

Cray XC Series Application Programming
and Optimization

Student Guide

TR-CPO NERSC

February 12 and 13, 2019 – Day 2

Cray Private

This document is intended for instructional purposes.
Do not use it in place of Cray reference documents

© 2014 Cray Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form
unless permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE: The Computer Software is delivered as
“Commercial Computer Software” as defined in DFARS 48 CFR 252.227-7014. All Computer Software
and Computer Software Documentation acquired by or for the U.S. Government is provided with
Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions
described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable. Technical Data
acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or
DFARS 48 CFR 252.227-7013, as applicable.

The following are trademarks of Cray Inc. and are registered in the United States and other countries:
CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.:
ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered
trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds,
owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their
respective owners.

Direct comments about this publication to:

 Mail: Cray Inc.
 Cray Training
 P.O. Box 6000
 Chippewa Falls, WI 54729-0080
 USA

E-mail: ttd_online@cray.com
Fax: +1 715 726 4991

mailto:ttd_online@cray.com

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 1

Performance Tools

CrayPat, Apprentice2, and Reveal

Cray delivers an integrated set of performance tools that provide automatic program instrumentation, without
requiring source code or file modifications. Before you can use these tools, ensure that your code compiles cleanly,
runs to completion, and produces expected results.

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 2

Performance Tools

● Cray perftools-base
 Provides access to man pages, utilities such as Reveal, Cray

Apprentice2 and grid_order, and instrumentation modules
 It does not add compiler flags to enable performance data collection

● Cray perftools-lite
 An easy-to-use version of the CrayPat Performance Measurement and

Analysis Tool

● Cray perftools
● CrayPat is a performance analysis tool that collects performance

information from a user application
● Cray Apprentice2 displays graphical reports from the .ap2 file
● Cray Reveal supports source code navigation using whole-program analysis

data provided by the Cray Compiling Environment

22/11/2019 Cray, Inc. Private

Trace-based or synchronous experiments count every entry into and out of each function that is called in the
application. Build (pat_build) options can reduce the number of functions to include in the experiment.
Further experimentation on a fine-grained portion of the application can occur through source code modifications,
where a user uses CrayPat pat_region API in the source code. Normally this is not required.

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 3

CrayPat

● Consists of three major components

 CrayPat (pat_build) supports two types of experiments: sampling and
tracing
● Sampling experiments capture values from the call stack or the program

counter at specified intervals or when a specified counter overflows
● Tracing counts an event, such as the number of times an MPI call is

executed
● CrayPat uses PAPI to read the performance counters of the processor

pat_build Used to instrument the program to be analyzed
pat_report A report generator
pat_help An online help system, faq is on the front page

Additional man pages are hwpc, papi_counters, and intro_craypat

32/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 4

pat_build Sampling

● If tracing options are not included on the pat_build
command line, pat_build defaults to sampling
 Sampling is controlled by the environment variable

PAT_RT_EXPERIMENT
● Supported sampling functions are: samp_pc_time, samp_pc_ovfl,

samp_cs_time, or samp_cs_ovfl
● Caution: Do not collect hardware counter information when you sample by

overflow (for example< samp_pc_ovfl)
 Use sampling to obtain a profile and then trace functions of interest

42/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 5

Using CrayPat

● To instrument a program:
 Load the perftools module

● % module load perftools

 The executable and object (.o) files are required

rns/samp264% ftn -o samp264 samp264.f
WARNING: PerfTools is saving object files from a temporary
directory into directory '/home/users/rns/.craypat/samp264/12204'
swan rns/samp264%

52/11/2019 Cray, Inc. Private

In the example above, %pat_build program1 examines the program program1 and relinks its object and library
files with files from the CrayPat run-time library to produce program1+pat. This operation requires the continued
availability of the object files that were used to link program1 (either in their locations at the time program1 was
linked or in a directory specified by the PAT_BUILD_LINK_DIR environment variable).

