High Throughput Computing
at NERSC and Beyond

e R

% i BV

Photo: Michael Wolf, Mother Jones Magazine
Stephen Bailey — LBNL

Stephen Bailey
Amy Nesky
Physics

Dan Gunter

Monte Goode
CRD

Damir Sudar
Life Sciences

Anubhav Jain

Kristen Persson
EETD

David Skinner

Shane Cannon
NERSC

3D Map Of the Unlverse Stephen_ Ba//ey '

‘Current Generatlon : LBNL
s 2 5M- gaIaX|es 2600 jObS S0k CPU hours . |

3 Next Generatlon . RE g _:‘ S0
-~ 25M gaIaX|es 100k()jObS 1OM CPU hours S AN

How to adapt th/s WOI‘kf/OW : = |
~ to NERSC-level + " S
supercomputers’? |

‘a m ‘.‘

\

Common Problem: #tasks >> #jobs

Solutions tend to be...

= One-off solutions for single projects, or
= Qverly complex, or

= Too simple

Those aren’t bad solutions
= e.g. PanDA, taskfarmer

They just don’t quite fill the right niche
= David Skinner: “Tactical High Throughput Computing”
= Lightweight & flexible to deploy, setup, teardown
= |n the spirit of Unix command line tools

— toolkit to build what you need
— not monolithic Swiss army knife workflow app

= Human performance/scaling is part of the optimization

Stephen Bailey — LBNL

High Throughput Computing LDRD

BOSS / DESI

Flagship DOE cosmology survey
studying Dark Energy:
Millions of spectra

Protein Atlas

Mapping and understanding
proteins within the cell:
Millions of images

Materials Project
Simulating next-gen materials
to address energy needs:
Many thousands of simulations

Stephen Bailey — LBNL

3 Examples / 3 Divisions
there are many more

Need NERSC-scale
resources o process
1k—1M tasks

User Requirements
Scaling

= | oad ~1000 tasks/second, up to ~1M tasks per workflow
= Minimal overhead when processing >10 minute tasks

= ~1000 simultaneous workflows

m ~7000 simultaneous workers each [in progress]

Features

= Dependencies & priorities between tasks
= Python + command line (Goal: REST API)
m Parallelism within tasks [in progress]

Usability
= Fasy to deploy and use
= |ntegrates with existing clusters & super-computers

Stephen Bailey — LBNL

\\ VE

FireWorkéh™

http://pythonhosted.org/FireWorks/

Developed by Anubhav Jain, Materials Project

— Mature, full featured, battle tested

Try same workflows on both
— possible? easy? fast?

— already good enough?

Fix bottlenecks for both

Add features to gdo

Stephen Bailey — LBNL

R

o
2

https://bitbucket.org/berkeleylab/gdo

Developed by SB, BOSS/DESI
— The scrappy young upstart
— Focus on simplicity, flexibility

Goal for gdo

If it is possible with gdo,
then it is easier with qdo than anything else

Not easier? StephenBailey@Ibl.gov

= | et me know why
= This is a high priority for gdo

Not possible?
= | et me know why

= But no promises

— | would rather have 80% of cases be easy
than 100% of cases be possible

Stephen Bailey — LBNL

. TaskQueue

. O(million)

Rerun

Retry
everything |

\ Failures

Stephen Bailey — LBNL

N Toafff:) Key Features
Sl R = # tasks >> # batch jobs
| RequesT l%‘i‘; = Flexibility
4 Task s
’ N | — Scale up/down # workers
verytme | \ mies — Add tasks after jobs have started
| = Robustness[*]

—— f—— job & task failures

— Retry just the failures
= Manage tasks in aggregate

— Progress stats while
workers are running

— Only deal with an individual task
If something went wrong with it

Stephen Bailey — LBNL

Real world example

#- Create a queue

import qdo
q = qdo.create(“extract”)

#- Make groups of commands to run
for group in range(32):
commands = list()
for i in range(25):
commands.append(“extract {} {}".format(group, i)

#- Add commands to queue
ids = qg.add multiple(commands)

q.add(“merge "+str(g), requires=ids)

#- Launch 50 jobs to process the 832 tasks
q.launch(50)

Stephen Bailey — LBNL

10

Real world example ("{\f{f\

#—- Check status: command line interface

<
Y
)

#- (same info available via python interface) X 32
[sbailey]$ qdo list

QueueName State Waiting Pending Running Succeeded Failed
extract Active 0 0 0 826 o

#- 6 Failed!?! Which ones?
[sbailey]$ qdo tasks extract --state Failed

State Task
FAILED extract 3 18
FAILED merge 3

#- Debug, fix some stuff, then rerun just the failed tasks
[sbailey]l$ qdo retry extract
6 tasks reset to pending

[sbailey]l$ qdo launch extract 3

Stephen Bailey — LBNL 11

Priorities

#- Load 1000 tasks

import qgdo

q = gqdo.create('Analyze')

for i in range(1000):
gq.add(‘analyze -n ’+str(i))

q. launch(10)

#- after awhile (even from another process)
q.add(‘calibrate blat.dat’, priority=100)

Stephen Bailey — LBNL

12

Advanced: params instead of execs

#- Can add any JSON-able object
q.add(dict(a=1, b=2))
q.add(dict(a=3, b=4))
q.add(dict(a=5, b=6))

#- Pass 1n a template script to be expanded with options
q. launch(1, script="analyze -a {a} -b {b}")

#- Or pass 1n a function that takes task as input
def func(params):

result = params['a']l + params['b']

print "a+b = {}".format(result)

q.do(func=func)

Stephen Bailey — LBNL

13

Roadmap

Deploy to other users
= (Get others to try it. Does it “stick™?

