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Common Problem: #tasks >> #jobs

Solutions tend to be...

= One-off solutions for single projects, or
= Qverly complex, or

= Too simple

Those aren’t bad solutions
= e.g. PanDA, taskfarmer

They just don’t quite fill the right niche
= David Skinner: “Tactical High Throughput Computing”
= Lightweight & flexible to deploy, setup, teardown
= |n the spirit of Unix command line tools

— toolkit to build what you need
— not monolithic Swiss army knife workflow app

= Human performance/scaling is part of the optimization
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High Throughput Computing LDRD

BOSS / DESI

Flagship DOE cosmology survey
studying Dark Energy:
Millions of spectra

Protein Atlas

Mapping and understanding
proteins within the cell:
Millions of images

Materials Project
Simulating next-gen materials
to address energy needs:
Many thousands of simulations
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3 Examples / 3 Divisions
there are many more

Need NERSC-scale
resources o process
1k—1M tasks



User Requirements
Scaling

= | oad ~1000 tasks/second, up to ~1M tasks per workflow
= Minimal overhead when processing >10 minute tasks

= ~1000 simultaneous workflows

m ~7000 simultaneous workers each [in progress]

Features

= Dependencies & priorities between tasks
= Python + command line (Goal: REST API)
m Parallelism within tasks [in progress]

Usability
= Fasy to deploy and use
= |ntegrates with existing clusters & super-computers
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FireWorkéh™

http://pythonhosted.org/FireWorks/

Developed by Anubhav Jain, Materials Project

— Mature, full featured, battle tested

Try same workflows on both
— possible? easy? fast?

— already good enough?

Fix bottlenecks for both

Add features to gdo
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https://bitbucket.org/berkeleylab/gdo

Developed by SB, BOSS/DESI
— The scrappy young upstart
— Focus on simplicity, flexibility



Goal for gdo

If it is possible with gdo,
then it is easier with qdo than anything else

Not easier? StephenBailey@Ibl.gov

= | et me know why
= This is a high priority for gdo

Not possible?
= | et me know why

= But no promises

— | would rather have 80% of cases be easy
than 100% of cases be possible
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. TaskQueue

. O(million)

Rerun

Retry
everything |

\ Failures
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N Toafff:) Key Features
Sl R = # tasks >> # batch jobs
| RequesT l%‘i‘; = Flexibility
4 Task s
’ N | — Scale up/down # workers
verytme | \ mies  — Add tasks after jobs have started
| = Robustness[*]

—— f—— job & task failures

— Retry just the failures
= Manage tasks in aggregate

— Progress stats while
workers are running

— Only deal with an individual task
If something went wrong with it
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Real world example

#- Create a queue

import qdo
q = qdo.create(“extract”)

#- Make groups of commands to run
for group in range(32):
commands = list()
for i in range(25):
commands.append(“extract {} {}".format(group, i)

#- Add commands to queue
ids = qg.add multiple(commands)

q.add(“merge "+str(g), requires=ids)

#- Launch 50 jobs to process the 832 tasks
q.launch(50)

Stephen Bailey — LBNL

10



Real world example ("{\f{f\

#—- Check status: command line interface

<
Y
)

#- (same info available via python interface) X 32
[sbailey]$ qdo list

QueueName State Waiting Pending Running Succeeded Failed
extract Active 0 0 0 826 o

#- 6 Failed!?! Which ones?
[sbailey]$ qdo tasks extract --state Failed

State Task
FAILED extract 3 18
FAILED merge 3

#- Debug, fix some stuff, then rerun just the failed tasks
[sbailey]l$ qdo retry extract
6 tasks reset to pending

[sbailey]l$ qdo launch extract 3
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Priorities

#- Load 1000 tasks

import qgdo

q = gqdo.create('Analyze')

for i in range(1000):
gq.add(‘analyze -n ’+str(i))

q. launch(10)

#- after awhile (even from another process)
q.add(‘calibrate blat.dat’, priority=100)
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Advanced: params instead of execs

#- Can add any JSON-able object
q.add( dict(a=1, b=2) )
q.add( dict(a=3, b=4) )
q.add( dict(a=5, b=6) )

#- Pass 1n a template script to be expanded with options
q. launch(1, script="analyze -a {a} -b {b}")

#- Or pass 1n a function that takes task as input
def func(params):

result = params['a']l + params['b']

print "a+b = {}".format(result)

q.do(func=func)
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Roadmap

Deploy to other users
= (Get others to try it. Does it “stick™?

