
OpenMP Tutorial

Members of the OpenMP Language Committee

1

Programming OpenMP

Christian Terboven

Michael Klemm

OpenMP Tutorial

Members of the OpenMP Language Committee

2

■ Session 1: OpenMP Introduction

!Welcome

!OpenMP Overview

!Parallel Region

!Worksharing

!Scoping

!Tasking (short introduction)

!Executing OpenMP programs

!Homework assignments ☺

!Compile and run on Perlmutter CPUs 

■ Session 2: Tasking

■ Session 3: Optimization for NUMA and SIMD

■ Session 4: What Could Possibly Go Wrong Using OpenMP

■ Session 5: Introduction to Offloading with OpenMP

■ Session 6: Advanced OpenMP Offloading Topics

■ Session 7: Selected / Remaining Topics

Agenda (in total 7 Sessions)

OpenMP Tutorial

Members of the OpenMP Language Committee

3

Programming OpenMP

Christian Terboven

Michael Klemm

An Overview Of OpenMP

OpenMP Tutorial

Members of the OpenMP Language Committee

4

• De-facto standard for Shared-Memory Parallelization.

• 1997: OpenMP 1.0 for FORTRAN

• 1998: OpenMP 1.0 for C and C++

• 1999: OpenMP 1.1 for FORTRAN

• 2000: OpenMP 2.0 for FORTRAN

• 2002: OpenMP 2.0 for C and C++

• 2005: OpenMP 2.5 now includes 

both programming languages.

• 05/2008: OpenMP 3.0

• 07/2011: OpenMP 3.1

• 07/2013: OpenMP 4.0

• 11/2015: OpenMP 4.5

• 11/2018: OpenMP 5.0

• 11/2020: OpenMP 5.1

• 11/2021: OpenMP 5.2

History

http://www.OpenMP.org

RWTH Aachen University
is a member of the
OpenMP Architecture
Review Board (ARB)
since 2006.

Main topics:

▪ Affinity

▪ Tasking

▪ Tool support

▪ Accelerator support

OpenMP Tutorial

Members of the OpenMP Language Committee

5

What is OpenMP?

• Parallel Region & Worksharing

• Tasking

• SIMD / Vectorization

• Accelerator Programming

• Memory Management

• …

OpenMP Tutorial

Members of the OpenMP Language Committee

5

What is OpenMP?

• Parallel Region & Worksharing

• Tasking

• SIMD / Vectorization

• Accelerator Programming

• Memory Management

• …

Parallel Region

WorksharingTasking

Memory Management Accelerators

Vectorization

OpenMP Tutorial

Members of the OpenMP Language Committee

6

Get your C/C++ and Fortran Reference Guide!

Covers all of OpenMP 5.2!

OpenMP Tutorial

Members of the OpenMP Language Committee

7

A book that covers all of the
OpenMP 4.5 features, 2017

A book about the OpenMP
Common Core, 2019

Recent Books About OpenMP

A printed copy of the 5.2
specifications, 2021

OpenMP Tutorial

Members of the OpenMP Language Committee

8

Programming OpenMP

Christian Terboven

Michael Klemm

Parallel Region

OpenMP Tutorial

Members of the OpenMP Language Committee

9

• OpenMP: Shared-Memory Parallel Programming Model.

	 	 	 	 	 	

	 	 	 	 	 	 	 	 All processors/cores access 

	 	 	 	 	 	 	 a shared main memory.

	 	 	 	 	 	 	 	 Real architectures are 
	 	 	 	 	 	 	 more complex, as we 
	 	 	 	 	 	 	 will see later / as we 
	 	 	 	 	 have seen.

	 	 	 	 	 	 	 	 Parallelization in OpenMP 
	 	 	 	 	 	 	 employs multiple threads.

OpenMP‘s machine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus

OpenMP Tutorial

Members of the OpenMP Language Committee

10

• All threads have access to 
the same, globally shared 
memory

• Data in private memory is 
only accessible by the thread 
owning this memory

• No other thread sees the 
change(s) in private memory

• Data transfer is through shared 
memory and is 100% transparent 
to the application

The OpenMP Memory Model

T

private

memory

T
private

memory

T T
private

memory

private

memory

T
private

memory

Shared

Memory

accelerator

memory

PU

PU

PU

PU

OpenMP Tutorial

Members of the OpenMP Language Committee

11

• OpenMP programs start with 
just one thread: The Initial Thread.

