- Moreover, speedup relative to a Xeon may seem random
Why is Roofline Useful?

- We can sort kernels by AI …
Why is Roofline Useful?

- We can sort kernels by AI …
- … and compare performance relative to machine capabilities
Why is Roofline Useful?

- Kernels near the roofline are making good use of computational resources…
 - kernels can have low performance (GFLOP/s), but make good use of a machine
 - kernels can have high performance (GFLOP/s), but make poor use of a machine
Cache Effects…

- Hierarchical Roofline Model
- Construct superposition of Rooflines…
 - Measure AI and bandwidth for each level of memory/cache
 - Loop nests will have multiple AI’s and multiple performance bounds…
 - ... but performance is ultimately the minimum of these bounds.

![Diagram showing the relationship between Attainable GFLOP/s and Arithmetic Intensity (FLOP:Byte)]
Cache Effects…

- Hierarchical Roofline Model
- Construct superposition of Rooflines...
 - Measure AI and bandwidth for each level of memory/cache
 - Loop nests will have multiple AI’s and multiple performance bounds…
 - … but performance is ultimately the minimum of these bounds.
- Extend to other memories…
 - L1 / Shared
 - System

Attainable GFLOP/s vs. Arithmetic Intensity (FLOP:Byte)

- Peak GFLOP/s
- L2 cache GB/s
- DRAM GB/s
- L2 Bound
 - L2 AI*BW is less than DDR AI*BW
Insights – Exploiting Caches

- Widely separated Arithmetic Intensities indicate high reuse in the cache
Insights – Exploiting Caches

- Widely separated Arithmetic Intensities indicate high reuse in the cache
- Similar Arithmetic Intensities indicate effectively no cache reuse (== streaming)
- As one changes problem size, L2 and DRAM arithmetic intensities can behave very differently

\[
\text{Attainable GFLOP/s} \quad \text{Peak GFLOP/s}
\]

\[
\begin{align*}
\text{L2 cache GB/s} \\
\text{DRAM GB/s}
\end{align*}
\]

no reuse (streaming)
Failure to Exploit CISC Instructions

- Total lack of FMA reduces Volta performance by 2x…
 - creates **ADD.f64 ceiling**

- In reality, applications are a mix of FMA.f64, ADD.f64, and MUL.f64…
 - Performance is a weighted average
 - Produces a partial FMA ceiling that bounds kernel performance

![Graph showing attainable GFLOP/s vs. arithmetic intensity (FLOP:Byte)](image-url)
Broadly speaking, there are three approaches to improving performance:
Driving Performance Optimization

- Broadly speaking, there are three approaches to improving performance:
 - **Maximize SM performance** (e.g. minimize predication)
Driving Performance Optimization

- Broadly speaking, there are three approaches to improving performance:
 - Maximize SM performance (e.g. minimize predication)
 - **Maximize memory bandwidth** (e.g. avoid pathological memory access patterns)
Driving Performance Optimization

- Broadly speaking, there are three approaches to improving performance:
 - Maximize SM performance (e.g. minimize predication)
 - Maximize memory bandwidth (e.g. avoid pathological memory access patterns)
 - Minimize data movement (i.e. exploit reuse)
Collecting Roofline Data with nvprof
Consider a 7-point constant coefficient stencil…

- 7 FLOPs
- 8 memory references (7 reads, 1 store) per point
- AI = 0.11 FLOPs per byte (L1)

```c
#pragma omp parallel for
for(k=1;k<dim+1;k++){
  for(j=1;j<dim+1;j++){
    for(i=1;i<dim+1;i++){
      new[k][j][i] = -6.0*old[k][j][i]
        + old[k][j][i-1]
        + old[k][j][i+1]
        + old[k][j-1][i]
        + old[k][j+1][i]
        + old[k-1][j][i]
        + old[k+1][j][i];
    }
  }
}
```
Consider a 7-point constant coefficient stencil...