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 6

Using pat_build
 Run pat_build to instrument the program

 Execute the instrumented program
● If your using a workload manager submit the job from the job-script

rns/samp264% pat_build samp264
rns/samp264% ls -l samp264*
-rwxr-xr-x 1 rns hwpt 12067872 Feb 12 17:41 samp264
-rwxr-xr-x 1 rns hwpt 19306104 Feb 12 17:45 samp264+pat

rns/samp264% cat samp264.slm
#! /bin/bash
#SBATCH -n 16
srun ./samp264
Job profiling phases
srun ./samp264+pat
srun ./samp264+apa

rns/samp264% sbatch samp264.slm
Submitted batch job 141769
rns/samp264%

rns/samp264% squeue
JOBID USER ACCOUNT NAME ST REASON START_TIME TIME TIME_LEFT NODES CPUS
141769 rns (null) samp264.slm R None 2019-02-12T21:48:43 1:28 58:32 1 16
rns/samp264%

62/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 7

Experiment Output

● The instrumented program generates a subdirectory
 For example the run on the previous page created a directory named
samp264+pat+26031-24s

● The directory name contains the following information:
 name of the instrumented program: samp264+pat
 the process ID: 26031
 the physical node—the application started on: 24
 and the type of experiment performed: s for sample and t for trace

● In the subdirectory will be a subdirectory named xf-files
 In there will be a .xf file for each of the nodes
 The .xf files are the experiment output files

72/11/2019 Cray, Inc. Private

By default, for jobs with 255 PEs or less, a single .xf file is created. If the job uses 256 PEs or more, the square root
number of PEs .xf files are created.
The user had to instrument their program with pat_build –O apa in order for pat_report to generate the .apa file.

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 8

Using pat_report

● Use the pat_report command to read the experiment file
 pat_report will generate an ap2-files sub-directory,
build-options.apa file, an index.ap2 file, and a report to stdout
● The .ap2 is used to generate additional text reports or is used by

Apprentice2
 The .ap2 files are portable; it does not require the source or .xf files

● Prior to generating the ap2 files pat_report requires the .o, source,
and .xf files be maintained.

● The ap2 file is portable and can be archived for later use
● The build-options.apa (Automatic Profiling Analysis) file is used

(optionally) to assist you in creating a trace based experiment file

rns/samp264% ll samp264+pat+26031-24s
total 72
drwxr-xr-x 2 rns hwpt 4096 Feb 12 22:17 ap2-files
-rw-r--r-- 1 rns hwpt 1832 Feb 12 22:17 build-options.apa
-rw-r--r-- 1 rns hwpt 59392 Feb 12 22:17 index.ap2
drwxr-x--- 2 rns hwpt 4096 Feb 12 22:02 xf-files
rns/samp264%

82/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 9

Automatic Profiling Analysis (APA)
 Use the build-options.apa file generated by pat_report to

build a trace experiment file
● No need to specify the executable
● You should get an instrumented program samp264+apa

 Run application to get top time-consuming routines

 Use pat_report to view the .xf file
 The build-options.apa file can be modified and used again by you

rns/samp264% pat_build -O samp264+pat+26031-24s/build-options.apa
rns/samp264%
rns/samp264% ls -ltr samp264+*
-rwxr-xr-x 1 rns hwpt 22433392 Feb 12 22:00 samp264+pat
-rwxr-xr-x 1 rns hwpt 22406936 Feb 12 22:35 samp264+apa

92/11/2019 Cray, Inc. Private

rns/samp264% cat samp264.slm
#! /bin/bash
#SBATCH -n 16
srun ./samp264
Job profiling phases
srun ./samp264+pat
srun ./samp264+apa

The top time-consuming routines comes from the initial pat_build –O apa, which performs a form of sampling to
get an initial profile. Then further information can be obtained for those top time consuming routines (identified in
the .apa file) with the program instrumented using the .apa, and rerun.
Use pat_report to process the .xf file, not view the .xf file. View the text report generated to stdout or through
Apprentice2.

