
OpenMP Tutorial  
Members of the OpenMP Language Committee

1

Programming OpenMP

Christian Terboven 
Michael Klemm



OpenMP Tutorial  
Members of the OpenMP Language Committee

2

■ Session 1: OpenMP Introduction 
■ Session 2: Tasking 
■ Session 3: Optimization for NUMA and SIMD 

!Review of Session 2 / homework assignments 
!OpenMP and NUMA architectures 
!Task Affinity 
!SIMD 
!Homework assignments ☺ 

■ Session 4: What Could Possibly Go Wrong Using OpenMP 
■ Session 5: Introduction to Offloading with OpenMP 
■ Session 6: Advanced Offloading Topics 
■ Session 7: Selected / Remaining Topics

Agenda (in total 7 Sessions)



OpenMP Tutorial  
Members of the OpenMP Language Committee

3

Programming OpenMP

Christian Terboven 
Michael Klemm

Review



OpenMP Tutorial  
Members of the OpenMP Language Committee

4

Questions?



OpenMP Tutorial  
Members of the OpenMP Language Committee

5

Fibonacci



OpenMP Tutorial  
Members of the OpenMP Language Committee

6

■ Only one Task / Thread enters fib() from main(), it is responsible for creating the two initial 
work tasks 

■ Taskwait is required, as otherwise x and y would get lost

Fibonacci illustrated
14  int fib(int n)   { 
15      if (n < 2) return n; 
16      int x, y; 
17      #pragma omp task shared(x) 
18      { 
19          x = fib(n - 1); 
20      } 
21      #pragma omp task shared(y) 
22      { 
23          y = fib(n - 2); 
24      } 
25      #pragma omp taskwait 
26          return x+y; 
27.}

 1  int main(int argc, 
 2           char* argv[]) 
 3  { 
 4      [...] 
 5      #pragma omp parallel 
 6      { 
 7       #pragma omp single 
 8         { 
 9             fib(input); 
10         } 
11      } 
12      [...] 
13.}



OpenMP Tutorial  
Members of the OpenMP Language Committee

7

■ T1 enters fib(4)

fib(4)

Task Queue



OpenMP Tutorial  
Members of the OpenMP Language Committee

7

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2) 

Task Queue

fib(3) fib(2)



OpenMP Tutorial  
Members of the OpenMP Language Committee

7

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2) 

Task Queue

■ T1 and T2 execute tasks 
from the queue

fib(3) fib(2)



OpenMP Tutorial  
Members of the OpenMP Language Committee

7

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2) 

Task Queue

■ T1 and T2 execute tasks 
from the queue

fib(3) fib(2)■ T1 and T2 create 4 new 
tasks

fib(2) fib(1) fib(1) fib(0)



OpenMP Tutorial  
Members of the OpenMP Language Committee

7

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2) 

Task Queue

■ T1 and T2 execute tasks 
from the queue

fib(3) fib(2)■ T1 and T2 create 4 new 
tasks

■ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)



OpenMP Tutorial  
Members of the OpenMP Language Committee

8

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2) 
■ T1 and T2 execute tasks 

from the queue
fib(3) fib(2)■ T1 and T2 create 4 new 

tasks
■ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)■ …

fib(1) fib(0)



OpenMP Tutorial  
Members of the OpenMP Language Committee

9

For / Work-distribution



OpenMP Tutorial  
Members of the OpenMP Language Committee

10

Example solution: For w/ Tasking wo/ Red.

#pragma omp parallel firstprivate(presult) 
{ 
#pragma omp single 
{ 

        for (int i = 0; i < dimension; i++) 
        { 
#pragma omp task shared(presult) 
{ 
                result += do_some_computation(i); 
} 
        } 

} // end omp single 

#pragma omp critical 
{ 
        result += presult; 
} 

} // end omp parallel



OpenMP Tutorial  
Members of the OpenMP Language Committee

11

Example solution: For w/ Tasking

#pragma omp parallel reduction(task,+:result) 
{ 
#pragma omp single 
{ 

        for (int i = 0; i < dimension; i++) 
        { 
#pragma omp task in_reduction(+:result) 
{ 
                result += do_some_computation(i); 
} 
        } 

} // end omp single 

} // end omp parallel



OpenMP Tutorial  
Members of the OpenMP Language Committee

12

Example solution: For w/ Taskloop

#pragma omp parallel reduction(task,+:result) 
{ 
#pragma omp single 
{ 

#pragma omp taskloop in_reduction(+:result) 
        for (int i = 0; i < dimension; i++) 
        { 
                result += do_some_computation(i); 
        } 

} // end omp single 

} // end omp parallel



OpenMP Tutorial  
Members of the OpenMP Language Committee

13

QuickSort



OpenMP Tutorial  
Members of the OpenMP Language Committee

14

Example solution: Quick Sort



OpenMP Tutorial  
Members of the OpenMP Language Committee

14

Example solution: Quick Sort

void quicksort(int * array, int first, int last){ 
 int pivotElement; 
 if((last - first + 1) < 10000) { 
  serial_quicksort(array, first, last); 
 } else { 
  pivotElement = pivot(array,first,last); 
  #pragma omp task default(shared) 
  { 
   quicksort(array,first,pivotElement-1); 
  } 
  #pragma omp task default(shared) 
  { 
   quicksort(array,pivotElement+1,last); 
  } 
  #pragma omp taskwait 
 } 
}



OpenMP Tutorial  
Members of the OpenMP Language Committee

15

Programming OpenMP

Christian Terboven 
Michael Klemm

Review



OpenMP Tutorial  
Members of the OpenMP Language Committee

16

Questions?



OpenMP Tutorial  
Members of the OpenMP Language Committee

17

Fibonacci



OpenMP Tutorial  
Members of the OpenMP Language Committee

18

■ Only one Task / Thread enters fib() from main(), it is responsible for creating the two initial 
work tasks 

■ Taskwait is required, as otherwise x and y would get lost

Fibonacci illustrated
14  int fib(int n)   { 
15      if (n < 2) return n; 
16      int x, y; 
17      #pragma omp task shared(x) 
18      { 
19          x = fib(n - 1); 
20      } 
21      #pragma omp task shared(y) 
22      { 
23          y = fib(n - 2); 
24      } 
25      #pragma omp taskwait 
26          return x+y; 
27.}

 1  int main(int argc, 
 2           char* argv[]) 
 3  { 
 4      [...] 
 5      #pragma omp parallel 
 6      { 
 7       #pragma omp single 
 8         { 
 9             fib(input); 
10         } 
11      } 
12      [...] 
13.}



OpenMP Tutorial  
Members of the OpenMP Language Committee

19

■ T1 enters fib(4)

fib(4)

Task Queue



OpenMP Tutorial  
Members of the OpenMP Language Committee

19

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2) 

Task Queue

fib(3) fib(2)



OpenMP Tutorial  
Members of the OpenMP Language Committee

19

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2) 

Task Queue

■ T1 and T2 execute tasks 
from the queue

fib(3) fib(2)



OpenMP Tutorial  
Members of the OpenMP Language Committee

19

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2) 

Task Queue

■ T1 and T2 execute tasks 
from the queue

fib(3) fib(2)■ T1 and T2 create 4 new 
tasks

fib(2) fib(1) fib(1) fib(0)



OpenMP Tutorial  
Members of the OpenMP Language Committee

19

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2) 

Task Queue

■ T1 and T2 execute tasks 
from the queue

fib(3) fib(2)■ T1 and T2 create 4 new 
tasks

■ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)



OpenMP Tutorial  
Members of the OpenMP Language Committee

20

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2) 
■ T1 and T2 execute tasks 

from the queue
fib(3) fib(2)■ T1 and T2 create 4 new 

tasks
■ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)■ …

fib(1) fib(0)



OpenMP Tutorial  
Members of the OpenMP Language Committee

21

For / Work-distribution



OpenMP Tutorial  
Members of the OpenMP Language Committee

22

Example solution: For w/ Tasking wo/ Red.

