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Agenda (in total 7 Sessions)

Session 1: OpenMP Introduction
- Welcome
- OpenMP Overview
—> Parallel Region
- Worksharing
- Scoping
—> Tasking (short introduction)
- Executing OpenMP programs
- Homework assignments ©
- Compile and run on Perlmutter CPUs

Session 2: Tasking

Session 3: Optimization for NUMA and SIMD

Session 4: What Could Possibly Go Wrong Using OpenMP
Session 5: Introduction to Offloading with OpenMP
Session 6: Advanced OpenMP Offloading Topics

Session 7: Selected / Remaining Topics
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OpenMP

History

o De-facto standard for Shared-Memory Parallelization.

e 1997: OpenMP 1.0 for FORTRAN Open M P

o 1998: OpenMP 1.0 for C and C++
e 1999: OpenMP 1.1 for FORTRAN

http://www.OpenMP.org
« 2000: OpenMP 2.0 for FORTRAN
o« 2002: OpenMP 2.0 for Cand C++
e 2005: OpenMP 2.5 now includes _ _
both programming languages. RWTH Aachen University
is @ member of the

 05/2008: OpenMP 3.0 OpenMP Architecture
« 07/2011: OpenMP 3.1 Review Board (ARB)

_ since 2006.
. 07/2013: OpenMP 4.0 Vel e
« 11/2015: OpenMP 4.5 = Affinity
. 11/2018: OpenMP 5.0 - lesldig

= Tool support

« 11/2020: OpenMP 5.1 = Accelerator support

« 11/2021: OpenMP 5.2
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OpenMP

What is OpenMP?

Parallel Region & Worksharing

e Tasking

« SIMD / Vectorization

o Accelerator Programming

« Memory Management
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OpenMP

Get your C/C++ and Fortran Reference Guide!
Covers all of OpenMP 5.2!
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OpenMP

Recent Books About OpenMP

OpenMP

Application Programming Interface
Specification Version 5.2

THE OPENMP
COMMON CORE

Making OpenMP Simple Again

USING OPENMP-
THE NEXT STEP- =

Affinity, Accelerators, Tasking, and SIMD
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Ruud van der Pas, Eric Stotzer,

and Christian Terboven Timothy G. Mattson, Yun (Helen) He,

and Alice E. Koniges

OpenMP Architecture Review Board | openmp.org

A printed copy of the 5.2 A book that covers all of the A book about the OpenMP
specifications, 2021 OpenMP 4.5 features, 2017 Common Core, 2019
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OpenMP

OpenMP‘s machine model

e« OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

Parallelization in OpenMP
employs multiple threads.

n OpenMP Tutorial
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The OpenMP Memory Model

« All threads have access to private
the same, globally shared memory private
memory

« Datain private memory is
only accessible by the thread
owning this memory memory

accelerator

« No other thread sees the private

change(s) in private memory private memory
memory

« Data transfer is through shared
memory and is 100% transparent

to the application private
memory

OpenMP Tutorial
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OpenMP

The OpenMP Execution Model

« OpenMP programs start with

e Serial Part
just one thread: The Initial Thread. [l laese
o Worker threads are spawned I;aerailgil
at Parallel Regions, together Worker 8
with the initial thread they form the Threads g
Team of threads. E E E
E E ESeriaI Part
« In between Parallel Regions the nn
Worker threads are put to sleep. mm
The OpenMP Runtime takes care Vv.
of all thread management work. . Parallel
= Region
« Concept: Fork-Join. -
\

« Allows for an incremental parallelization!

OpenMP Tutorial
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OpenMP

Parallel Region and Structured Blocks

« The parallelism has to be expressed explicitly.

C/C++ Fortran

fpragma omp parallel 'Somp parallel
{

... structured block
structured block

!Somp end parallel

e Structured Block Specification of number of threads:

— Exactly one entry point at the top — Environment variable: OMP NUM THREADS=...