- 7 FLOPs
- 8 memory references (7 reads, 1 store) per point
- Cache can filter all but 1 read and 1 write per point
- \(AI = 0.44 \) FLOPs per byte

```c
#pragma omp parallel for
for(k=1;k<dim+1;k++){
  for(j=1;j<dim+1;j++){
    for(i=1;i<dim+1;i++){
      new[k][j][i] = -6.0*old[k][j][i] + old[k][j][i-1] + old[k][j][i+1] + old[k][j-1][i] + old[k][j+1][i] + old[k-1][j][i] + old[k+1][j][i];
    }
  }
}
```


Consider a 7-point constant coefficient stencil…

- 7 FLOPs
- 8 memory references (7 reads, 1 store) per point
- Cache can filter all but 1 read and 1 write per point
- AI = 0.44 FLOPs per byte == memory bound

```c
#pragma omp parallel for
for(k=1; k<dim+1; k++) {
    for(j=1; j<dim+1; j++) {
        for(i=1; i<dim+1; i++) {
            new[k][j][i] = -6.0*old[k][j][i] + old[k][j][i-1] + old[k][j][i+1] + old[k][j-1][i] + old[k][j+1][i] + old[k-1][j][i] + old[k+1][j][i];
        }
    }
}
```

Tools are essential for measuring AI
Most kernels are more complicated than the 7-point stencil…

How do we measure the total number of FLOPs?
How do we measure the total number of bytes moved (read/write, L1/L2/HBM)?
How do we measure the runtime for each kernel?

How do we know the peak bandwidth (L1/L2/HBM) and the peak FLOP/s for the architecture?
General Roofline Data Collection

Most kernels are more complicated than the 7-point stencil…

How do we measure the total number of FLOPs?
How do we measure the total number of bytes moved (read/write, L1/L2/HBM)?
How do we measure the runtime for each kernel?

How do we know the peak bandwidth (L1/L2/HBM) and the peak FLOP/s for the architecture?

nvprof
ERT
Step 1. Collect Roofline Ceilings

- **Empirical Roofline Toolkit (ERT)**
 - Different than the architecture specs, **MORE REALISTIC**
 - Reflects **actual** execution environment (power constraints, *etc*)
 - Sweeps through a range of configurations, and **statistically stable**
 - Data elements per thread
 - FLOPs per data element
 - Threadblocks/threads
 - Trails per dataset
 - *etc*

ERT Configuration

Kernel.c
- actual compute
- customizable

Driver.c
- setup
- call kernels
- loop over parameters

config script
- set up ranges of parameters

job script
- submit the job and run it

ERT Configuration

- config.txt
 - ERT_FLOPS: 1, 2, 4, 8, 16, 32, 64, 128, 256
 - ERT_GPU_BLOCKS/THREADS: 80, 160, 320, 640, 1280, 2560
 - ERT_MEMORY_MAX: 1073741824
 - ERT_WORKING_SET_MIN: 128
 - ERT_TRIALS_MIN: 1

- Driver.c (uses some Macros from config.txt)
 - initialize MPI, CUDA
 - loop over dataset sizes <= ERT_MEMORY_MAX
 - loop over trial sizes >= ERT_TRIALS_MIN
 - cudaMemcpy
 - start timer
 - call kernel
 - end timer

- Kernel.c
 - loop over ntrials
 - distribute dataset on threads and each computes
 - ERT_FLOPS=1: a = b + c
 - ERT_FLOPS=2: a = a x b + c

Job script
- submit the job and run it

Config script
- set up ranges of parameters

Driver.c
- setup
- call kernels
- loop over parameters
ERT Output

roofline.json

```
"gbytes": {
  "data": [
    [
      "L1", 2996.82
    ],
    [
      "DRAM", 828.83
    ]
  ]
},
```

```
"gflops": {
  "data": [
    [
      "GFLOPs", 7068.90
    ]
  ]
},
```

roofline.ps

Empirical Roofline Graph (Results.cori.nersc.gov.03/Run.001)

7068.9 GFLOPs/sec (Maximum)

L1 - 2996.8 GB/s
DRAM - 828.8 GB/s
ERT Output

roofline.json

```
"gbytes": {
  "data": [
    ["L1", 2996.82],
    ["DRAM", 828.83]
  ],
},

"gflops": {
  "data": [
    ["GFLOPs", 7068.90]
  ],
}
```

roofline.ps

Missing L1 due to L2 saturation, before L1 saturation; Use specs instead.