#pragma omp parallel firstprivate(presult) 
{ 
#pragma omp single 
{ 

        for (int i = 0; i < dimension; i++) 
        { 
#pragma omp task shared(presult) 
{ 
                result += do_some_computation(i); 
} 
        } 

} // end omp single 

#pragma omp critical 
{ 
        result += presult; 
} 

} // end omp parallel



OpenMP Tutorial  
Members of the OpenMP Language Committee

23

Example solution: For w/ Tasking

#pragma omp parallel reduction(task,+:result) 
{ 
#pragma omp single 
{ 

        for (int i = 0; i < dimension; i++) 
        { 
#pragma omp task in_reduction(+:result) 
{ 
                result += do_some_computation(i); 
} 
        } 

} // end omp single 

} // end omp parallel



OpenMP Tutorial  
Members of the OpenMP Language Committee

24

Example solution: For w/ Taskloop

#pragma omp parallel reduction(task,+:result) 
{ 
#pragma omp single 
{ 

#pragma omp taskloop in_reduction(+:result) 
        for (int i = 0; i < dimension; i++) 
        { 
                result += do_some_computation(i); 
        } 

} // end omp single 

} // end omp parallel



OpenMP Tutorial  
Members of the OpenMP Language Committee

25

QuickSort



OpenMP Tutorial  
Members of the OpenMP Language Committee

26

Programming OpenMP

Christian Terboven 
Michael Klemm

NUMA



OpenMP Tutorial  
Members of the OpenMP Language Committee

27

Review: NUMA concept



OpenMP Tutorial  
Members of the OpenMP Language Committee

28

double* A; 
A = (double*) 
    malloc(N * sizeof(double)); 

for (int i = 0; i < N; i++) { 
   A[i] = 0.0; 
}

Non-uniform Memory

Core

memory

Core
on-
chip 

cache

Core Core

memory

interconnect

on-
chip 

cache

on-
chip 

cache

on-
chip 

cache

How To Distribute The Data ?



OpenMP Tutorial  
Members of the OpenMP Language Committee

29

■ Serial code: all array elements are allocated in the memory of the NUMA node closest to the 
core executing the initializer thread (first touch) 

double* A; 
A = (double*) 
    malloc(N * sizeof(double)); 

for (int i = 0; i < N; i++) { 
   A[i] = 0.0; 
}

Non-uniform Memory

Core

memory

Core
on-
chip 

cache

Core Core

memory

interconnect

on-
chip 

cache

on-
chip 

cache

on-
chip 

cache

A[0] … A[N]



OpenMP Tutorial  
Members of the OpenMP Language Committee

30

■ Important aspect on cc-NUMA systems 
!If not optimal, longer memory access times and hotspots 

■ Placement comes from the Operating System 
!This is therefore Operating System dependent 

■ Windows, Linux and Solaris all use the “First Touch” placement policy 
by default 
!May be possible to override default (check the docs)

About Data Distribution



OpenMP Tutorial  
Members of the OpenMP Language Committee

31

■ Serial code: all array elements are allocated in the memory of the NUMA node closest to the 
core executing the initializer thread (first touch) 

double* A; 
A = (double*) 
    malloc(N * sizeof(double)); 

for (int i = 0; i < N; i++) { 
   A[i] = 0.0; 
}

Non-uniform Memory

Core

memory

Core
on-
chip 

cache

Core Core

memory

interconnect

on-
chip 

cache

on-
chip 

cache

on-
chip 

cache

A[0] … A[N]



OpenMP Tutorial  
Members of the OpenMP Language Committee

32

■ First Touch w/ parallel code: all array elements are allocated in the memory of the NUMA 
node that contains the core that executes the 
thread that initializes the partition 

double* A; 
A = (double*) 
    malloc(N * sizeof(double)); 

omp_set_num_threads(2); 

#pragma omp parallel for 

for (int i = 0; i < N; i++) { 
   A[i] = 0.0; 
}

First Touch Memory Placement

Core

memory

Core
on-
chip 

cache

Core Core

memory

interconnect

on-
chip 

cache

on-
chip 

cache

on-
chip 

cache

A[0] … A[N/2] A[N/2] … A[N]



OpenMP Tutorial  
Members of the OpenMP Language Committee

33

■ Stream example on 2 socket sytem with Xeon X5675 processors, 12 
OpenMP threads:

Serial vs. Parallel Initialization

copy scale add triad

ser_init 18.8 GB/s 18.5 GB/s 18.1 GB/s 18.2 GB/s
par_init 41.3 GB/s 39.3 GB/s 40.3 GB/s 40.4 GB/s

CPU 0

T
1

T
2

T
3

T
4

T
5

T
6

CPU 1

T
7

T
8

T
9

T1
0

T1
1

T1
2

MEM

a[0,N-1]
b[0,N-1]
c[0,N-1]

CPU 0

T
1

T
2

T
3

T
4

T
5

T
6

CPU 1

T
7

T
8

T
9

T1
0

T1
1

T1
2

MEM

a[0,(N/
2)-1]b[0,(N/
2)-1]

c[0,(N/2)-1]

ser_init:

par_init:

MEM

MEM

a[N/2,N-1]
b[N/2,N-1]
c[N/2,N-1]



OpenMP Tutorial  
Members of the OpenMP Language Committee

34

Thread Binding and Memory Placement



OpenMP Tutorial  
Members of the OpenMP Language Committee

35

■ Before you design a strategy for thread binding, you should have a basic 
understanding of the system topology. Please use one of the following options 
on a target machine: 
!Intel MPI‘s cpuinfo tool 

! cpuinfo 

!Delivers information about the number of sockets (= packages) and the mapping of processor ids to 

cpu cores that the OS uses. 

!hwlocs‘ hwloc-ls tool 
! hwloc-ls 

!Displays a (graphical) representation of the system topology, separated into NUMA nodes, along with 

the mapping of processor ids to cpu cores that the OS uses and additional info on caches.

Get Info on the System Topology



OpenMP Tutorial  
Members of the OpenMP Language Committee

36

■ Selecting the „right“ binding strategy depends not only on the topology, 
but also on application characteristics. 
!Putting threads far apart, i.e., on different sockets 

!May improve aggregated memory bandwidth available to application 

!May improve the combined cache size available to your application 

!May decrease performance of synchronization constructs 

!Putting threads close together, i.e., on two adjacent cores that possibly share 

some caches 

!May improve performance of synchronization constructs 

!May decrease the available memory bandwidth and cache size

Decide for Binding Strategy



OpenMP Tutorial  
Members of the OpenMP Language Committee

37

■ Define OpenMP Places 
!set of OpenMP threads running on one or more processors 
!can be defined by the user, i.e. OMP_PLACES=cores 

■ Define a set of OpenMP Thread Affinity Policies 
!SPREAD: spread OpenMP threads evenly among the places, 

partition the place list 
!CLOSE: pack OpenMP threads near primary thread 
!PRIMARY: collocate OpenMP thread with primary thread 

■ Goals 
!user has a way to specify where to execute OpenMP threads 
! locality between OpenMP threads / less false sharing / memory bandwidth

Places + Binding Policies (1/2)



OpenMP Tutorial  
Members of the OpenMP Language Committee

38

■ Assume the following machine: 

! 2 sockets, 4 cores per socket, 4 hyper-threads per core 

■ Abstract names for OMP_PLACES: 
! threads: Each place corresponds to a single hardware thread. 