— Exactly one exit point at the bottom _ Or:Vianum threads clause:

— Branching in or out is not allowed add num threads (num) to the

— Terminating the program is allowed parallel construct
(abort / exit)

OpenMP Tutorial
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OpenMP

Production Compilers w/ OpenMP Support

= GCC

= clang/LLVM

= HPE CPE

= AOCC, AOMP, ROCmCC

= |ntel Classic and Next-gen Compilers
= |IBM XL

= ... and many more

= See for a list

OpenMP Tutorial
Members of the OpenMP Language Committee


https://www.openmp.org/resources/openmp-compilers-tools/

Compiling OpenMP OpenMP

= Enable OpenMP via the compiler’'s command-line switches
- GCC: -fopenmp
- clang: -fopenmp
- HPE/Cray CPE: -homp or -fopenmp
- AOCC, AOCL, ROCmCC: -fopenmp
- Intel: -fopenmp or —gopenmp (classic) or —fiopenmp (next-gen)
- IBM XL: -gsmp=omp

= Switches have to be passed to both compiler and linker:

$ gcc [...] -fopenmp -0 matmul.o -c matmul.c
$ gcc [...] —-fopenmp -o matmul matmul.o

S./matmul 1024
Sum of matrix (serial): 134217728.000000, wall time 0.413975, speed-up 1.00
Sum of matrix (parallel): 134217728.000000, wall time 0.092162, speed-up 4.49

OpenMP Tutorial
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OpenMP

Starting OpenMP Programs on Linux

« From within a shell, global setting of the number of threads:
export OMP NUM THREADS=4

./program

e From within a shell, one-time setting of the number of threads:
OMP NUM THREADS=4 ./program

OpenMP Tutorial
Members of the OpenMP Language Committee
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OpenMP

For Worksharing

« If only the parallel construct is used, each thread executes the Structured Block.
e Program Speedup: Worksharing

e OpenMP‘s most common Worksharing construct: for

C/C++ Fortran

int 1i; INTEGER :: 1

fpragma omp for !'Somp do

for (i = 0; i < 100; i++) DO 1 = 0, 99

{ afi] = b[i] + cl1i]
ali] = b[i] + c[i]l; END DO

}

— Distribution of loop iterations over all threads in a Team.
— Scheduling of the distribution can be influenced.

Loops often account for most of a program’s runtime!

OpenMP Tutorial
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Worksharing illustrated

Pseudo-Code
Here: 4 Threads

Thread 1 |[doi=0, 24
a(i) = b(i) + c(i)
end do

Thread 2 |do i = 25, 49

erial a(i) = b(i) + (i)
doi=0,99 ond do

ali) =b(i) +c(i)| - —
end do d0|=50, 74

a(i) = b(i) + c(i)
Thread 3 |end do

doi=75, 99
a(i) = b(i) + c(i)
Thread 4 |end do

OpenMP Tutorial
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OpenMP

The Barrier Construct

e OpenMP barrier (implicit or explicit)

— Threads wait until all threads of the current Team have reached the barrier
C/C++

fpragma omp barrier

« All worksharing constructs contain an implicit barrier at the end

OpenMP Tutorial
Members of the OpenMP Language Committee



The Single Construct

C/C++

fpragma omp single [clause]
structured block

Fortran

!'Somp single [clause]
structured block
!'Somp end single

OpenMP

The single construct specifies that the enclosed structured block is executed by only on thread of the

team.

— Itis up to the runtime which thread that is.

Useful for:
— 1/0

— Memory allocation and deallocation, etc. (in general: setup work)

— Implementation of the single-creator parallel-executor pattern as we will see later...

OpenMP Tutorial
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OpenMP

The Master Construct (will be deprecated in OpenMP 6.0)

C/C++ Fortran
#fpragma omp master[clause] !'Somp master[clause]
structured block ... ... Structured block
!'Somp end master

« Replacement: see the masked construct later

« Note: The masked construct is no worksharing construct and does not contain an implicit barrier at the end.

OpenMP Tutorial
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Demo C_)penMP
Vector Addition
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OpenMP

Influencing the For Loop Scheduling / 1

e for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

— schedule(static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to
threads in a round-robin fashion. If chunk is not specified: #threads blocks.

— schedule (dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size,
blocks are scheduled to threads in the order in which threads finish previous blocks.

— schedule (guided [, chunk]):Similarto dynamic, but block size starts with implementation-defined
value, then is decreased exponentially down to chunk.

e Defaultis schedule (static).