NVIDIA V100 -- Voltar at UOregon
Discrepancy Empirical vs. Theoretical

- Theoretical FP64 **compute** ceilings on V100:
 - FMA: \(80 \text{ SMs} \times 32 \text{ FP64 cores} \times 1.53 \text{ GHz} \times 2 = 7.83 \text{ TFLOP/s}\)
 - no FMA: \(80 \text{ SMs} \times 32 \text{ FP64 cores} \times 1.53 \text{ GHz} = 3.92 \text{ TFLOP/s}\)
- Theoretical **memory** bandwidths on V100:
 - HBM: 900 GB/s
 - L2: \(~4.1 \text{ TB/s}\)
 - L1: \(~14 \text{ TB/s}\)

- You may never achieve 7.8 TFLOP/s
- You may be closer to the ceiling than you think you are
Step 2. Collect Application Performance
Step 2. Collect Application Performance

Where to put these dots?
Step 2. Collect Application Performance

Require three raw measurements:

- Runtime
- FLOPs
- Bytes (on each cache level)

To calculate AI and GFLOP/s:

Arithmetic Intensity = \(\frac{\text{nvprof FLOPs}}{\text{nvprof Data Movement}} \) (FLOPs/Byte)

Performance = \(\frac{\text{nvprof FLOPs}}{\text{Runtime}} \) (GFLOP/s)
Collect Application Performance

- **Runtime:**
 - Time per invocation of a kernel
 \[
 \text{nvp\text{-}prof --print-gpu\text{-}trace ./application}
 \]
 - Average time over multiple invocations
 \[
 \text{nvp\text{-}prof --print-gpu\text{-}summary ./application}
 \]
 - Same kernel with different input parameters are grouped separately

- **FLOPs:**
 - Predication aware and complex-operation aware (such as divides)
 - \[
 \text{nvp\text{-}prof --kernels 'kernel_name' --metrics 'flop_count_xx' ./application}
 \]
 - e.g. \[
 \text{flop_count\{dp/dp_add/dp_mul/dp_fma, sp*, hp*\}}
 \]
Collect Application Performance

- Bytes for different cache levels in order to construct hierarchical Roofline:
 - Bytes = (read transactions + write transactions) x transaction size
 - `nvprof --kernels 'kernel_name' --metrics 'metric_name' ./application`

<table>
<thead>
<tr>
<th>Level</th>
<th>Metrics</th>
<th>Transaction Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Level Cache*</td>
<td><code>gld_transactions, gst_transactions, atomic_transactions, local_load_transactions, local_store_transactions, shared_load_transactions, shared_store_transactions</code></td>
<td>32B</td>
</tr>
<tr>
<td>Second Level Cache</td>
<td><code>l2_read_transactions, l2_write_transactions</code></td>
<td>32B</td>
</tr>
<tr>
<td>Device Memory</td>
<td><code>dram_read_transactions, dram_write_transactions</code></td>
<td>32B</td>
</tr>
<tr>
<td>System Memory</td>
<td><code>system_read_transactions, system_write_transactions</code></td>
<td>32B</td>
</tr>
</tbody>
</table>

- Note: surface and texture transactions are ignored here for simplicity (HPC applications)
Example Output

[cjyang@voltar source]$ nvprof --kernels "1:7:smooth_kernel:1" --metrics flop_count_dp --metrics gld_transactions --metrics gst_transactions --metrics l2_read_transactions --metrics l2_write_transactions --metrics dram_read_transactions --metrics dram_write_transactions --metrics sysmem_read_bytes --metrics sysmem_write_bytes ./hpgmg-fv-fp 5 8

- Export to CSV: --csv -o nvprof.out

<table>
<thead>
<tr>
<th>Invocations</th>
<th>Metric Name</th>
<th>Metric Description</th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device "Tesla V100-PCIE-16GB (0)"</td>
<td>Kernel: void smooth_kernel<int=6, int=32, int=4, int=8>(level_type, int, int, double, double, int, double*, double*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>flop_count_dp</td>
<td>Floating Point Operations(Double Precision)</td>
<td>30277632</td>
<td>30277632</td>
<td>30277632</td>
</tr>
<tr>
<td>1</td>
<td>gld_transactions</td>
<td>Global Load Transactions</td>
<td>4280820</td>
<td>4280820</td>
<td>4280820</td>
</tr>
<tr>
<td>1</td>
<td>gst_transactions</td>
<td>Global Store Transactions</td>
<td>73728</td>
<td>73728</td>
<td>73728</td>
</tr>
<tr>
<td>1</td>
<td>l2_read_transactions</td>
<td>L2 Read Transactions</td>
<td>890596</td>
<td>890596</td>
<td>890596</td>
</tr>
<tr>
<td>1</td>
<td>l2_write_transactions</td>
<td>L2 Write Transactions</td>
<td>85927</td>
<td>85927</td>
<td>85927</td>
</tr>
<tr>
<td>1</td>
<td>dram_read_transactions</td>
<td>Device Memory Read Transactions</td>
<td>702911</td>
<td>702911</td>
<td>702911</td>
</tr>
<tr>
<td>1</td>
<td>dram_write_transactions</td>
<td>Device Memory Write Transactions</td>
<td>151487</td>
<td>151487</td>
<td>151487</td>
</tr>
<tr>
<td>1</td>
<td>sysmem_read_bytes</td>
<td>System Memory Read Bytes</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>sysmem_write_bytes</td>
<td>System Memory Write Bytes</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
</tbody>
</table>
Step 3. Plot Roofline with Python