! cores: Each place corresponds to a single core (having one or more hardware threads). 

! sockets: Each place corresponds to a single socket (consisting of one or more cores). 

! ll_caches (5.1): Each place corresponds to a set of cores that share the last level cache. 

! numa_domains (5.1): Each places corresponds to a set of cores for which their closest memory is: the 

same memory; and at a similar distance from the cores.

p0 p1 p2 p3 p4 p5 p6 p7 

OMP_PLACES env. variable



OpenMP Tutorial  
Members of the OpenMP Language Committee

39

■ Example‘s Objective: 
! separate cores for outer loop and near cores for inner loop 

■ Outer Parallel Region: proc_bind(spread), Inner: proc_bind(close) 
! spread creates partition, compact binds threads within respective partition 

OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-4):4:8   = cores 
#pragma omp parallel proc_bind(spread) num_threads(4) 
#pragma omp parallel proc_bind(close) num_threads(4) 

■ Example 
! initial 

! spread 4 

! close 4

p0 p1 p2 p3 p4 p5 p6 p7 

p0 p1 p2 p3 p4 p5 p6 p7 

OpenMP 4.0: Places + Policies



OpenMP Tutorial  
Members of the OpenMP Language Committee

39

■ Example‘s Objective: 
! separate cores for outer loop and near cores for inner loop 

■ Outer Parallel Region: proc_bind(spread), Inner: proc_bind(close) 
! spread creates partition, compact binds threads within respective partition 

OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-4):4:8   = cores 
#pragma omp parallel proc_bind(spread) num_threads(4) 
#pragma omp parallel proc_bind(close) num_threads(4) 

■ Example 
! initial 

! spread 4 

! close 4

p0 p1 p2 p3 p4 p5 p6 p7 

p0 p1 p2 p3 p4 p5 p6 p7 

p0 p1 p2 p3 p4 p5 p6 p7 

OpenMP 4.0: Places + Policies



OpenMP Tutorial  
Members of the OpenMP Language Committee

40

■ Assume the following machine: 

!2 sockets, 4 cores per socket, 4 hyper-threads per core 

■ Parallel Region with two threads, one per socket 
!OMP_PLACES=sockets 

!#pragma omp parallel num_threads(2) proc_bind(spread)

More Examples (1/3)

p0 p1 p2 p3 p4 p5 p6 p7 



OpenMP Tutorial  
Members of the OpenMP Language Committee

41

■ Assume the following machine: 

■ Parallel Region with four threads, one per core, but only on the first 
socket 
!OMP_PLACES=cores 

!#pragma omp parallel num_threads(4) proc_bind(close)

More Examples (2/3)

p0 p1 p2 p3 p4 p5 p6 p7 



OpenMP Tutorial  
Members of the OpenMP Language Committee

42

■ Spread a nested loop first across two sockets, then among the cores 
within each socket, only one thread per core 
!OMP_PLACES=cores 

!#pragma omp parallel num_threads(2) proc_bind(spread) 

!#pragma omp parallel num_threads(4) proc_bind(close) 

■ Places API routines allow to 
!query information about binding… 

!query information about the place partition…

More Examples (3/3)



OpenMP Tutorial  
Members of the OpenMP Language Committee

43

■ Simple routine printing the processor ids of the place the calling thread 
is bound to:

Places API: Example



OpenMP Tutorial  
Members of the OpenMP Language Committee

43

■ Simple routine printing the processor ids of the place the calling thread 
is bound to:

Places API: Example

void print_binding_info() { 
     int my_place = omp_get_place_num(); 
     int place_num_procs = omp_get_place_num_procs(my_place); 
      
     printf("Place consists of %d processors: ", place_num_procs); 

     int *place_processors = malloc(sizeof(int) * place_num_procs); 
     omp_get_place_proc_ids(my_place, place_processors) 

     for (int i = 0; i < place_num_procs - 1; i++) { 
             printf("%d ", place_processors[i]); 
     } 
     printf("\n"); 

     free(place_processors); 
}



OpenMP Tutorial  
Members of the OpenMP Language Committee

44

■ Set OMP_DISPLAY_AFFINITY=TRUE 
!Instructs the runtime to display formatted affinity information 

!Example output for two threads on two physical cores: 

!Output can be formatted with OMP_AFFINITY_FORMAT env var or 

corresponding routine 

!Formatted affinity information can be printed with 
omp_display_affinity(const char* format)

OpenMP 5.0 way to do this



OpenMP Tutorial  
Members of the OpenMP Language Committee

44

■ Set OMP_DISPLAY_AFFINITY=TRUE 
!Instructs the runtime to display formatted affinity information 

!Example output for two threads on two physical cores: 

!Output can be formatted with OMP_AFFINITY_FORMAT env var or 

corresponding routine 

!Formatted affinity information can be printed with 
omp_display_affinity(const char* format)

OpenMP 5.0 way to do this

nesting_level=   1,   thread_num=   0,   thread_affinity=   0,1 
nesting_level=   1,   thread_num=   1,   thread_affinity=   2,3



OpenMP Tutorial  
Members of the OpenMP Language Committee

45

■ Example: 

!Possible output:

Affinity format specification
t omp_get_team_num()
T omp_get_num_teams()
L omp_get_level()
n omp_get_thread_num()
N omp_get_num_threads()

a omp_get_ancestor_thread_num() at level-1
H hostname
P process identifier
i native thread identifier
A thread affinity: list of processors (cores)



OpenMP Tutorial  
Members of the OpenMP Language Committee

45

■ Example: 

!Possible output:

Affinity format specification
t omp_get_team_num()
T omp_get_num_teams()
L omp_get_level()
n omp_get_thread_num()
N omp_get_num_threads()

a omp_get_ancestor_thread_num() at level-1
H hostname
P process identifier
i native thread identifier
A thread affinity: list of processors (cores)

OMP_AFFINITY_FORMAT=“Affinity: %0.3L %.8n %.15{A} %.12H“

Affinity: 001        0      0-1,16-17      host003 
Affinity: 001        1      2-3,18-19      host003



OpenMP Tutorial  
Members of the OpenMP Language Committee

46

■ Explicit NUMA-aware memory allocation: 
!By carefully touching data by the thread which later uses it 

!By changing the default memory allocation strategy 

!Linux: numactl command 

!By explicit migration of memory pages 

!Linux: move_pages() 

■ Example: using numactl to distribute pages round-
robin: 
!numactl –interleave=all ./a.out