• Worker threads are spawned 
at Parallel Regions, together 
with the initial thread they form the 
Team of threads.

• In between Parallel Regions the 
Worker threads are put to sleep. 
The OpenMP Runtime takes care 
of all thread management work.

• Concept: Fork-Join.

• Allows for an incremental parallelization!

The OpenMP Execution Model

Initial Thread Serial Part

Parallel

RegionSlave

ThreadsSlave
ThreadsWorker 
Threads

Parallel

Region

Serial Part

OpenMP Tutorial

Members of the OpenMP Language Committee

12

■ Specification of number of threads:

– Environment variable: OMP_NUM_THREADS=…

– Or: Via num_threads clause: 
add num_threads(num) to the 
parallel construct

• The parallelism has to be expressed explicitly.

• Structured Block

– Exactly one entry point at the top

– Exactly one exit point at the bottom

– Branching in or out is not allowed

– Terminating the program is allowed 

(abort / exit)

Parallel Region and Structured Blocks

C/C++

#pragma omp parallel 
{ 
 ... 
 structured block 
 ... 
}

Fortran

!$omp parallel 
 ... 
 structured block 
 ... 
!$omp end parallel

OpenMP Tutorial

Members of the OpenMP Language Committee

13

Programming OpenMP

Christian Terboven

Michael Klemm

Using OpenMP Compilers

OpenMP Tutorial

Members of the OpenMP Language Committee

14

■ GCC

■ clang/LLVM

■ HPE CPE

■ AOCC, AOMP, ROCmCC

■ Intel Classic and Next-gen Compilers

■ IBM XL

■ … and many more

■ See https://www.openmp.org/resources/openmp-compilers-tools/ for a list

Production Compilers w/ OpenMP Support

https://www.openmp.org/resources/openmp-compilers-tools/

OpenMP Tutorial

Members of the OpenMP Language Committee

15

■ Enable OpenMP via the compiler’s command-line switches

! GCC: -fopenmp

! clang: -fopenmp

! HPE/Cray CPE: -homp or -fopenmp

! AOCC, AOCL, ROCmCC: -fopenmp

! Intel: -fopenmp or –qopenmp (classic) or –fiopenmp (next-gen)

! IBM XL: -qsmp=omp

■ Switches have to be passed to both compiler and linker:

Compiling OpenMP

$ gcc [...] -fopenmp -o matmul.o -c matmul.c

$ gcc [...] -fopenmp -o matmul matmul.o

$./matmul 1024

Sum of matrix (serial): 134217728.000000, wall time 0.413975, speed-up 1.00

Sum of matrix (parallel): 134217728.000000, wall time 0.092162, speed-up 4.49

OpenMP Tutorial

Members of the OpenMP Language Committee

16

• From within a shell, global setting of the number of threads:

	 export OMP_NUM_THREADS=4

	 ./program

• From within a shell, one-time setting of the number of threads:

	 OMP_NUM_THREADS=4 ./program

Starting OpenMP Programs on Linux

OpenMP Tutorial

Members of the OpenMP Language Committee

17

Hello OpenMP World
Demo

OpenMP Tutorial

Members of the OpenMP Language Committee

18

Programming OpenMP

Christian Terboven

Michael Klemm

Worksharing

OpenMP Tutorial

Members of the OpenMP Language Committee

19

• If only the parallel construct is used, each thread executes the Structured Block.

• Program Speedup: Worksharing

• OpenMP‘s most common Worksharing construct: for

– Distribution of loop iterations over all threads in a Team.

– Scheduling of the distribution can be influenced.

• Loops often account for most of a program‘s runtime!