- Calculate Arithmetic Intensity and GFLOP/s performance
 - x coordinate: Arithmetic Intensity
 - y coordinate: GFLOP/s performance

\[
\text{Performance} = \frac{\text{nvprof FLOPs}}{\text{Runtime}} \quad \text{Arithmetic Intensity} = \frac{\text{nvprof FLOPs}}{\text{nvprof Data Movement}}
\]

- Plot Roofline with Python Matplotlib
 - Example scripts:
 - https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting
 - Tweak as needed for more complex Rooflines
Plot Roofline with Python

- Quick example: `plot_roofline.py data.txt`
- Accepts space-delimited list for values
- Use quotes to separate names/labels

data.txt

```
# all data is space delimited
memroofs 14336.0 2996.8 828.758
mem_roof_names 'L1' 'L2' 'HBM'
comproofs 7068.86 3535.79
comp_roof_names 'FMA' 'No-FMA'

# omit the following if only plotting roofs
# AI: arithmetic intensity; GFLOPs: performance
AI 0.87 2.25 2.58
GFLOPs 2085.756683
labels 'Kernel'
```
1. Collect Roofline ceilings
 - ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
 - compute (FMA/no FMA) and bandwidth (DRAM, L2, …)

2. Collect application performance
 - nvprof: --metrics, --events, --print-gpu-trace
 - FLOPs, bytes (DRAM, L2, …), runtime

3. Plot Roofline with Python Matplotlib
 - arithmetic intensity, GFLOP/s performance, ceilings
 - example scripts: https://github.com/cyanguwa/nersc-roofline
Recap: Methodology to Construct Roofline

1. Collect Roofline ceilings
 - ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
 - **compute** (FMA/no FMA) and **bandwidth** (DRAM, L2, …)

2. Collect application performance
 - nvprof: **--metrics**, **--events**, **--print-gpu-trace**
 - FLOPs, bytes (DRAM, L2, …), runtime

3. Plot Roofline with Python Matplotlib
 - arithmetic intensity, GFLOP/s performance, ceilings
 - example scripts: https://github.com/cyanguwa/nersc-roofline
Recap: Methodology to Construct Roofline

1. Collect Roofline ceilings
 - ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
 - **compute** (FMA/no FMA) and **bandwidth** (DRAM, L2, …)

2. Collect application performance
 - nvprof: --metrics, --events, --print-gpu-trace
 - **FLOPs, bytes** (DRAM, L2, …), **runtime**

3. Plot Roofline with Python Matplotlib
 - arithmetic intensity, GFLOP/s performance, ceilings
 - example scripts: https://github.com/cyanguwa/nersc-roofline
Recap: Methodology to Construct Roofline

1. Collect Roofline ceilings
 - ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
 - **compute** (FMA/no FMA) and **bandwidth** (DRAM, L2, …)

2. Collect application performance
 - nvprof: --metrics, --events, --print-gpu-trace
 - **FLOPs, bytes** (DRAM, L2, …), **runtime**

3. Plot Roofline with Python Matplotlib
 - arithmetic intensity, GFLOP/s performance, **ceilings**
 - example scripts: https://github.com/cyanguwa/nersc-roofline
Roofline Analysis with Use Cases
Code Example 1: GPP

- GPP (General Plasmon Pole) kernel from BerkeleyGW (Material Science)
- [GitHub](https://github.com/cyanguwa/BerkeleyGW-GPP)
- Medium problem size: 512 2 32768 20