Fine-grained control of Memory Affinity



OpenMP Tutorial  
Members of the OpenMP Language Committee

47

Managing Memory Spaces



OpenMP Tutorial  
Members of the OpenMP Language Committee

48

■ Traditional DDR-based memory 
■ High-bandwidth memory 
■ Non-volatile memory 
■ …

Different kinds of memory

CPU: Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz 
Freq Govenor: performance 
--------------------- 
available: 4 nodes (0-3) 
node 0 cpus: 0 2 4 6 8 10 12 14 16 18  
             20 22 24 26 28 30 32 34 36 38 
node 0 size: 191936 MB 
node 0 free: 178709 MB 
node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23  
             25 27 29 31 33 35 37 39 
node 1 size: 192016 MB 
node 1 free: 179268 MB 
node 2 cpus: 
node 2 size: 759808 MB 
node 2 free: 759794 MB 
node 3 cpus: 
node 3 size: 761856 MB 
node 3 free: 761851 MB 
node distances: 
node   0   1   2   3  
  0:  10  21  17  28  
  1:  21  10  28  17  
  2:  17  28  10  28  
  3:  28  17  28  10

Cascade Lake (Leonide at INRIA)

DRAM + Optane



OpenMP Tutorial  
Members of the OpenMP Language Committee

49

■ Allocator := an OpenMP object that fulfills requests to allocate and 
deallocate storage for program variables 

■ OpenMP allocators are of type omp_allocator_handle_t 

■ Default allocator for Host 
!via OMP_ALLOCATOR env. var. or corresponding API 

■ OpenMP 5.0 supports a set of memory allocators

Memory Management



OpenMP Tutorial  
Members of the OpenMP Language Committee

50

■ Selection of a certain kind of memory

OpenMP allocators

Allocator name Storage selection intent
omp_default_mem_alloc use default storage
omp_large_cap_mem_alloc use storage with large capacity
omp_const_mem_alloc use storage optimized for read-only variables
omp_high_bw_mem_alloc use storage with high bandwidth
omp_low_lat_mem_alloc use storage with low latency
omp_cgroup_mem_alloc use storage close to all threads in the contention 

group of the thread requesting the allocation
omp_pteam_mem_alloc use storage that is close to all threads in the same 

parallel region of the thread requesting the 
allocation

omp_thread_local_mem_allo
c

use storage that is close to the thread requesting 
the allocation



OpenMP Tutorial  
Members of the OpenMP Language Committee

51

■ New clause on all constructs with data sharing clauses: 
! allocate( [allocator:] list ) 

■ Allocation: 
! omp_alloc(size_t size, omp_allocator_handle_t allocator) 

■ Deallocation: 
! omp_free(void *ptr, const omp_allocator_handle_t allocator) 

! allocator argument is optional 

■ allocate directive: standalone directive for allocation, or declaration of allocation 
stmt.

Using OpenMP Allocators



OpenMP Tutorial  
Members of the OpenMP Language Committee

52

■ Allocator traits control the behavior of the allocator

OpenMP allocator traits / 1

sync_hint contended, uncontended, serialized, private 
default: contended

alignment positive integer value that is a power of two 
default: 1 byte

access all, cgroup, pteam, thread 
default: all

pool_size positive integer value

fallback default_mem_fb, null_fb, abort_fb, allocator_fb 
default: default_mem_fb

fb_data an allocator handle

pinned true, false 
default: false

partition environment, nearest, blocked, interleaved 
default: environment



OpenMP Tutorial  
Members of the OpenMP Language Committee

53

■ fallback: describes the behavior if the allocation cannot be fulfilled 
!default_mem_fb: return system’s default memory 

!Other options: null, abort, or use different allocator 

■ pinned: request pinned memory, i.e. for GPUs

OpenMP Allocator Traits / 2



OpenMP Tutorial  
Members of the OpenMP Language Committee

54

■ partition: partitioning of allocated memory of physical storage 
resources (think of NUMA) 
!environment: use system’s default behavior 

!nearest: most closest memory 

!blocked: partitioning into approx. same size with at most one block per 

storage resource 

!interleaved: partitioning in a round-robin fashion across the storage 

resources

OpenMP Allocator Traits / 3



OpenMP Tutorial  
Members of the OpenMP Language Committee

55

■ Construction of allocators with traits via 
!omp_allocator_handle_t   omp_init_allocator( 

omp_memspace_handle_t memspace, 

int ntraits, const omp_alloctrait_t traits[]); 

!Selection of memory space mandatory 

!Empty traits set: use defaults 

■ Allocators have to be destroyed with *_destroy_* 
■ Custom allocator can be made default with 

omp_set_default_allocator(omp_allocator_handle_t allocator)

OpenMP Allocator Traits / 4



OpenMP Tutorial  
Members of the OpenMP Language Committee

56

■ Storage resources with explicit support in OpenMP: 

!Exact selection of memory space is implementation-def. 

!Pre-defined allocators available to work with these

OpenMP Memory Spaces

omp_default_mem_space System’s default memory resource
omp_large_cap_mem_spa
ce

Storage with larg(er) capacity

omp_const_mem_space Storage optimized for variables with constant value
omp_high_bw_mem_spac
e

Storage with high bandwidth

omp_low_lat_mem_space Storage with low latency



OpenMP Tutorial  
Members of the OpenMP Language Committee

57

■ LLVM OpenMP runtime internally already uses libmemkind (libnuma, numactl) 
! Support for various kinds of memory: DDR, HBW and Persistent Memory (Optane) 
! Library loaded at initialization (checks for availability) 
! If requested memory space for allocator is not available ! fallback to DDR 

■ Memory Management implementation in LLVM still not complete 
! Some allocator traits not implemented yet 
! Some partition values not implemented yet (environment, interleaved, nearest, blocked) 
! Semantics of omp_high_bw_mem_space and omp_large_cap_mem_space unclear. Which memory should be 

used? 
!Explicitly target HBM ! currently implemented in LLVM 

■ LLVM has custom implementation of aligned memory allocation 
! Allocation covers ! {Allocator Information + Requested Size + Buffer based on alignment}

Memory Management Status



OpenMP Tutorial  
Members of the OpenMP Language Committee

58

Programming OpenMP

Christian Terboven 
Michael Klemm

NUMA



OpenMP Tutorial  
Members of the OpenMP Language Committee

59

Improving Tasking Performance: 
Task Affinity



OpenMP Tutorial  
Members of the OpenMP Language Committee

60

■ Techniques for process binding & thread pinning available 
!OpenMP thread level: OMP_PLACES & OMP_PROC_BIND 

!OS functionality: taskset -c 

OpenMP Tasking: 
■ In general: Tasks may be executed by any thread in the team 

!Missing task-to-data affinity may have detrimental effect on performance 

OpenMP 5.0: 
■ affinity clause to express affinity to data 

 

Motivation



OpenMP Tutorial  
Members of the OpenMP Language Committee

61

■ New clause: #pragma omp task affinity (list) 
!Hint to the runtime to execute task closely to physical data location 

!Clear separation between dependencies and affinity 

■ Expectations: 
!Improve data locality / reduce remote memory accesses 

!Decrease runtime variability 

■ Still expect task stealing  
!In particular, if a thread is under-utilized 

affinity clause



OpenMP Tutorial  
Members of the OpenMP Language Committee

62

■ Excerpt from task-parallel STREAM 

!Loops have been blocked manually (see tmp_idx_start/end) 

!Assumption: initialization and computation have same blocking and same affinity

Code Example

1   #pragma omp task \ 
2       shared(a, b, c, scalar) \ 
3       firstprivate(tmp_idx_start, tmp_idx_end) \ 
4       affinity( a[tmp_idx_start] ) 
5   { 
6      int i; 
7      for(i = tmp_idx_start; i <= tmp_idx_end; i++) 
8           a[i] = b[i] + scalar * c[i]; 
9   }



OpenMP Tutorial  
Members of the OpenMP Language Committee

63

Selected LLVM implementation details
Encounter  

task region …
Task with 

data 
affinity?

