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■ Session 1: OpenMP Introduction

!Welcome

!OpenMP Overview

!Parallel Region

!Worksharing

!Scoping

!Tasking (short introduction)

!Executing OpenMP programs

!Homework assignments ☺

!Compile and run on Perlmutter CPUs 

■ Session 2: Tasking

■ Session 3: Optimization for NUMA and SIMD

■ Session 4: What Could Possibly Go Wrong Using OpenMP

■ Session 5: Introduction to Offloading with OpenMP

■ Session 6: Advanced OpenMP Offloading Topics

■ Session 7: Selected / Remaining Topics

Agenda (in total 7 Sessions)
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• De-facto standard for Shared-Memory Parallelization.


• 1997: OpenMP 1.0 for FORTRAN

• 1998: OpenMP 1.0 for C and C++

• 1999: OpenMP 1.1 for FORTRAN

• 2000: OpenMP 2.0 for FORTRAN

• 2002: OpenMP 2.0 for C and C++

• 2005: OpenMP 2.5 now includes 

both programming languages.


• 05/2008: OpenMP 3.0

• 07/2011: OpenMP 3.1


• 07/2013: OpenMP 4.0

• 11/2015: OpenMP 4.5


• 11/2018: OpenMP 5.0

• 11/2020: OpenMP 5.1

• 11/2021: OpenMP 5.2

History

http://www.OpenMP.org

RWTH Aachen University 
is a member of the 
OpenMP Architecture 
Review Board (ARB) 
since 2006.

Main topics:

▪ Affinity

▪ Tasking

▪ Tool support

▪ Accelerator support
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What is OpenMP?

• Parallel Region & Worksharing


• Tasking


• SIMD / Vectorization


• Accelerator Programming


• Memory Management


• …
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What is OpenMP?

• Parallel Region & Worksharing


• Tasking


• SIMD / Vectorization


• Accelerator Programming


• Memory Management


• …

Parallel Region

WorksharingTasking

Memory Management Accelerators

Vectorization
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Get your C/C++ and Fortran Reference Guide!

Covers all of OpenMP 5.2!
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A book that covers all of the 
OpenMP 4.5 features, 2017

A book about the OpenMP 
Common Core, 2019 

Recent Books About OpenMP

A printed copy of the 5.2 
specifications, 2021
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• OpenMP: Shared-Memory Parallel Programming Model.


	 	 	 	 	 	 

	 	 	 	 	 	 	 	 All processors/cores access 

	 	 	 	 	 	 	 a shared main memory.


	 	 	 	 	 	 	 	 Real architectures are 
	 	 	 	 	 	 	 more complex, as we 
	 	 	 	 	 	 	 will see later / as we 
	 	 	 	 	 have seen.


	 	 	 	 	 	 	 	 Parallelization in OpenMP 
	 	 	 	 	 	 	 employs multiple threads.

OpenMP‘s machine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus



OpenMP Tutorial

Members of the OpenMP Language Committee

10

• All threads have access to 
the same, globally shared 
memory


• Data in private memory is 
only accessible by the thread 
owning this memory


• No other thread sees the 
change(s) in private memory


• Data transfer is through shared 
memory and is 100% transparent 
to the application

The OpenMP Memory Model

T

private

memory

T
private


memory

T T
private


memory

private

memory

T
private


memory

Shared

Memory

accelerator

memory

PU

PU

PU

PU
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• OpenMP programs start with 
just one thread: The Initial Thread.


• Worker threads are spawned 
at Parallel Regions, together 
with the initial thread they form the 
Team of threads.


• In between Parallel Regions the 
Worker threads are put to sleep. 
The OpenMP Runtime takes care 
of all thread management work.


• Concept: Fork-Join.

• Allows for an incremental parallelization!

The OpenMP Execution Model

Initial Thread Serial Part

Parallel 

RegionSlave 

ThreadsSlave 
ThreadsWorker 
Threads

Parallel 

Region

Serial Part
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■ Specification of number of threads:

– Environment variable: OMP_NUM_THREADS=…


– Or: Via num_threads clause: 
add num_threads(num) to the 
parallel construct

• The parallelism has to be expressed explicitly.