- Tensor-contraction, abundant parallelism, large reductions
- Low FMA counts, divides, complex double data type, HBM data 1.5GB

Pseudo Code

```plaintext
do band = 1, nbands #blockIdx.x
    do igp = 1, ngpown #blockIdx.y
        do ig = 1, ncouls #threadIdx.x
            do iw = 1, nw #unrolled
                compute; reductions
```
Code Example 1: GPP

- Three experiments:

<table>
<thead>
<tr>
<th>Vary nw from 1 to 6</th>
<th>To study impact of varying Arithmetic Intensity on performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compile w/wo FMA</td>
<td>To study impact of instruction mix on performance on performance</td>
</tr>
<tr>
<td>Stride ig loop</td>
<td>To study impact of suboptimal memory coalescing on performance</td>
</tr>
</tbody>
</table>

- Note that nvprof has already taken care of
 - Appropriate counting of FLOPs for complex instructions
 - div, exp, log and sin/cos should be counted as multiple FLOPs rather than 1
 - Appropriate counting of FLOPs for predicated-out threads
 - FLOPs are only counted on non-predicated threads
Code Example 1: GPP

- Highly parameterizable
 1. Varying \(nw \) from 1 to 6 to increase arithmetic intensity
 - FLOPs increases, but data movement stays (at least for HBM)

Pseudo Code

```
  do band = 1, nbands        #blockIdx.x
    do igp = 1, ngpown        #blockIdx.y
      do ig = 1, ncouls        #threadsIdx.x
        do iw = 1, nw          #unrolled
          compute; reductions
```

2. Compiling with and without FMA
 - `-fmad=true/false`
Highly parameterizable

3. Striding ig loop to analyze impact of suboptimal memory coalescing
 - Split ig loop to two loops and place the ‘blocking’ loop outside

Pseudo Code

```
do band = 1, nbands       #blockIdx.x
   do igp = 1, ngpown       #blockIdx.y
      do igs = 0, stride - 1
         do ig = 1, ncouls/stride #threadIdx.x
             do iw = 1, nw     #unrolled
                compute; reductions
```
Code Example 1: GPP

- **Experiments 1:** study the impact of varying AI on performance

- HBM Roofline, i.e. bytes are HBM bytes
 - AI increases as \(n_w \) grows
 - GPP moves from a bandwidth bound region to a compute bound region

- Roofline captures the change in AI
Experiments 1 & 2: study the impact of instruction mix on performance

- HBM Roofline, i.e. bytes are HBM bytes
 - No-FMA performance converges to the no-FMA ceiling, but FMA performance is still far from the FMA ceiling
 - Not reaching FMA ceiling due to lack of FMA instructions

- Roofline captures effects of instruction mix
Code Example 1: GPP

- **Experiments 1 & 2:** study the impact of instruction mix on performance

- At \(nw=6 \), GPP has \(\alpha = \frac{\text{FMA FP64 instr.}}{\text{FMA FP64 instr.} + \text{non-FMA FP64 instr.}} = 60\% \) of FMA instructions

- Expected performance is \(\beta = \frac{\alpha \times 2 + (1 - \alpha)}{2} = 80\% \) of compute peak.

 But at \(nw=6 \), GPP is only achieving 66%.

- Other FP/non-FP instructions may be taking up the instruction issue/execution pipeline

- Partial Roofline can show you the headroom

\[\beta = \frac{\alpha \times 2 + (1 - \alpha)}{2} = 80\% \]
Code Example 1: GPP

- **Experiments 1 & 2:** What else is going on?

- Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
 - GPP is HBM bound at low \(\text{nw} \)'s and compute bound at high \(\text{nw} \)'s
 - FLOPs \(\propto \text{nw} \)
 - HBM bytes: constant
 - L2 bytes: increasing at \(\alpha > 1 \)
 - L1 bytes: constant
 - Spike in L2 curve at \(\text{nw}=2, 3 \)

- Hierarchical Roofline captures more details about cache locality
Code Example 1: GPP

- **Experiment 3:** study the effects of suboptimal memory coalescing
 - \(\text{nw}=6\)

- Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
 - L1/L2 bytes doubles from stride 1 to 2, but stays almost constant afterwards
 - at \(\text{nw}=6\), GPP moves from compute bound to bandwidth bound
 - Eventually all dots converge to HBM