Push to 
local 

queue

end

No

A map is introduced to 
store location information 
of data that was previously 
used



OpenMP Tutorial  
Members of the OpenMP Language Committee

63

Selected LLVM implementation details
Encounter  

task region …
Task with 

data 
affinity?

Push to 
local 

queue

Location  
for data 

reference in 
map?

end

Yes

No

A map is introduced to 
store location information 
of data that was previously 
used



OpenMP Tutorial  
Members of the OpenMP Language Committee

63

Selected LLVM implementation details
Encounter  

task region …
Task with 

data 
affinity?

Push to 
local 

queue

Location  
for data 

reference in 
map?

Push task into 
other threads 

queue
end

Yes

No

Yes

A map is introduced to 
store location information 
of data that was previously 
used



OpenMP Tutorial  
Members of the OpenMP Language Committee

63

Selected LLVM implementation details
Encounter  

task region …
Task with 

data 
affinity?

Push to 
local 

queue

Location  
for data 

reference in 
map?

Identify 
NUMA 

domain 
where data is 

stored

Select thread 
pinned to 

NUMA 
domain

Save  
{reference, 
location} in 

map

Push task into 
other threads 

queue
end

Yes

No

Yes

No

A map is introduced to 
store location information 
of data that was previously 
used

Jannis Klinkenberg, Philipp Samfass, 
Christian Terboven, Alejandro Duran, 
Michael Klemm, Xavier Teruel, Sergi 
Mateo, Stephen L. Olivier, and 
Matthias S. Müller. Assessing Task-
to-Data Affinity in the LLVM 
OpenMP Runtime. Proceedings of the 
14th International Workshop on 
OpenMP, IWOMP 2018. September 
26-28, 2018, Barcelona, Spain. 



OpenMP Tutorial  
Members of the OpenMP Language Committee

64

Evaluation
Program runtime 
Median of 10 runs



OpenMP Tutorial  
Members of the OpenMP Language Committee

64

Evaluation
Program runtime 
Median of 10 runs

Speedu
p of 4.3 
X



OpenMP Tutorial  
Members of the OpenMP Language Committee

64

Evaluation
Program runtime 
Median of 10 runs

LIKWID: reduction of remote data volume from 69% to 13%

Speedu
p of 4.3 
X



OpenMP Tutorial  
Members of the OpenMP Language Committee

64

Evaluation
Program runtime 
Median of 10 runs

Distribution of single  
task execution times

LIKWID: reduction of remote data volume from 69% to 13%

Speedu
p of 4.3 
X



OpenMP Tutorial  
Members of the OpenMP Language Committee

65

■ Requirement for this feature: thread affinity enabled 

■ The affinity clause helps, if 
!tasks access data heavily 

!single task creator scenario, or task not created with data affinity 

!high load imbalance among the tasks 

■ Different from thread binding: task stealing is absolutely allowed

Summary



OpenMP Tutorial  
Members of the OpenMP Language Committee

66

Programming OpenMP

Christian Terboven 
Michael Klemm

SIMD



OpenMP Tutorial  
Members of the OpenMP Language Committee

67

■ Exploiting SIMD parallelism with OpenMP 
■ Using SIMD directives with loops 
■ Creating SIMD functions

Topics



OpenMP Tutorial  
Members of the OpenMP Language Committee

68

■ Width of SIMD registers has been growing in the past:

SIMD on x86 Architectures

SSE

AVX

AVX-512

128 bit

256 bit

512 bit

2 x DP

4 x SP

4 x DP

8 x SP

8 x DP

16 x SP



OpenMP Tutorial  
Members of the OpenMP Language Committee

69

■ SIMD instructions become more powerful

More Powerful SIMD Units

vadd dest, source1, source2 

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 a6+b6 a5+b5 a4+b4 a3+b3 a2+b2 a1+b1 a0+b0

+

=

source1

source2

dest

512 bit



OpenMP Tutorial  
Members of the OpenMP Language Committee

70

■ SIMD instructions become more powerful

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

b7 b6 b5 b4 b3 b2 b1 b0

a7*b7 
+c7

a6*b6 
+c6

a5*b5 
+c5

a4 *b4 
+c4

a3*b3 
+c3

a2*b2 
+c2

a1*b1 
+c1

a0*b0 
+c0

*

=

source1

source2

dest

c7 c6 c5 c4 c3 c2 c1 c0 source3
+

vfma source1, source2, source3



OpenMP Tutorial  
Members of the OpenMP Language Committee

71

■ SIMD instructions become more powerful

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0
512 bit

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 d6 a5+b5 d4 d3 a2+b2 d1 a0+b0

+

=

source1

source2

dest

1 0 1 0 0 1 0 1 mask

vadd dest{k1}, source2, source3



OpenMP Tutorial  
Members of the OpenMP Language Committee

72

■ SIMD instructions become more powerful

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0
512 bit

source

a7 a4 a6 a5 a3 a0 a2 a1 “tmp”

a7 a4 a6 a5 a3 a0 a2 a1 dest

swizzle

move

vload dest, source{dacb}



OpenMP Tutorial  
Members of the OpenMP Language Committee

73

■ Compilers offer auto-vectorization as an optimization pass
!Usually, part of the general loop optimization passes

Auto-vectorization



OpenMP Tutorial  
Members of the OpenMP Language Committee

73

■ Compilers offer auto-vectorization as an optimization pass
!Usually, part of the general loop optimization passes

!Code analysis detects code properties that inhibit SIMD vectorization

Auto-vectorization



OpenMP Tutorial  
Members of the OpenMP Language Committee

73

■ Compilers offer auto-vectorization as an optimization pass
!Usually, part of the general loop optimization passes

!Code analysis detects code properties that inhibit SIMD vectorization

!Heuristics determine if SIMD execution might be beneficial

Auto-vectorization



OpenMP Tutorial  
Members of the OpenMP Language Committee

73

■ Compilers offer auto-vectorization as an optimization pass
!Usually, part of the general loop optimization passes

!Code analysis detects code properties that inhibit SIMD vectorization

!Heuristics determine if SIMD execution might be beneficial

!If all goes well, the compiler will generate SIMD instructions

Auto-vectorization



OpenMP Tutorial  
Members of the OpenMP Language Committee

73

■ Compilers offer auto-vectorization as an optimization pass
!Usually, part of the general loop optimization passes

!Code analysis detects code properties that inhibit SIMD vectorization

!Heuristics determine if SIMD execution might be beneficial

!If all goes well, the compiler will generate SIMD instructions

■ Example: clang/LLVM GCC Intel Compiler
!-fvectorize -ftree-vectorize -vec (enabled w/ -O2)

!-Rpass=loop-.\* -ftree-loop-vectorize -qopt-report=vec

!-mprefer-vector-width=<width> -fopt-info-vec-all

Auto-vectorization



OpenMP Tutorial  
Members of the OpenMP Language Committee

73

■ Compilers offer auto-vectorization as an optimization pass
!Usually, part of the general loop optimization passes

!Code analysis detects code properties that inhibit SIMD vectorization

!Heuristics determine if SIMD execution might be beneficial

!If all goes well, the compiler will generate SIMD instructions

■ Example: clang/LLVM GCC Intel Compiler
!-fvectorize -ftree-vectorize -vec (enabled w/ -O2)

!-Rpass=loop-.\* -ftree-loop-vectorize -qopt-report=vec

!-mprefer-vector-width=<width> -fopt-info-vec-all

Auto-vectorization

?