Web interface
= REST API + Webpage GUI

Robustness
= orphaned “running” jobs if batch job hits wallclock limit
= optional auto-retry of “random” failures

Performance tuning

Features

= dependencies: required to finish vs. required to succeed
= parallel tasks

= easier stdout/stderr log management
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SU 11 mary StephenBailey @Ibl.gov

Tactical high throughput computing

= S0 easy you don’t need an expert to help you write your workflow
= qdo enables O(1M) tasks within standard batch job framework

o

Getting qdo Q
= htips://bitbucket.org/berkeleylab/qdo a a
= At NERSC

module use /project/projectdirs/cosmo/software/modules/carver/
module load qdo/0.5
qdo —--help
pydoc qdo

Metric for workflow tools

= What fraction of user’s mental energy is spent on
workflow vs. underlying algorithms?

[Hopper & Edison coming soon]
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Backup Slides

Stephen Bailey — LBNL

16



Efficient Queuing

HTC jobs can be flexible in shape

= Currently user has to pick both width and length
= Could just specify area and constraints instead
= | et system pick the most efficient packing

VS

Nodes

Time

Auto-optimize:

— Easier for user

— More efficient for overall queue

— Easier said than done, i.e. R&D problem
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Example: run a single command

#- Command line
gdo add Blat “analyze blat.dat” #- creates queue & adds cmd

gdo launch Blat 1 #- launches 1 batch job
#- Python

import qdo

q = qdo.create(“Blat”) #- creates queue
q.add(“analyze blat.dat”) #- adds command

q. Launch() #—- launches 1 batch job
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Example: run multiple commands

#- Command line

gdo load Blat commands.txt #- loads file with commands
gdo launch Blat 24 —--pack #- 1 batch job; 24 mp1i workers
#- Python

import qdo

q = qdo.create(“Blat”)
for i in range(1000):
q.add(“analyze blat{}.dat”.format(i))

q. launch(24, pack=True)

#- Python load 1M tasks
commands = list()
for x in range(1000):
for y in range(1000):
commands.append(“analyze -x {} -y {}”.format(x, y))

q.add_multiple(commands)  #- takes ~2 minutes
q. launch(1024, pack=True)
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Example: what queues exist?

#- Command line

gdo list
QueueName State Waiting Pending Running Succeeded Failed
BlatFoo Active 0 3 0 0 0
EchoChamber Active 0 46 0 50 4
#- Python

gqdo.qlist()
[<qdo.Queue BlatFoo at 0x1087cc790>,
<gdo.Queue EchoChamber at 0x1087cc810>]

print qdo.qlist() [0]
BlatFoo 1s Active

Waiting : 0
Pending 3
Running : 0
Succeeded : 0
Failed 0
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Example: check status

#- Command line #- Python

gdo status EchoChamber q = qdo.connect(“EchoChamber”)

EchoChamber is Active q.status()

Waiting : 0 {'name': 'EchoChamber',

Pending : 46 'ntasks': {'Failed': 4,

Running : 0 'Pending': 40,

Succeeded : 50 'Running': 0,

Failed S| 'Succeeded': 50,
'Waiting': 0},

gdo tasks EchoChamber 'state': u'Active',

qdo tasks EchoChamber —--state=Failed ‘user': ‘'sbailey'}

State Task

Failed echo 13 && sleep 1 #- list of dicts of tasks

Failed echo 15 && sleep 1 q.tasks(state='Failed')

Failed echo 19 && sleep 1

Failed echo 29 && sleep 1

(they failed b/c I killed them
while running)
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Example: dependencies

import qdo
q = qdo.create('MapReduce')
commands = ['echo hello '+str(i) for i in range(10)]

#- Adding commands returns list of task IDs
taskids = g.add_multiple(commands)

#- Use that list to set dependencies
q.add('echo goodbye', requires=taskids)
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Example: retry, rerun, recover

import qdo
q = gdo.connect(‘Blat’)

#- Retry just the failed tasks
q.retry()

#- Rerun everything
q.rerun()

#- Recover from failed jobs leaving “running” tasks behind
q.recover()

#- Same thing from command line

gdo retry Blat

gdo rerun Blat ——force #- requires
gdo recover Blat

{ n

‘——force” for safety
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