OpenMP Tutorial
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Influencing the For Loop Scheduling / 2

Static Schedule
— schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin

fashion

OpenMP Tutorial
Members of the OpenMP Language Committee
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Influencing the For Loop Scheduling / 2

Static Schedule
— schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin

fashion

Pros?
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Influencing the For Loop Scheduling / 2

Static Schedule
— schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin
fashion

Pros?
- No/low runtime overhead
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Influencing the For Loop Scheduling / 2

Static Schedule
— schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin

fashion

Pros?
- No/low runtime overhead

Cons?
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Influencing the For Loop Scheduling / 2

Static Schedule
— schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin
fashion

Pros?
- No/low runtime overhead

Cons?
- No dynamic workload balancing

OpenMP Tutorial
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OpenMP

Influencing the For Loop Scheduling / 3

« Dynamic schedule

— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size

— Threads request a new block after finishing the previous one

— Default chunk size is 1

OpenMP Tutorial
Members of the OpenMP Language Committee



OpenMP

Influencing the For Loop Scheduling / 3

« Dynamic schedule

— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size

— Threads request a new block after finishing the previous one

— Default chunk size is 1

e Pros?
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OpenMP

Influencing the For Loop Scheduling / 3

« Dynamic schedule

— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size

— Threads request a new block after finishing the previous one
— Default chunk size is 1

e Pros?
— Workload distribution

OpenMP Tutorial
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OpenMP

Influencing the For Loop Scheduling / 3

« Dynamic schedule

— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size

— Threads request a new block after finishing the previous one
— Default chunk size is 1

e Pros?
— Workload distribution

« Cons?
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OpenMP

Influencing the For Loop Scheduling / 3

« Dynamic schedule

— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size

— Threads request a new block after finishing the previous one
— Default chunk size is 1
e Pros?
— Workload distribution
« Cons?
— Runtime Overhead
— Chunk size essential for performance

— No NUMA optimizations possible

OpenMP Tutorial
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Synchronization Overview

e Can all loops be parallelized with £ or-constructs? No!

OpenMP

— Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent. BUT:
This test alone is not sufficient:

C/C++

for (i = 0;

{

int i, int s

fpragma omp parallel for

i < 100; i++)

s = s + al[il;

}

Data Race: If between two synchronization points at least one thread writes to a memory location from

which at least one other thread reads, the result is not deterministic (race condition).

OpenMP Tutorial
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OpenMP
Synchronization: Critical Region

A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

C/C++

#fpragma omp critical (name)
{
structured block ...

}

e Do you think this solution scales well?

C/C++

int 1, s = 0;

fpragma omp parallel for
for (1 = 0; i < 100; i++)
{

fpragma omp critical
{ s =8 + alil; }

}

OpenMP Tutorial
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OpenMIP

Programming OpenMP

Scoping

Christian Terboven RWTH
Michael Klemm OpenMI?
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OpenMIP

Scoping Rules

« Managing the Data Environment is the challenge of OpenMP.

e Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs
— General default is shared for Parallel Region, firstprivate for Tasks.
— Loop control variables on for-constructs are private
— Non-static variables local to Parallel Regions are private

— private: A new uninitialized instance is created for the task or each thread executing the construct
e firstprivate: Initialization with the value before encountering the construct
 lastprivate: Value of last loop iteration is written back to the initial thread

— Static variables are shared

OpenMP Tutorial
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OpenMIP

Scoping Rules

« Managing the Data Environment is the challenge of OpenMP.

e Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs

— General default is shared for Parallel Region, firstprivate for Tasks.