OpenMP Tutorial  
Members of the OpenMP Language Committee

74

■ Data dependencies  
■ Other potential reasons 

!Alignment  
!Function calls in loop block 
!Complex control flow / conditional branches  
!Loop not “countable”  

!e.g., upper bound not a runtime constant  
!Mixed data types 
!Non-unit stride between elements  
!Loop body too complex (register pressure) 
!Vectorization seems inefficient 

■ Many more … but less likely to occur 

Why Auto-vectorizers Fail



OpenMP Tutorial  
Members of the OpenMP Language Committee

75

■ Suppose two statements S1 and S2 
■ S2 depends on S1, iff S1 must execute before S2 

!Control-flow dependence 

!Data dependence 

!Dependencies can be carried over between loop iterations 

■ Important flavors of data dependencies 
FLOW ANTI     

s1: a = 40  b = 40 

  

 b = 21 s1: a = b + 1      

s2: c = a + 2  s2: b = 21

Data Dependencies 



OpenMP Tutorial  
Members of the OpenMP Language Committee

76

■ Dependencies may occur across loop iterations 
!Loop-carried dependency 

■ The following code contains such a dependency: 

■ Some iterations of the loop have to  
complete before the next iteration can run 
!Simple trick: Can you reverse the loop w/o getting wrong results?

Loop-Carried Dependencies

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) 
{ 
    size_t i; 
    for (i = 0; i < n; i++) { 
        a[i] = c1 * a[i + 17] + c2 * b[i]; 
    } 
}



OpenMP Tutorial  
Members of the OpenMP Language Committee

76

■ Dependencies may occur across loop iterations 
!Loop-carried dependency 

■ The following code contains such a dependency: 

■ Some iterations of the loop have to  
complete before the next iteration can run 
!Simple trick: Can you reverse the loop w/o getting wrong results?

Loop-Carried Dependencies

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) 
{ 
    size_t i; 
    for (i = 0; i < n; i++) { 
        a[i] = c1 * a[i + 17] + c2 * b[i]; 
    } 
}

Loop-carried dependency for a[i] and 
a[i+17]; distance is 17.



OpenMP Tutorial  
Members of the OpenMP Language Committee

77

■ Can we parallelize or vectorize the loop?

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) { 
    for (int i = 0; i < n; i++) { 
        a[i] = c1 * a[i + 17] + c2 * b[i]; 
}   }



OpenMP Tutorial  
Members of the OpenMP Language Committee

77

■ Can we parallelize or vectorize the loop?

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) { 
    for (int i = 0; i < n; i++) { 
        a[i] = c1 * a[i + 17] + c2 * b[i]; 
}   }



OpenMP Tutorial  
Members of the OpenMP Language Committee

77

■ Can we parallelize or vectorize the loop?

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) { 
    for (int i = 0; i < n; i++) { 
        a[i] = c1 * a[i + 17] + c2 * b[i]; 
}   }



OpenMP Tutorial  
Members of the OpenMP Language Committee

77

■ Can we parallelize or vectorize the loop?

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) { 
    for (int i = 0; i < n; i++) { 
        a[i] = c1 * a[i + 17] + c2 * b[i]; 
}   }

Thread 1 Thread 2



OpenMP Tutorial  
Members of the OpenMP Language Committee

77

■ Can we parallelize or vectorize the loop?

!Parallelization: no 

(except for very specific loop schedules) 

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) { 
    for (int i = 0; i < n; i++) { 
        a[i] = c1 * a[i + 17] + c2 * b[i]; 
}   }

Thread 1 Thread 2



OpenMP Tutorial  
Members of the OpenMP Language Committee

77

■ Can we parallelize or vectorize the loop?

!Parallelization: no 

(except for very specific loop schedules) 

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) { 
    for (int i = 0; i < n; i++) { 
        a[i] = c1 * a[i + 17] + c2 * b[i]; 
}   }



OpenMP Tutorial  
Members of the OpenMP Language Committee

77

■ Can we parallelize or vectorize the loop?

!Parallelization: no 

(except for very specific loop schedules) 

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) { 
    for (int i = 0; i < n; i++) { 
        a[i] = c1 * a[i + 17] + c2 * b[i]; 
}   }



OpenMP Tutorial  
Members of the OpenMP Language Committee

77

■ Can we parallelize or vectorize the loop?

!Parallelization: no 

(except for very specific loop schedules) 

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) { 
    for (int i = 0; i < n; i++) { 
        a[i] = c1 * a[i + 17] + c2 * b[i]; 
}   }



OpenMP Tutorial  
Members of the OpenMP Language Committee

77

■ Can we parallelize or vectorize the loop?

!Parallelization: no 

(except for very specific loop schedules) 

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) { 
    for (int i = 0; i < n; i++) { 
        a[i] = c1 * a[i + 17] + c2 * b[i]; 
}   }



OpenMP Tutorial  
Members of the OpenMP Language Committee

77

■ Can we parallelize or vectorize the loop?

!Parallelization: no 

(except for very specific loop schedules) 

!Vectorization: yes 

(iff vector length is shorter than any distance of any dependency)

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) { 
    for (int i = 0; i < n; i++) { 
        a[i] = c1 * a[i + 17] + c2 * b[i]; 
}   }



OpenMP Tutorial  
Members of the OpenMP Language Committee

78

■ Support required vendor-specific extensions 
!Programming models (e.g., Intel® Cilk Plus) 

!Compiler pragmas (e.g., #pragma vector) 

!Low-level constructs (e.g., _mm_add_pd()) 

#pragma omp parallel for 

#pragma vector always 

#pragma ivdep 

for (int i = 0; i < N; i++) { 

    a[i] = b[i] + ...; 

}

In a Time Before OpenMP 4.0



OpenMP Tutorial  
Members of the OpenMP Language Committee

78

■ Support required vendor-specific extensions 
!Programming models (e.g., Intel® Cilk Plus) 

!Compiler pragmas (e.g., #pragma vector) 

!Low-level constructs (e.g., _mm_add_pd()) 

#pragma omp parallel for 

#pragma vector always 

#pragma ivdep 

for (int i = 0; i < N; i++) { 

    a[i] = b[i] + ...; 

}

In a Time Before OpenMP 4.0

You need to trust 
your compiler to 

do the “right” 
thing.