• Structured Block

– Exactly one entry point at the top

– Exactly one exit point at the bottom

– Branching in or out is not allowed

– Terminating the program is allowed 

(abort / exit)

Parallel Region and Structured Blocks

C/C++


#pragma omp parallel 
{ 
   ... 
   structured block 
   ... 
}

Fortran


!$omp parallel 
   ... 
   structured block 
   ... 
!$omp end parallel
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■ GCC

■ clang/LLVM

■ HPE CPE

■ AOCC, AOMP, ROCmCC

■ Intel Classic and Next-gen Compilers

■ IBM XL

■ … and many more


■ See https://www.openmp.org/resources/openmp-compilers-tools/ for a list

Production Compilers w/ OpenMP Support

https://www.openmp.org/resources/openmp-compilers-tools/
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■ Enable OpenMP via the compiler’s command-line switches

! GCC: -fopenmp


! clang: -fopenmp


! HPE/Cray CPE: -homp or -fopenmp


! AOCC, AOCL, ROCmCC: -fopenmp


! Intel: -fopenmp or –qopenmp (classic) or –fiopenmp (next-gen)

! IBM XL: -qsmp=omp


■ Switches have to be passed to both compiler and linker:

Compiling OpenMP

$ gcc [...] -fopenmp -o matmul.o -c matmul.c

$ gcc [...] -fopenmp -o matmul matmul.o

$./matmul 1024

Sum of matrix (serial):   134217728.000000, wall time 0.413975, speed-up 1.00

Sum of matrix (parallel): 134217728.000000, wall time 0.092162, speed-up 4.49
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• From within a shell, global setting of the number of threads:

	 export OMP_NUM_THREADS=4


	 ./program


• From within a shell, one-time setting of the number of threads:

	 OMP_NUM_THREADS=4   ./program

Starting OpenMP Programs on Linux
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Hello OpenMP World
Demo
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• If only the parallel construct is used, each thread executes the Structured Block.


• Program Speedup: Worksharing


• OpenMP‘s most common Worksharing construct: for


– Distribution of loop iterations over all threads in a Team.

– Scheduling of the distribution can be influenced.


• Loops often account for most of a program‘s runtime!

For Worksharing

C/C++


int i; 
#pragma omp for 
for (i = 0; i < 100; i++) 
{ 
   a[i] = b[i] + c[i]; 
}

Fortran


INTEGER :: i 
!$omp do 
DO i = 0, 99 
   a[i] = b[i] + c[i] 
END DO
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Worksharing illustrated

do i = 0, 99

     a(i) = b(i) + c(i)

end do

do i = 0, 24

     a(i) = b(i) + c(i)

end do

do i = 25, 49

     a(i) = b(i) + c(i)

end do

do i = 50, 74

     a(i) = b(i) + c(i)

end do

do i = 75, 99

     a(i) = b(i) + c(i)

end do

MemoryPseudo-Code 
Here: 4 Threads

Thread 1

Thread 2

Thread 3

Thread 4

Serial

A(0)

.

.

.


A(99)

B(0)

.

.

.


B(99)

C(0)

.

.

.


C(99)
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• OpenMP barrier (implicit or explicit)

– Threads wait until all threads of the current Team have reached the barrier


• All worksharing constructs contain an implicit barrier at the end

The Barrier Construct

C/C++


#pragma omp barrier
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• The single construct specifies that the enclosed structured block is executed by only on thread of the 
team.

– It is up to the runtime which thread that is.


• Useful for:

– I/O

– Memory allocation and deallocation, etc. (in general: setup work)

– Implementation of the single-creator parallel-executor pattern as we will see later…

The Single Construct

C/C++


#pragma omp single [clause] 
... structured block ...

Fortran


!$omp single [clause] 
... structured block ... 
!$omp end single
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• The master construct specifies that the enclosed structured block is executed only by the master thread of 
a team.


• Replacement: see the masked construct later


• Note: The masked construct is no worksharing construct and does not contain an implicit barrier at the end.

The Master Construct (will be deprecated in OpenMP 6.0)

C/C++

#pragma omp master[clause] 
... structured block ...

Fortran

!$omp master[clause] 
... structured block ... 
!$omp end master
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Vector Addition
Demo
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• for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the 
team, via the schedule clause:


– schedule(static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to 
threads in a round-robin fashion. If chunk is not specified: #threads blocks.


– schedule(dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size, 
blocks are scheduled to threads in the order in which threads finish previous blocks.


– schedule(guided [, chunk]): Similar to dynamic, but block size starts with implementation-defined 
value, then is decreased exponentially down to chunk.