— Loop control variables on for-constructs are private [ J

— Non-static variables local to Parallel Regions are private

— private: A new uninitialized instance is created for the task or each thread executing the construct
e firstprivate: Initialization with the value before encountering the construct
 lastprivate: Value of last loop iteration is written back to the initial thread

— Static variables are shared
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OpenMIP

Privatization of Global/Static Variables

« Global / static variables can be privatized with the threadprivate directive

— Oneinstance is created for each thread
« Before the first parallel region is encountered
 Instance exists until the program ends
« Does not work (well) with nested Parallel Region

— Based on thread-local storage (TLS)
o TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword thread (GNU extension)

C/C++ Fortran
static int 1i; SAVE INTEGER :: 1
fpragma omp threadprivate (i) !'Somp threadprivate (i)

OpenMP Tutorial
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OpenMIP

Privatization of Global/Static Variables

« Global / static variables can be privatized with the threadprivate directive 6"@

— Oneinstance is created for each thread

« Before the first parallel region is encountered 6Q(\
 Instance exists until the program ends (60
« Does not work (well) with nested Parallel Region &‘x\

— Based on thread-local storage (TLS) 0 \,

o TIsAlloc (Win32-Threads), pthread_key_creat éPb)&Thre@&,ekeyword ___thread (GNU extension)

X \o
OV, ¥
C/C++ \‘e “Q Fortran

static int l(*‘o 066 SAVE INTEGER :: 1

fpragma !'Somp threadprivate (i)

?@z\
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Back to our example
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C/C++

int i, s = 0;

#fpragma omp parallel for
for (1 = 0; i < 100; i++)
{

#fpragma omp critical
{ s =s + alil; }

}

OpenMIP




It‘s your turn: Make It Scale! OpenMP

#pragma omp parallel

{ doi=0, 24
s=s+ afi)
end do
#pragma omp for
for (1 = 0; 1 < 99; i++) do i = 25, 49
{ s=s+ afi)
doi=0,99 end do
_ s=s+a(i) | ==p
s =s +alil; ond do doi=50,74
s=s+a(i)
} end do
doi=75,99
} // end parallel s=s+ali)
end do

OpenMP Tutorial
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(done)

#pragma omp parallel

{

double ps = 0.0;

#pragma omp for
for (1 = 0; 1 < 99;
{
ps = ps + al[i]
}

#pragma omp critical

{
s += ps;
}

} // end parallel

OpenMP Tutorial
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// private variable

i4++)

.
4

doi=0,99
s=s+ali)
end do

OpenMIP

doi=0, 24
s, =s, +afi)

end do

S=Ss+s,

doi= 25, 49
s, =, + afi)

end do

S=s+s,

doi=50,74
S3 = S5+ ali)

end do

S=Ss+s,

doi=75, 99
s, =5, + ali)

end do

S=s+s,




OpenMIP

The Reduction Clause

« In areduction-operation the operator is applied to all variables in the list. The variables have to be shared.

— reduction (operator:list)
— The result is provided in the associated reduction variable

C/C++
int i, s = 0;

fpragma omp parallel for reduction (+:s)

for(i = 0; 1 < 99; i++)

{
s = s + alil;

}
— Possible reduction operators with initialization value:

+ (0), * (1), - (0), & (~0), | (O0), && (1), |l (O0), ~ (0), min (largest
number), max (least number)

— Remark: OpenMP also supports user-defined reductions (not covered here)

OpenMP Tutorial
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Example
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Example: Pi (1/2) OpenMIP

double f(double x)
{ 1
return (4.0 / (1.0 + x*x)); o J 4
} 1 + x?
double CalcPi (int n) s
{
const double fH =1.0/ (double) n; 4 . ' ' 1
double fSum = 0.0; 35 / T s
double fX; of . L
int i; "n..
25 \\ 25
#pragma omp parallel for sl . b

for (i=0; i < n; i++) = \15
{ | |

fX =fH * ((double)i + 0.5); 1 ol

fSum += f(fX); 05} 105
} 0 0
return fH * fSum; 05 0 05 1 15

}

OpenMP Tutorial
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Example: Pi (2/2) OpenMIP

double f(double x)
{ 1
return (4.0 / (1.0 + x*x)); o J 4
} 1 + x?
double CalcPi (int n) s
{
const double fH =1.0/ (double) n; 4 . ' ' 1
double fSum = 0.0; 35 / T s
double fX; of . L
int i; "n..
25 \\ 25
#pragma omp parallel for private(fX,i) reduction(+:fSum) al It 1

for (i=0; i < n; i++) = \15
{ | |

fX =fH * ((double)i + 0.5); 1 ol

fSum += f(fX); 05} 105
} 0 0
return fH * fSum; 05 0 05 1 15

}
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OpenMP

Programming OpenMP

OpenMP Tasking Introduction

Christian Terboven RWTH
Michael Klemm OpenMI?
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OpenMP