OpenMP Tutorial  
Members of the OpenMP Language Committee

79

■ Vectorize a loop nest 
!Cut loop into chunks that fit a SIMD vector register 

!No parallelization of the loop body 

■ Syntax (C/C++) 
#pragma omp simd [clause[[,] clause],…]  
for-loops 

■ Syntax (Fortran) 
!$omp simd [clause[[,] clause],…]  
do-loops 
[!$omp end simd] 

SIMD Loop Construct



OpenMP Tutorial  
Members of the OpenMP Language Committee

80

Example



OpenMP Tutorial  
Members of the OpenMP Language Committee

80

Example
float sprod(float *a, float *b, int n) { 
  float sum = 0.0f; 
#pragma omp simd reduction(+:sum)     
  for (int k=0; k<n; k++)    
    sum += a[k] * b[k]; 
  return sum; 
}

vectorize



OpenMP Tutorial  
Members of the OpenMP Language Committee

81

Data Sharing Clauses



OpenMP Tutorial  
Members of the OpenMP Language Committee

81

■ private(var-list): 
Uninitialized vectors for variables in var-list

Data Sharing Clauses

4
2x: ? ? ? ?



OpenMP Tutorial  
Members of the OpenMP Language Committee

81

■ private(var-list): 
Uninitialized vectors for variables in var-list

■ firstprivate(var-list): 
Initialized vectors for variables in var-list

Data Sharing Clauses

4
2x: ? ? ? ?

4
2x: 4

2
4
2

4
2

4
2



OpenMP Tutorial  
Members of the OpenMP Language Committee

81

■ private(var-list): 
Uninitialized vectors for variables in var-list

■ firstprivate(var-list): 
Initialized vectors for variables in var-list

■ reduction(op:var-list): 
Create private variables for var-list and apply reduction operator op at the end of the construct

Data Sharing Clauses

4
2x: ? ? ? ?

4
2x: 4

2
4
2

4
2

4
2

4
2x:1

2 5 8 1
7



OpenMP Tutorial  
Members of the OpenMP Language Committee

82

■ safelen (length)
!Maximum number of iterations that can run concurrently without breaking a dependence

!In practice, maximum vector length

SIMD Loop Clauses



OpenMP Tutorial  
Members of the OpenMP Language Committee

82

■ safelen (length)
!Maximum number of iterations that can run concurrently without breaking a dependence

!In practice, maximum vector length

■ linear (list[:linear-step])
!The variable’s value is in relationship with the iteration number

!xi = xorig + i * linear-step

SIMD Loop Clauses



OpenMP Tutorial  
Members of the OpenMP Language Committee

82

■ safelen (length)
!Maximum number of iterations that can run concurrently without breaking a dependence

!In practice, maximum vector length

■ linear (list[:linear-step])
!The variable’s value is in relationship with the iteration number

!xi = xorig + i * linear-step

■ aligned (list[:alignment])
!Specifies that the list items have a given alignment

!Default is alignment for the architecture 

SIMD Loop Clauses



OpenMP Tutorial  
Members of the OpenMP Language Committee

82

■ safelen (length)
!Maximum number of iterations that can run concurrently without breaking a dependence

!In practice, maximum vector length

■ linear (list[:linear-step])
!The variable’s value is in relationship with the iteration number

!xi = xorig + i * linear-step

■ aligned (list[:alignment])
!Specifies that the list items have a given alignment

!Default is alignment for the architecture 

■ collapse (n)

SIMD Loop Clauses



OpenMP Tutorial  
Members of the OpenMP Language Committee

83

■ Parallelize and vectorize a loop nest 
!Distribute a loop’s iteration space across a thread team 

!Subdivide loop chunks to fit a SIMD vector register 

■ Syntax (C/C++) 
#pragma omp for simd [clause[[,] clause],…]  
for-loops 

■ Syntax (Fortran) 
!$omp do simd [clause[[,] clause],…]  
do-loops 
[!$omp end do simd [nowait]] 

SIMD Worksharing Construct



OpenMP Tutorial  
Members of the OpenMP Language Committee

84

Example



OpenMP Tutorial  
Members of the OpenMP Language Committee

84

Example
float sprod(float *a, float *b, int n) { 
  float sum = 0.0f; 
#pragma omp for simd reduction(+:sum)     
  for (int k=0; k<n; k++)    
    sum += a[k] * b[k]; 
  return sum; 
}

parallelize
Thread 0 Thread 1 Thread 2



OpenMP Tutorial  
Members of the OpenMP Language Committee

84

Example
float sprod(float *a, float *b, int n) { 
  float sum = 0.0f; 
#pragma omp for simd reduction(+:sum)     
  for (int k=0; k<n; k++)    
    sum += a[k] * b[k]; 
  return sum; 
}

parallelize

vectorize

Thread 0 Thread 1 Thread 2



OpenMP Tutorial  
Members of the OpenMP Language Committee

84

Example
float sprod(float *a, float *b, int n) { 
  float sum = 0.0f; 
#pragma omp for simd reduction(+:sum)     
  for (int k=0; k<n; k++)    
    sum += a[k] * b[k]; 
  return sum; 
}

parallelize

vectorize

Thread 0 Thread 1 Thread 2

Remainder 
Loop Peel Loop



OpenMP Tutorial  
Members of the OpenMP Language Committee

85

■ You should choose chunk sizes that are multiples of the SIMD length
! Remainder loops are not triggered

! Likely better performance

Be Careful What You Wish For…



OpenMP Tutorial  
Members of the OpenMP Language Committee

85

■ You should choose chunk sizes that are multiples of the SIMD length
! Remainder loops are not triggered

! Likely better performance

Be Careful What You Wish For…
float sprod(float *a, float *b, int n) { 
  float sum = 0.0f; 
#pragma omp for simd reduction(+:sum) \ 
                     schedule(static, 5)     
  for (int k=0; k<n; k++)    
    sum += a[k] * b[k]; 
  return sum; 
}



OpenMP Tutorial  
Members of the OpenMP Language Committee

85

■ You should choose chunk sizes that are multiples of the SIMD length
! Remainder loops are not triggered

! Likely better performance

■ In the above example …
! and AVX2, the code will only execute the remainder loop!

! and SSE, the code will have one iteration in the SIMD loop plus one in the remainder loop!

Be Careful What You Wish For…
float sprod(float *a, float *b, int n) { 
  float sum = 0.0f; 
#pragma omp for simd reduction(+:sum) \ 
                     schedule(static, 5)     
  for (int k=0; k<n; k++)    
    sum += a[k] * b[k]; 
  return sum; 
}



OpenMP Tutorial  
Members of the OpenMP Language Committee

86

■ Chooses chunk sizes that are multiples of the SIMD length 
!First and last chunk may be slightly different to fix alignment and to handle loops that are 

not exact multiples of SIMD width 

!Remainder loops are not triggered 

!Likely better performance

OpenMP 4.5 Simplifies  SIMD Chunks



OpenMP Tutorial  
Members of the OpenMP Language Committee

86

■ Chooses chunk sizes that are multiples of the SIMD length 
!First and last chunk may be slightly different to fix alignment and to handle loops that are 

not exact multiples of SIMD width 

!Remainder loops are not triggered 

!Likely better performance

OpenMP 4.5 Simplifies  SIMD Chunks

float sprod(float *a, float *b, int n) { 
  float sum = 0.0f; 
#pragma omp for simd reduction(+:sum) \ 
                     schedule(simd: static, 5)     
  for (int k=0; k<n; k++)    
    sum += a[k] * b[k]; 
  return sum; 
}