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 10

Automatic Profiling Analysis (APA)
 Use pat_report to view the .xf file

 The build-options.apa file from the sample based experiment can
be modified and used again by you

102/11/2019 Cray, Inc. Private

rns/samp264% ls -l samp264+apa+27643-24t
total 4
drwxr-x--- 2 rns hwpt 4096 Feb 12 22:49 xf-files
rns/samp264% pat_report samp264+apa+27643-24t

<<<< pat_report output to the screen >>>

rns/samp264% ls -l samp264+apa+27643-24t
total 88
drwxr-xr-x 2 rns hwpt 4096 Feb 12 22:55 ap2-files
-rw-r--r-- 1 rns hwpt 80896 Feb 12 22:55 index.ap2
drwxr-x--- 2 rns hwpt 4096 Feb 12 22:49 xf-files
rns/samp264%

The top time-consuming routines comes from the initial pat_build –O apa, which performs a form of sampling to
get an initial profile. Then further information can be obtained for those top time consuming routines (identified in
the .apa file) with the program instrumented using the .apa, and rerun.
Use pat_report to process the .xf file, not view the .xf file. View the text report generated to stdout or through
Apprentice2.

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 11

pat_build Trace Options

● To trace functions and create the instrumented
executable, use the following pat_build options:

● –g traces non-user library functions for one of the predefined groups, like
[caf|cuda|gni|…|upc]
 Refer to the pat_build man page for a complete list

● -t tracefile to specify a file containing a lists of functions to trace
● -T tracefunc where tracefunc is a comma-separated list of function names to trace;

!tracefunc excludes function
● -u trace user functions
● -w is used to trace MAIN. There are only trace points to collect performance data

inserted at the beginning and end of MAIN.
 This is helpful if the user wants to collect some data that has high collection

overhead and wants to minimize additional tracing overhead.
● -o allows you to specify the name of resulting instrumented program or the name

can be the final argument. If neither are specified, the program name is appended
with +pat

● -f is used overwrite existing output file instr_program
● Note: pat_build does not enable you to instrument a program that is also using the

PAPI interface directly (via libhwpc)

112/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 12

Environment Variables

2/11/2019 Cray, Inc. Private 12

PAT_RT_SUMMARY 0 Turn off summary
1 Enable summary (default)

PAT_RT_PERFCTR Specify the performance counter group to be
collected

PAT_RT_EXPFILE_PER_PROCESS 0 Write experiment data to a single file
Requires a file system capable of locking

1 Write a separate file for each process
• An application may abort if the number of

processes exceeds the number of open files
permitted

PAT_RT_EXPFILE_NAME The experiment file name
PAT_RT_EXPFILE_DIR The directory that contains the experiment output file

• Specify a Lustre directory when you create a
single experiment output file

There are a number of environmental variables that define/modify the way CrayPat operates. See the intro_craypat
man page for more information.

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 13

A Sequence of Commands
rns/samp264% module load perftools # Loaded the CrayPat module