Web interface
= REST API + Webpage GUI

Robustness
= orphaned “running” jobs if batch job hits wallclock limit
= optional auto-retry of “random” failures

Performance tuning

Features

= dependencies: required to finish vs. required to succeed
= parallel tasks

= easier stdout/stderr log management

Stephen Bailey — LBNL

14

SU 11 mary StephenBailey @Ibl.gov

Tactical high throughput computing

= S0 easy you don’t need an expert to help you write your workflow
= qdo enables O(1M) tasks within standard batch job framework

o

Getting qdo Q
= htips://bitbucket.org/berkeleylab/qdo a a
= At NERSC

module use /project/projectdirs/cosmo/software/modules/carver/
module load qdo/0.5
qdo —--help
pydoc qdo

Metric for workflow tools

= What fraction of user’s mental energy is spent on
workflow vs. underlying algorithms?

[Hopper & Edison coming soon]

Stephen Bailey — LBNL 15

Backup Slides

Stephen Bailey — LBNL

16

Efficient Queuing

HTC jobs can be flexible in shape

= Currently user has to pick both width and length
= Could just specify area and constraints instead
= | et system pick the most efficient packing

VS

Nodes

Time

Auto-optimize:

— Easier for user

— More efficient for overall queue

— Easier said than done, i.e. R&D problem

Stephen Bailey — LBNL

Example: run a single command

#- Command line
gdo add Blat “analyze blat.dat” #- creates queue & adds cmd

gdo launch Blat 1 #- launches 1 batch job
#- Python

import qdo

q = qdo.create(“Blat”) #- creates queue
q.add(“analyze blat.dat”) #- adds command

q. Launch() #—- launches 1 batch job

Stephen Bailey — LBNL

18

Example: run multiple commands

#- Command line

gdo load Blat commands.txt #- loads file with commands
gdo launch Blat 24 —--pack #- 1 batch job; 24 mp1i workers
#- Python

import qdo

q = qdo.create(“Blat”)
for i in range(1000):
q.add(“analyze blat{}.dat”.format(i))

q. launch(24, pack=True)

#- Python load 1M tasks
commands = list()
for x in range(1000):
for y in range(1000):
commands.append(“analyze -x {} -y {}”.format(x, y))

q.add_multiple(commands) #- takes ~2 minutes
q. launch(1024, pack=True)

Stephen Bailey — LBNL 19

Example: what queues exist?

#- Command line

gdo list
QueueName State Waiting Pending Running Succeeded Failed
BlatFoo Active 0 3 0 0 0
EchoChamber Active 0 46 0 50 4
#- Python

gqdo.qlist()
[<qdo.Queue BlatFoo at 0x1087cc790>,
<gdo.Queue EchoChamber at 0x1087cc810>]

print qdo.qlist() [0]
BlatFoo 1s Active

Waiting : 0
Pending 3
Running : 0
Succeeded : 0
Failed 0

Stephen Bailey — LBNL 20

Example: check status

#- Command line #- Python

gdo status EchoChamber q = qdo.connect(“EchoChamber”)

EchoChamber is Active q.status()

Waiting : 0 {'name': 'EchoChamber',

Pending : 46 'ntasks': {'Failed': 4,

Running : 0 'Pending': 40,

Succeeded : 50 'Running': 0,

Failed S| 'Succeeded': 50,
'Waiting': 0},

gdo tasks EchoChamber 'state': u'Active',

qdo tasks EchoChamber —--state=Failed ‘user': ‘'sbailey'}

State Task

Failed echo 13 && sleep 1 #- list of dicts of tasks

Failed echo 15 && sleep 1 q.tasks(state='Failed')

Failed echo 19 && sleep 1

Failed echo 29 && sleep 1

(they failed b/c I killed them
while running)

Stephen Bailey — LBNL 21

Example: dependencies

import qdo
q = qdo.create('MapReduce')
commands = ['echo hello '+str(i) for i in range(10)]

#- Adding commands returns list of task IDs
taskids = g.add_multiple(commands)

#- Use that list to set dependencies
q.add('echo goodbye', requires=taskids)

Stephen Bailey — LBNL

22

Example: retry, rerun, recover

import qdo
q = gdo.connect(‘Blat’)

#- Retry just the failed tasks
q.retry()

#- Rerun everything
q.rerun()

#- Recover from failed jobs leaving “running” tasks behind
q.recover()

#- Same thing from command line

gdo retry Blat

gdo rerun Blat ——force #- requires
gdo recover Blat

{ n

‘——force” for safety

Stephen Bailey — LBNL