OpenMP Tutorial  
Members of the OpenMP Language Committee

87

SIMD Function Vectorization



OpenMP Tutorial  
Members of the OpenMP Language Committee

87

SIMD Function Vectorization

float min(float a, float b) {  
    return a < b ? a : b; 
} 

float distsq(float x, float y) {  
    return (x - y) * (x - y); 
} 
void example() { 
#pragma omp parallel for simd  
    for (i=0; i<N; i++) {   
        d[i] = min(distsq(a[i], b[i]), c[i]);  
}   }



OpenMP Tutorial  
Members of the OpenMP Language Committee

88

■ Declare one or more functions to be compiled for calls from a SIMD-parallel 
loop 

■ Syntax (C/C++): 
#pragma omp declare simd [clause[[,] clause],…]  

[#pragma omp declare simd [clause[[,] clause],…]] 

[…] 

function-definition-or-declaration 

■ Syntax (Fortran): 
!$omp declare simd (proc-name-list)

SIMD Function Vectorization



OpenMP Tutorial  
Members of the OpenMP Language Committee

89

SIMD Function Vectorization



OpenMP Tutorial  
Members of the OpenMP Language Committee

89

#pragma omp declare simd 
float min(float a, float b) {  
    return a < b ? a : b; 
} 
#pragma omp declare simd 
float distsq(float x, float y) {  
    return (x - y) * (x - y); 
} 
void example() { 
#pragma omp parallel for simd  
    for (i=0; i<N; i++) {   
        d[i] = min(distsq(a[i], b[i]), c[i]);  
}   }

SIMD Function Vectorization



OpenMP Tutorial  
Members of the OpenMP Language Committee

89

#pragma omp declare simd 
float min(float a, float b) {  
    return a < b ? a : b; 
} 
#pragma omp declare simd 
float distsq(float x, float y) {  
    return (x - y) * (x - y); 
} 
void example() { 
#pragma omp parallel for simd  
    for (i=0; i<N; i++) {   
        d[i] = min(distsq(a[i], b[i]), c[i]);  
}   }

SIMD Function Vectorization

_ZGVZN16vv_min(%zmm0, %zmm1): 
    vminps %zmm1, %zmm0, %zmm0 
    ret

_ZGVZN16vv_distsq(%zmm0, %zmm1): 
    vsubps %zmm0, %zmm1, %zmm2 
    vmulps %zmm2, %zmm2, %zmm0 
    ret

vmovups (%r14,%r12,4), %zmm0 
vmovups (%r13,%r12,4), %zmm1 
call _ZGVZN16vv_distsq 
vmovups (%rbx,%r12,4), %zmm1 
call _ZGVZN16vv_min



OpenMP Tutorial  
Members of the OpenMP Language Committee

90

■ simdlen (length)
! generate function to support a given vector length

SIMD Function Vectorization



OpenMP Tutorial  
Members of the OpenMP Language Committee

90

■ simdlen (length)
! generate function to support a given vector length

■ uniform (argument-list)
! argument has a constant value between the iterations of a given loop

SIMD Function Vectorization



OpenMP Tutorial  
Members of the OpenMP Language Committee

90

■ simdlen (length)
! generate function to support a given vector length

■ uniform (argument-list)
! argument has a constant value between the iterations of a given loop

■ inbranch
! function always called from inside an if statement

■ notinbranch
! function never called from inside an if statement

SIMD Function Vectorization



OpenMP Tutorial  
Members of the OpenMP Language Committee

90

■ simdlen (length)
! generate function to support a given vector length

■ uniform (argument-list)
! argument has a constant value between the iterations of a given loop

■ inbranch
! function always called from inside an if statement

■ notinbranch
! function never called from inside an if statement

■ linear (argument-list[:linear-step])

■ aligned (argument-list[:alignment])

SIMD Function Vectorization



OpenMP Tutorial  
Members of the OpenMP Language Committee

91

inbranch & notinbranch
#pragma omp declare simd inbranch 
float do_stuff(float x) { 
    /* do something */ 
    return x * 2.0; 
} 
void example() { 
#pragma omp simd 
    for (int i = 0; i < N; i++) 
        if (a[i] < 0.0) 
            b[i] = do_stuff(a[i]); 
}



OpenMP Tutorial  
Members of the OpenMP Language Committee

91

inbranch & notinbranch
#pragma omp declare simd inbranch 
float do_stuff(float x) { 
    /* do something */ 
    return x * 2.0; 
} 
void example() { 
#pragma omp simd 
    for (int i = 0; i < N; i++) 
        if (a[i] < 0.0) 
            b[i] = do_stuff(a[i]); 
}

vec8 do_stuff_v(vec8 x, mask m) { 
    /* do something */ 
    vmulpd x{m}, 2.0, tmp 
    return tmp; 
}



OpenMP Tutorial  
Members of the OpenMP Language Committee

91

inbranch & notinbranch
#pragma omp declare simd inbranch 
float do_stuff(float x) { 
    /* do something */ 
    return x * 2.0; 
} 
void example() { 
#pragma omp simd 
    for (int i = 0; i < N; i++) 
        if (a[i] < 0.0) 
            b[i] = do_stuff(a[i]); 
}

vec8 do_stuff_v(vec8 x, mask m) { 
    /* do something */ 
    vmulpd x{m}, 2.0, tmp 
    return tmp; 
}

for (int i = 0; i < N; i+=8) { 
    vcmp_lt &a[i], 0.0, mask 
    b[i] = do_stuff_v(&a[i], mask); 
}



OpenMP Tutorial  
Members of the OpenMP Language Committee

92

M.Klemm, A.Duran, X.Tian, H.Saito, D.Caballero, and X.Martorell. Extending OpenMP with Vector Constructs for Modern 
Multicore SIMD Architectures. In Proc. of the Intl. Workshop on OpenMP, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

SIMD Constructs & Performance

re
la

tiv
e 

sp
ee

d-
up

 
(h

ig
he

r i
s 

be
tte

r)

0.00x

1.25x

2.50x

3.75x

5.00x

Mandelbrot Volume Rendering BlackScholes Fast Walsh Perlin Noise SGpp

2.3981

1.4714

4.3417

2.13472.0357

3.6574

ICC auto-vec
ICC SIMD directive



OpenMP Tutorial  
Members of the OpenMP Language Committee

93

Programming OpenMP

Christian Terboven 
Michael Klemm 
Yun (Helen) He

Hands-on Exercises



OpenMP Tutorial  
Members of the OpenMP Language Committee

94

■ We have implemented a series of small hands-on examples that you can use and play with. 
! Download: git clone https://github.com/NERSC/openmp-series-2024 
! Subfolder: Session-3-NUMA_SIMD/exercises, with instructions in 

Exercises_OMP_2024.pdf 
! Build: make     (or follow README files) 
! You can then find the compiled executable to run with sample Slurm commands 
! We use the GCC compiler mostly 

■ Each hands-on exercise has a folder “solution” 
! It shows the OpenMP directive that we have added 
! You can use it to cheat ☺, or to check if you came up with the same solution

Exercises



OpenMP Tutorial  
Members of the OpenMP Language Committee

95

Exercises: Overview

Exercise no. Exercise name OpenMP Topic Day / Order (proposal)
1 PI Apply OpenMP SIMD Third day
2 xthi Review for NUMA Third day
3 Stream Optimize / review for NUMA Third day
4 Jacobi Optimize / review for NUMA Third day