rns/samp264% ftn -o samp264 samp264.f # compiled the code – simple application

rns/samp264% pat_build samp264 # Created the experiment executable

rns/samp264% vi samp264.slm # modify the job script to run samp64+pat

rns/samp264% sbatch samp264.slm # run the job

rns/samp264% cat samp264.slm.o141770 # Made sure the job ran

rns/samp264% pat_report samp264+pat+26031-24s> samp264+pat+26031-24s.report

rns/samp264% view samp264+pat+26031-24s.report

rns/samp264% pat_build -O samp264+pat+26031-24s/build-options.apa

rns/samp264% ls -ltr

total 59184

-rwxr-xr-x 1 rns hwpt 5488 Oct 26 2014 samp264.f

-rwxr-xr-x 1 rns hwpt 15696888 Feb 12 22:00 samp264

-rwxr-xr-x 1 rns hwpt 22433392 Feb 12 22:00 samp264+pat

-rw-r--r-- 1 rns hwpt 127 Feb 12 22:06 samp264.slm.o141770

-rw-r--r-- 1 rns hwpt 147 Feb 12 22:06 samp264.slm.e141770

drwxr-x--- 4 rns hwpt 4096 Feb 12 22:17 samp264+pat+26031-24s

-rw-r--r-- 1 rns hwpt 214 Feb 12 22:39 samp264.slm

rns/samp264% vi samp264.slm # modify the job script to run samp64+apa

rns/samp264% sbatch samp264.slm # run the job

rns/samp264% pat_report samp264+apa+27643-24t > samp264+apa+27643-24t.report

rns/samp264% view samp264+apa+27643-24t.report

132/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 14

View samp264+pat+26031-24s Output
Table 1: Profile by Function

Samp% | Samp | Imb. | Imb. | Group
| | Samp | Samp% | Function
| | | | PE=HIDE

100.0% | 25,917.9 | -- | -- | Total
|--
| 99.8% | 25,854.3 | 27.7 | 0.1% | USER
||---
|| 99.8% | 25,854.3 | 27.7 | 0.1% | ghost_
|== Profile by

Table 2: Profile of maximum function times

Samp% | Samp | Imb. | Imb. | Function
| | Samp | Samp% | PE=[max,min]

|--
| 100.0% | 25,882.0 | 27.7 | 0.1% | ghost_
||---
|| 100.0% | 25,882.0 | -- | -- | pe.0
|| 99.7% | 25,799.0 | -- | -- | pe.12
|==

This is the report from the first “sample”
experiment.
Table 1 shows the highest used functions,
ghost_

Table 2 show more detail about the function
ghost_ and in this example the high and low
process

142/11/2019 Cray, Inc. Private

The table is a portion of the output of program1.rpt1.
The fifth column, labelled Calls, contains the count for all 4 PEs.
The second column, Time, lists the maximum time used by any PE per function.
The third column, Imb. (Imbalance) Time, lists the average time required by all PEs per function.
The fourth column, “Imb. Time %,, a value of 100% indicates that a single PE executed the function. A value of 0%
would indicate that all PEs spent equal time performing the function. (Refer to the man page for information about
the math used to calculate the percentage.)

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 15

View samp264+pat+26031-24s
Table 1: Profile by Function
Samp% | Samp | Imb. | Imb. | Group

| | Samp | Samp% | Function
| | | | PE=HIDE

100.0% | 25,917.9 | -- | -- | Total
|--
| 99.8% | 25,854.3 | 27.7 | 0.1% | USER
||---
|| 99.8% | 25,854.3 | 27.7 | 0.1% | ghost_
|==

Table 2: Profile of maximum function times
Samp% | Samp | Imb. | Imb. | Function

| | Samp | Samp% | PE=[max,min]
|--
| 100.0% | 25,882.0 | 27.7 | 0.1% | ghost_
||---
|| 100.0% | 25,882.0 | -- | -- | pe.0
|| 99.7% | 25,799.0 | -- | -- | pe.12
|==

Table 4: Program HW Performance Counter Data
==
Total

--
Thread Time 259.641887 secs
CPU_CLK_UNHALTED:THREAD_P 852,323,364,085
DTLB_LOAD_MISSES:WALK_DURATION 223,631,012,363
INST_RETIRED:ANY_P 91,684,175,564
RESOURCE_STALLS:ANY 792,419,692,546
UNHALTED_REFERENCE_CYCLES 774,839,428,386
OFFCORE_RESPONSE_0:ANY_REQUEST:LLC_MISS_LOCAL 6,912,550,656
CPU CLK Boost 1.10 X

This is the report generated after
pat_build -O \
samp264+pat+26031-24s/build-options.apa
was executed and the executable samp264+apa was
run. The APA file suggested PERFCT value 1 be
used. This is where the performance counter data
comes from in Table 4

152/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 16

Hardware Performance Counters
 The APA file suggests which hardware performance counters you

should use
● To use different performance counters, set the PAT_RT_PERFCTR

ENVIRONMENTAL variable and rerun the job.
samp264/samp264+pat+26031-24s% cat build-options.apa
[clipped]
Collect the default PERFCTR group.
-Drtenv=PAT_RT_PERFCTR=default

16

rns/samp264% cat samp264.slm.org
#! /bin/bash
#SBATCH -n 16
CrayPat runtime options
export PAT_RT_PERFCTR=2
export PAT_RT_SUMMARY=0
Job execution
srun ./samp264
Job profiling phases
srun ./samp264+pat
srun ./samp264+apa