• Default is schedule(static).

Influencing the For Loop Scheduling / 1
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Influencing the For Loop Scheduling / 2

■ Static Schedule
! schedule(static [, chunk])

! Decomposition  

depending on chunksize

! Equal parts of size ‘chunksize’ 

distributed in round-robin  

fashion
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Influencing the For Loop Scheduling / 2

■ Static Schedule
! schedule(static [, chunk])

! Decomposition  

depending on chunksize

! Equal parts of size ‘chunksize’ 

distributed in round-robin  

fashion

■ Pros?
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Influencing the For Loop Scheduling / 2

■ Static Schedule
! schedule(static [, chunk])

! Decomposition  

depending on chunksize

! Equal parts of size ‘chunksize’ 

distributed in round-robin  

fashion

■ Pros?
! No/low runtime overhead
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Influencing the For Loop Scheduling / 2

■ Static Schedule
! schedule(static [, chunk])

! Decomposition  

depending on chunksize

! Equal parts of size ‘chunksize’ 

distributed in round-robin  

fashion

■ Pros?
! No/low runtime overhead

■ Cons?
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Influencing the For Loop Scheduling / 2

■ Static Schedule
! schedule(static [, chunk])

! Decomposition  

depending on chunksize

! Equal parts of size ‘chunksize’ 

distributed in round-robin  

fashion

■ Pros?
! No/low runtime overhead

■ Cons?
! No dynamic workload balancing
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• Dynamic schedule
– schedule(dynamic [, chunk])
– Iteration space divided into blocks of chunk size
– Threads request a new block after finishing the previous one
– Default chunk size is 1

Influencing the For Loop Scheduling / 3
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• Dynamic schedule
– schedule(dynamic [, chunk])
– Iteration space divided into blocks of chunk size
– Threads request a new block after finishing the previous one
– Default chunk size is 1

• Pros ?

Influencing the For Loop Scheduling / 3
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• Dynamic schedule
– schedule(dynamic [, chunk])
– Iteration space divided into blocks of chunk size
– Threads request a new block after finishing the previous one
– Default chunk size is 1

• Pros ?
– Workload distribution

Influencing the For Loop Scheduling / 3
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• Dynamic schedule
– schedule(dynamic [, chunk])
– Iteration space divided into blocks of chunk size
– Threads request a new block after finishing the previous one
– Default chunk size is 1

• Pros ?
– Workload distribution

• Cons?

Influencing the For Loop Scheduling / 3
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• Dynamic schedule
– schedule(dynamic [, chunk])
– Iteration space divided into blocks of chunk size
– Threads request a new block after finishing the previous one
– Default chunk size is 1

• Pros ?
– Workload distribution

• Cons?
– Runtime Overhead
– Chunk size essential for performance
– No NUMA optimizations possible

Influencing the For Loop Scheduling / 3
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• Can all loops be parallelized with for-constructs? No!

– Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent. BUT: 

This test alone is not sufficient:


• Data Race: If between two synchronization points at least one thread writes to a memory location from 
which at least one other thread reads, the result is not deterministic (race condition).

Synchronization Overview

C/C++


int i, int s = 0;


#pragma omp parallel for 
for (i = 0; i < 100; i++) 
{ 
   s = s + a[i]; 
}
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• A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).


• Do you think this solution scales well?

Synchronization: Critical Region

C/C++


#pragma omp critical (name) 
{ 
   ... structured block ... 
}

C/C++


int i, s = 0; 
#pragma omp parallel for 
for (i = 0; i < 100; i++) 
{


#pragma omp critical 
   {  s = s + a[i];  } 
}
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• Managing the Data Environment is the challenge of OpenMP.


• Scoping in OpenMP: Dividing variables in shared and private:

– private-list and shared-list on Parallel Region

– private-list and shared-list on Worksharing constructs

– General default is shared for Parallel Region, firstprivate for Tasks.

– Loop control variables on for-constructs are private

– Non-static variables local to Parallel Regions are private

– private: A new uninitialized instance is created for the task or each thread executing the construct


• firstprivate: Initialization with the value before encountering the construct

• lastprivate: Value of last loop iteration is written back to the initial thread


– Static variables are shared

Scoping Rules
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• Managing the Data Environment is the challenge of OpenMP.


• Scoping in OpenMP: Dividing variables in shared and private:

– private-list and shared-list on Parallel Region

– private-list and shared-list on Worksharing constructs

– General default is shared for Parallel Region, firstprivate for Tasks.