Tasking Execution Model

" Supports unstructured parallelism = Example (unstructured parallelism)
- unbounded loops

#pragma omp parallel
#pragma omp masked

while ( <expr> ) { while (elem '= NULL) ({
s #pragma omp task
} compute (elem) ;
ZTTCCUTOTVEG TUTTCUUTTO elem = elem->next;

void myfunc( <args> )

{
.; myfunc( <newargs> ); ...;
} Parallel Team

-y
- s

= Several scenarios are possible: )
—> single creator, multiple creators, nested tasks (tasks & WS)

= All threads in the team are candidates to execute tasks

OpenMP Tutorial
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What is a Task in OpenMP? OpenMP

= Tasks are work units whose execution
- may be deferred or...

- ... can be executed immediately

= Tasks are composed of
—> code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

= Tasks are created...
... when reaching a parallel region - implicit tasks are created (per thread)

... when encountering a task construct - explicit task is created
... when encountering a taskloop construct - explicit tasks per chunk are created

... when encountering a target construct - target task is created

OpenMP Tutorial
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OpenMP Tasking Idiom

OpenMP

= OpenMP programmers need a specific idiom to kick off task-parallel execution: parallel

masked

- OpenMP version 5.0 introduced the parallel master construct

= With OpenMP version 5.1 this becomes parallel masked

1 int main(int argc, char* argv[])
2 A
3 [«..]
4 #pragma omp parallel
5 {
6 #pragma omp masked
7 {
9
start task parallel execution();
9 }
10 }
11. [+..]
12.}

1 int main(int argc, char* argv[])
2 A

3 [o..]

4 #pragma omp parallel

5 {

6 #pragma omp single

7 {

9

start task parallel execution();
9 }

10 }
11. [...]
12.}
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Fibonacci Numbers (in a Stupid Way ©) OpenMP

1 int main(int argc, 14 int fib(int n) {

2 char* argv[]) 15 if (n < 2) return n;

3 16 int x, y;

4 [«..] 17 #pragma omp task shared(x)
5 #pragma omp parallel 18 {

6 { 19 x = fib(n - 1);

7 #pragma omp masked 20 }

8 { 21 #pragma omp task shared(y)
9 fib(input); 22 {
10 } 23 y = fib(n - 2);
11 } 24 }
12 [...] 25 #pragma omp taskwait
13.} 26 return x+y;

27.}

= Only one thread enters £fib() frommain().
= That thread creates the two initial work tasks and starts the parallel recursion.
= The taskwait construct is required to wait for the result for x and y before the task can sum up.
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OpenMP

T1 enters fib(4)

Task Queue
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OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

Task Queue
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OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

T1 and T2 execute tasks
from the queue

Task Queue
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OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

T1 and T2 execute tasks
from the queue

T1 and T2 create 4 new @ @

tasks

Task Queue
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OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

T1 and T2 execute tasks

from the queue

T1 and T2 create 4 new @
tasks

T1 - T4 execute tasks

Task Queue
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OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

T1 and T2 execute tasks

from the queue
T1 and T2 create 4 new @
tasks

T1 - T4 execute tasks
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OpenMP

Programming OpenMP

Hands-on Exercises

Christian Terboven RWTH
Michael Klemm OpenMI?
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OpenMP

Exercises

= We have implemented a series of small hands-on examples that you can use and play with.
- Download:

- Build: make

= Each hands-on exercise has a folder “solution”
- It shows the OpenMP solution that we have added

- You can use it to cheat ©, or to check if you came up with the same solution

OpenMP Tutorial
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https://github.com/NERSC/openmp-series-2024
https://github.com/NERSC/openmp-series-2024
https://github.com/NERSC/openmp-series-2024

Exercises: Overview

Hello World

Pi

Jacobi
Work-Distribution
Min/Max

o B~ W N BB
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Getting started
Worksharing, Scoping
Worksharing, Scoping
Worksharing
Worksharing, Reduction

OpenMP

Start with this (if OpenMP is new for you)
First day
First day
First day
First day
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