2/11/2019 Cray, Inc. Private

An event set is a group of PAPI preset or native events

CrayPat defines 20 groups (sets)
Select a set by using the environment variable
PAT_RT_HWPC

Profiling - counting specified events
Used in CrayPat

Overflow - testing events and alerting the application when a count is exceeded
Requires modification of the user application

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 17

Looking Closer

● Load the perftools module
 Use the CrayPat pat_region API to identify the region of interest

● In Fortran

 Compile your code
● Use pat_build to create an instrumented binary
● Use the environment variable PAT_RT_PERFCTR to select the hardware

counters that you want to collect. PAT_RT_PERFCTR=0

● You can also save your favorite counters in a file and pass them to CrayPat
 Add file name to PAT_RT_PERFCTR_FILE environment variable

include 'pat_apif.h‘

call PAT_region_begin(1, "Std_Deviation", istat)
…
call PAT_region_end(1,stat);

172/11/2019 Cray, Inc. Private

In C/C++

#include <pat_api.h>
PAT_region_begin(1,“halo_loop");
…
PAT_region_end(1);

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 18

Looking Closer

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls | Group
| | Time | Time% | | Function
| | | | | PE=HIDE

100.0% | 260.834728 | -- | -- | 120,107.1 | Total
|---
| 99.4% | 259.170891 | -- | -- | 101.0 | USER
||--
|| 95.0% | 247.879201 | 1.520514 | 0.7% | 1.0 | ghost_
|| 4.3% | 11.291691 | 0.040904 | 0.4% | 100.0 | #1.Std_Deviation
|===

call PAT_region_begin(1, "Std_Deviation", istat)
! now find the standard deviation

do k = 1 , nz
do j = 1 , ny

do i = 1 , nx
var = var + &

& ((array(i,j,k) - mean)*(array(i,j,k) - mean))
enddo

enddo
enddo

call PAT_region_end(1, istat)

182/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 19

Looking closer
Table 3: Profile by Function Group and Function
… clip …
==
USER / #1.Std_Deviation

--
Time% 4.3%
Time 11.291691 secs
Imb. Time 0.040904 secs
Imb. Time% 0.4%
Calls 8.856 /sec 100.0 calls
CPU_CLK_UNHALTED:THREAD_P 37,117,179,867
DTLB_LOAD_MISSES:WALK_DURATION 180,919,720
INST_RETIRED:ANY_P 7,200,138,317
RESOURCE_STALLS:ANY 32,409,753,945
UNHALTED_REFERENCE_CYCLES 33,742,890,690
OFFCORE_RESPONSE_0:ANY_REQUEST:LLC_MISS_LOCAL 601,357,957
CPU CLK Boost 1.10 X
Resource stall cycles / Cycles 87.3%
Memory traffic GBytes 3.408G/sec 38.49 GB
Local Memory traffic GBytes 3.408G/sec 38.49 GB
Memory Traffic / Nominal Peak 5.7%
Retired Inst per Clock 0.19
Average Time per Call 0.112917 secs
CrayPat Overhead : Time 0.0%

==

192/11/2019 Cray, Inc. Private

From loop in code

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 20

PAPI
 PAPI provides a common interface for the performance counters in

various processors, including the Opteron
● PAPI defines a set of Preset counters that map to a common performance

counter in various processors
 The Preset name matches as closely as possible to the Native event

● Using the Preset name provides portability between processors when
user code is modified to collect performance data

● A Native event is an actual hardware counter in the processor
 See the papi_counters, papi_avail, and papi_native_avail

man pages
 papi_avail, and papi_native_avail are commands that can be

executed on the compute node to determine the available counters
● srun -n 1 /opt/cray/pe/papi/default/bin

202/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 21

Rank Order and CrayPAT

● One can also use the CrayPat performance measurement
tools to generate a suggested custom ordering.
 Available if MPI functions traced (-g mpi or –O apa)

● pat_build –O apa my_program
● see Examples section of pat_build man page

 pat_report options:
● mpi_sm_rank_order
 Uses message data from tracing MPI to generate suggested MPI rank

order. Requires the program to be instrumented using the pat_build -g
mpi option.