– Loop control variables on for-constructs are private

– Non-static variables local to Parallel Regions are private

– private: A new uninitialized instance is created for the task or each thread executing the construct


• firstprivate: Initialization with the value before encountering the construct

• lastprivate: Value of last loop iteration is written back to the initial thread


– Static variables are shared

Scoping Rules

Tasks are 

introduced later
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• Global / static variables can be privatized with the threadprivate directive

– One instance is created for each thread


• Before the first parallel region is encountered

• Instance exists until the program ends

• Does not work (well) with nested Parallel Region


– Based on thread-local storage (TLS)

• TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread (GNU extension)

Privatization of Global/Static Variables

C/C++


static int i; 
#pragma omp threadprivate(i)

Fortran


SAVE INTEGER :: i 
!$omp threadprivate(i)
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• Global / static variables can be privatized with the threadprivate directive

– One instance is created for each thread


• Before the first parallel region is encountered

• Instance exists until the program ends

• Does not work (well) with nested Parallel Region


– Based on thread-local storage (TLS)

• TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread (GNU extension)

Privatization of Global/Static Variables

C/C++


static int i; 
#pragma omp threadprivate(i)

Fortran


SAVE INTEGER :: i 
!$omp threadprivate(i)

Really: tr
y to avoid the use of th

readprivate 

and sta
tic variables!
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Back to our example

C/C++


int i, s = 0; 
#pragma omp parallel for 
for (i = 0; i < 100; i++) 
{


#pragma omp critical 
   {  s = s + a[i];  } 
}
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#pragma omp parallel              


{


#pragma omp for 
for (i = 0; i < 99; i++) 
{   


	  
      s  = s   + a[i];


 
}


} // end parallel

It‘s your turn: Make It Scale!

do i = 0, 99

     s = s + a(i)

end do

do i = 0, 24

     s = s + a(i)

end do

   

do i = 25, 49

     s = s + a(i)

end do

  
do i = 50, 74

     s = s + a(i)

end do

  

do i = 75, 99

     s = s + a(i)

end do
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#pragma omp parallel              


{


   double ps = 0.0;   // private variable


#pragma omp for 
for (i = 0; i < 99; i++) 
{    
      ps = ps + a[i]; 
}


#pragma omp critical


{


   s += ps;


}


} // end parallel

(done)

do i = 0, 99

     s = s + a(i)

end do

do i = 0, 24

     s1 = s1 + a(i)

end do

s = s + s1   
do i = 25, 49

     s2 = s2 + a(i)

end do

s = s + s2
do i = 50, 74

     s3 = s3 + a(i)

end do

s = s + s3  
do i = 75, 99

     s4 = s4 + a(i)

end do

s = s + s4  
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• In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.

– reduction(operator:list)

– The result is provided in the associated reduction variable


 

– Possible reduction operators with initialization value: 
+ (0), * (1), - (0), & (~0), | (0), && (1), || (0), ^ (0), min (largest 
number), max (least number)


– Remark: OpenMP also supports user-defined reductions (not covered here)

The Reduction Clause

C/C++


int i, s = 0;


#pragma omp parallel for reduction(+:s) 
for(i = 0; i < 99; i++) 
{ 
   s = s + a[i]; 
}
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PI
Example
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Example: Pi (1/2)

double f(double x)

{

    return (4.0 / (1.0 + x*x));

}


double CalcPi (int n)

{

    const double fH   = 1.0 / (double) n;

    double fSum = 0.0;

    double fX;

    int i;


#pragma omp parallel for 

    for (i = 0; i < n; i++)

    {

        fX = fH * ((double)i + 0.5);

        fSum += f(fX);

    }

    return fH * fSum;

}

𝜋 =
1

∫
0

4
1 + 𝑥2
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Example: Pi (2/2)

double f(double x)

{

    return (4.0 / (1.0 + x*x));

}


double CalcPi (int n)

{

    const double fH   = 1.0 / (double) n;

    double fSum = 0.0;

    double fX;

    int i;


#pragma omp parallel for private(fX,i) reduction(+:fSum)

    for (i = 0; i < n; i++)

    {

        fX = fH * ((double)i + 0.5);

        fSum += f(fX);

    }

    return fH * fSum;

}

𝜋 =
1

∫
0

4
1 + 𝑥2
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OpenMP Tasking Introduction
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■ Supports unstructured parallelism

! unbounded loops


! recursive functions


■ Several scenarios are possible:

! single creator, multiple creators, nested tasks (tasks & WS)


■ All threads in the team are candidates to execute tasks

Tasking Execution Model

while ( <expr> ) {

   ...