- Roofline captures effects of memory coalescing
Code Example 2: HPGMG

- HPGMG (High-performance Geometric Multigrid) from Adaptive Mesh Refinement codes
 - https://bitbucket.org/nsakharnykh/hpgmg-cuda

- Stencil code, F-cycles and V-cycles, GSRB smoother kernel (Gauss-Seidel Red-Black)

Code Example 2: HPGMG

- Hybrid GPU and CPU code
 - Example: `hpgmg-fv 7 8`
 - 128^3 box x 8, Level 5-8 run on GPU, Level 1-4 on CPU

- Three versions of GSRB kernel
 - `GSRB_FP`, `GSRB_BRANCH`, `GSRB_STRIDE2`
Code Example 2: HPGMG

```c
GSRB_FP

for(int k=klo; k<(klo+kdim); k++){
    const int ijk = i + j*jStride + k*kStride;
    const double *__restrict__ RedBlack =
        level.RedBlack_FP + ghosts*(1+jStride) +((k^color000)&1)*kStride;
    const double Ax = apply_op_ijk();
    const double lambda = Dinv_ijk();
    const int ij = i + j*jStride;
    xo[ijk] = X(ijk) + RedBlack[ij]*lambda*(rhs[ijk]-Ax);
}
```

8 elements

Sweep

1 0 1 0 1 0 1 0

8 threads
Code Example 2: HPGMG

GSRB_FP

- Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
- Highly bandwidth bound, inherent to stencil codes
- From Level 5 to Level 8:
 - AI slightly increases due to better Surface: Volume ratio
 - More HBM bound as more data is read in
- Roofline captures computational characteristics of the algorithm
Code Example 2: HPGMG

- GSRB_BRANCH has half the FLOPs as GSRB_FP but the same HBM/L1/L2 bytes
Code Example 2: HPGMG

GSRB_FP vs. GSRB_BRANCH

- FLOPs halves, bytes doesn’t change, thus AI halves and GFLOP/s halves
- Runtime is comparable even though GFLOP/s has halved
- Same number of threads occupied, only with half predicated in GSRB_BRANCH
GSRB_STRIDE2

```c
for(int k=klo; k<klo+kdim; k++) {
    i = ilo + (!((ilo^j^k^color000)&1) + threadIdx.x*2);
    if(i < ilo+idim) {
        const int ijk = i + i*isstride + k*kStride;
        xo[ijk] = X(ijk);
    }
    i = ilo + ((ilo^j^k^color000)&1) + threadIdx.x*2;
    if(i < ilo+idim) {
        const int ijk = i + j*jStride + k*kStride;
        const double Ax = apply_op_ijk();
        const double lambda = Dinv_ijk();
        xo[ijk] = X(ijk) + lambda*(rhs[ijk]-Ax);
    }
}
```

- **GSRB_STRIDE2** should have the same FLOPs as GSRB_BRANCH, but same bytes? More writes than GSRB_BRANCH?
Code Example 2: HPGMG

GSRB_BRANCH vs. GSRB_STRIDE2

- Extra writes in GSRB_STRIDE2 cause more capacity misses in L2, leading to AI drop on L2 and DRAM, starting from Level 7 (data size \approx L2 cache size).
- Runtime almost doubled and GFLOP/s halved.

Roofline captures all of this!
Conclusions

- Roofline can gracefully capture various aspects of application performance and architecture characteristics such as arithmetic intensity, instruction mix, memory coalescing and thread predication.

- The proposed methodology is effective in collecting machine characteristics and application data on NVIDIA GPUs to construct hierarchical Roofline.

- The Roofline model provides insights that profilers alone can not:
 - identify the most immediate bottleneck
 - prioritize optimization efforts
 - tell you when you can stop

A systematic and intuitive way of code optimization
S. Williams, A. Waterman and D. Patterson, “Roofline: An insightful visual performance model for multicore architectures,” *Communications of the ACM*, vol. 52, no. 4, pp. 65–76, 2009

- Example scripts for plotting Roofline: https://github.com/cyanguwa/nersc-roofline
- General Plasmon Pole kernel: https://github.com/cyanguwa/BerkeleyGW-GPP
- HPGMG-CUDA kernel: https://bitbucket.org/nsakharnykh/hpgmg-cuda
Acknowledgement

- This material is based upon work supported by the Advanced Scientific Computing Research Program in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

- This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

- This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231.
Thank You!