● mpi_rank_order
 Uses time in user functions, or alternatively, any other metric specified by

using the -s mro_metric options, to generate suggested MPI rank order.

212/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 22

Rank Order and CrayPAT

● module load perftools

● Rebuild your code
 pat_build –O apa a.out

 Run a.out+pat
 pat_report –Ompi_sm_rank_order a.out+pat+…sdt/ > pat.report

● Creates MPICH_RANK_REORDER_METHOD.x file
 Then set environment variable MPICH_RANK_REORDER_METHOD=3

and link the file MPICH_RANK_REORDER_METHOD.x to
MPICH_RANK_ORDER

 Rerun your code

222/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 23

Rank Order and CrayPAT Example

 This suggests that:
● The custom ordering “d” might be the best
● Folded-rank next best
● Round-robin 3rd best
● Default ordering last

● The utility grid_order can be used to statically generate
MPI rank order

Table 1: Suggested MPI Rank Order

Eight cores per node: USER Samp per node
Rank Max Max/ Avg Avg/ Max Node

Order USER Samp SMP USER Samp SMP Ranks
d 17062 97.6% 16907 100.0% 832,328,820,797,…
2 17213 98.4% 16907 100.0% 53,202,309,458,…
0 17282 98.8% 16907 100.0% 53,181,309,437,…
1 17489 100.0% 16907 100.0% 0,1,2,3,4,5,6,7

232/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 24

HSN Network Counters

● HSN Network counters are accessed through CrayPat and
environment variables
 See the intro_craypat and nwpc man pages

PAT_RT_NWPC Specifies individual Gemini performance counter event
names.

PAT_RT_NWPC_CONTROL Specifies parameters that control various aspects of the
Gemini networking performance counters.

PAT_RT_NWPC_FILE Specifies a file or list of files containing individual Gemini
performance counter event names.

PAT_RT_NWPC_FILE_GROUP Specifies a file or list of files containing specifications of
Gemini performance counter groups.

PAT_RT_NWPC_FILE_TILE Specifies a file or list unset of files containing
specifications of Gemini performance counters that use
the filtering counters to define new events.

PAT_RT_NWPC_TILE_DISPLAY If set to nonzero value, writes the filtered tile NWPC
event specifications to stdout.

242/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 25

Cray Apprentice2

% module load perftools
% app2 program1+pat+180tdo-0000.ap2

252/11/2019 Cray, Inc. Private

The left screen appears during data collection; later, the pie charts appear.

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 26

Apprentice2 call tree display

262/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 27

Reveal

● Performance analysis and code restructuring assistant
 Integrated performance analysis and code optimization tool
 Extends Cray's existing performance measurement, analysis, and

visualization technology by combining run-time performance statistics
and program source code visualization with Cray Compiling
Environment (CCE) compile-time optimization feedback.

% module load PrgEnv-cray
% module load perftools

% cc –h pl=himeno.pl –hwp* himeno.c

% ftn –h pl=samp264.pl samp264.f

Use with compiler information only (no need to run program):
% reveal samp264.pl

Use with compiler + loop work estimates (include performance data):
% reveal samp264.pl samp264_loops.ap2

* Optionally add whole program analysis for additional inlining.
272/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 28

Reveal

28

● Navigate to relevant loops to parallelize
● Identify parallelization and scoping issues
● Get feedback on issues down the call chain
 Shared reductions, etc.

● Optionally insert parallel directives into source
● Validate scoping correctness on existing directives

2/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 29

Reveal

292/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 30

Reveal OpenMP Scoping

302/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 31

Reveal Loops to Scope

31

In this example I reduced
the number of loops to just
line 111

2/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 32

Reveal Scoping Results

322/11/2019 Cray, Inc. Private

Cray Performance Tools

TR-CPO NERSC 2/11/2019 Cray Private 33

Reveal Scoping Results

332/11/2019 Cray, Inc. Private

	CPO-F_Cover_d2
	08CPO-F_Perf_Tools