}

void myfunc( <args> )

{

   ...; myfunc( <newargs> ); ...;

}

Task pool

Parallel Team

#pragma omp parallel 

#pragma omp masked

while (elem != NULL) {

   #pragma omp task

      compute(elem);

   elem = elem->next;

}

■ Example (unstructured parallelism)
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■ Tasks are work units whose execution

! may be deferred or…

! … can be executed immediately


■ Tasks are composed of

! code to execute, a data environment (initialized at creation time), internal control variables (ICVs)


■ Tasks are created…

… when reaching a parallel region ! implicit tasks are created (per thread)

… when encountering a task construct ! explicit task is created

… when encountering a taskloop construct ! explicit tasks per chunk are created

… when encountering a target construct ! target task is created

What is a Task in OpenMP?
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■ OpenMP programmers need a specific idiom to kick off task-parallel execution: parallel 
masked

! OpenMP version 5.0 introduced the parallel master construct

! With OpenMP version 5.1 this becomes parallel masked

OpenMP Tasking Idiom

 1  int main(int argc, char* argv[])
 2  {
 3      [...]
 4      #pragma omp parallel
 5      {
 6  	    #pragma omp single
 7         {
 9             
start_task_parallel_execution();
 9         }
10      }
11.     [...]
12.}

 1  int main(int argc, char* argv[])
 2  {
 3      [...]
 4      #pragma omp parallel
 5      {
 6  	    #pragma omp masked
 7         {
 9             
start_task_parallel_execution();
 9         }
10      }
11.     [...]
12.}
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■ Only one thread enters fib() from main().

■ That thread creates the two initial work tasks and starts the parallel recursion.

■ The taskwait construct is required to wait for the result for x and y before the task can sum up.

Fibonacci Numbers (in a Stupid Way ☺)
14  int fib(int n)   {
15      if (n < 2) return n;
16      int x, y;
17      #pragma omp task shared(x)
18      {
19          x = fib(n - 1);
20      }
21      #pragma omp task shared(y)
22      {
23          y = fib(n - 2);
24      }
25      #pragma omp taskwait
26          return x+y;
27.}

 1  int main(int argc,
 2           char* argv[])
 3  {
 4      [...]
 5      #pragma omp parallel
 6      {
 7  	    #pragma omp masked
 8         {
 9             fib(input);
10         }
11      }
12      [...]
13.}
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■ T1 enters fib(4)

fib(4)

Task Queue
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■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2)


Task Queue

fib(3) fib(2)
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■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2)


Task Queue

■ T1 and T2 execute tasks 
from the queue

fib(3) fib(2)
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■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2)


Task Queue

■ T1 and T2 execute tasks 
from the queue

fib(3) fib(2)■ T1 and T2 create 4 new 
tasks

fib(2) fib(1) fib(1) fib(0)
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■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2)


Task Queue

■ T1 and T2 execute tasks 
from the queue

fib(3) fib(2)■ T1 and T2 create 4 new 
tasks

■ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)
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■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for 

fib(3) and fib(2)

■ T1 and T2 execute tasks 

from the queue
fib(3) fib(2)■ T1 and T2 create 4 new 

tasks
■ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)■ …

fib(1) fib(0)
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Hands-on Exercises
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■ We have implemented a series of small hands-on examples that you can use and play with.

! Download:	 https://github.com/NERSC/openmp-series-2024

! Build:	 make


■ Each hands-on exercise has a folder “solution”

! It shows the OpenMP solution that we have added

! You can use it to cheat ☺, or to check if you came up with the same solution

Exercises

https://github.com/NERSC/openmp-series-2024
https://github.com/NERSC/openmp-series-2024
https://github.com/NERSC/openmp-series-2024
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Exercises: Overview

Exercise no. Exercise name OpenMP Topic Day / Order (proposal)

1 Hello World Getting started Start with this (if OpenMP is new for you)

2 Pi Worksharing, Scoping First day

3 Jacobi Worksharing, Scoping First day

4 Work-Distribution Worksharing First day

5 Min/Max Worksharing, Reduction First day
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to be continued …