For Worksharing

C/C++

int i; 
#pragma omp for 
for (i = 0; i < 100; i++) 
{ 
 a[i] = b[i] + c[i]; 
}

Fortran

INTEGER :: i 
!$omp do 
DO i = 0, 99 
 a[i] = b[i] + c[i] 
END DO

OpenMP Tutorial

Members of the OpenMP Language Committee

20

Worksharing illustrated

do i = 0, 99

 a(i) = b(i) + c(i)

end do

do i = 0, 24

 a(i) = b(i) + c(i)

end do

do i = 25, 49

 a(i) = b(i) + c(i)

end do

do i = 50, 74

 a(i) = b(i) + c(i)

end do

do i = 75, 99

 a(i) = b(i) + c(i)

end do

MemoryPseudo-Code 
Here: 4 Threads

Thread 1

Thread 2

Thread 3

Thread 4

Serial

A(0)

.

.

.

A(99)

B(0)

.

.

.

B(99)

C(0)

.

.

.

C(99)

OpenMP Tutorial

Members of the OpenMP Language Committee

21

• OpenMP barrier (implicit or explicit)

– Threads wait until all threads of the current Team have reached the barrier

• All worksharing constructs contain an implicit barrier at the end

The Barrier Construct

C/C++

#pragma omp barrier

OpenMP Tutorial

Members of the OpenMP Language Committee

22

• The single construct specifies that the enclosed structured block is executed by only on thread of the
team.

– It is up to the runtime which thread that is.

• Useful for:

– I/O

– Memory allocation and deallocation, etc. (in general: setup work)

– Implementation of the single-creator parallel-executor pattern as we will see later…

The Single Construct

C/C++

#pragma omp single [clause] 
... structured block ...

Fortran

!$omp single [clause] 
... structured block ... 
!$omp end single

OpenMP Tutorial

Members of the OpenMP Language Committee

23

• The master construct specifies that the enclosed structured block is executed only by the master thread of
a team.

• Replacement: see the masked construct later

• Note: The masked construct is no worksharing construct and does not contain an implicit barrier at the end.

The Master Construct (will be deprecated in OpenMP 6.0)

C/C++

#pragma omp master[clause] 
... structured block ...

Fortran

!$omp master[clause] 
... structured block ... 
!$omp end master

OpenMP Tutorial

Members of the OpenMP Language Committee

24

Vector Addition
Demo

OpenMP Tutorial

Members of the OpenMP Language Committee

25

• for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

– schedule(static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to
threads in a round-robin fashion. If chunk is not specified: #threads blocks.

– schedule(dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size,
blocks are scheduled to threads in the order in which threads finish previous blocks.

– schedule(guided [, chunk]): Similar to dynamic, but block size starts with implementation-defined
value, then is decreased exponentially down to chunk.

• Default is schedule(static).

Influencing the For Loop Scheduling / 1

OpenMP Tutorial

Members of the OpenMP Language Committee

26

Influencing the For Loop Scheduling / 2

■ Static Schedule
! schedule(static [, chunk])

! Decomposition  

depending on chunksize

! Equal parts of size ‘chunksize’ 

distributed in round-robin  

fashion

OpenMP Tutorial

Members of the OpenMP Language Committee

26

Influencing the For Loop Scheduling / 2

■ Static Schedule
! schedule(static [, chunk])

! Decomposition  

depending on chunksize

! Equal parts of size ‘chunksize’ 

distributed in round-robin  

fashion

■ Pros?

OpenMP Tutorial

Members of the OpenMP Language Committee

26

Influencing the For Loop Scheduling / 2

■ Static Schedule
! schedule(static [, chunk])

! Decomposition  

depending on chunksize

! Equal parts of size ‘chunksize’ 

distributed in round-robin  

fashion

■ Pros?
! No/low runtime overhead

OpenMP Tutorial

Members of the OpenMP Language Committee

26

Influencing the For Loop Scheduling / 2

■ Static Schedule
! schedule(static [, chunk])

! Decomposition  

depending on chunksize

! Equal parts of size ‘chunksize’ 

distributed in round-robin  

fashion

■ Pros?
! No/low runtime overhead

■ Cons?

OpenMP Tutorial

Members of the OpenMP Language Committee

26

Influencing the For Loop Scheduling / 2

■ Static Schedule
! schedule(static [, chunk])

! Decomposition  

depending on chunksize

! Equal parts of size ‘chunksize’ 

distributed in round-robin  

fashion

■ Pros?
! No/low runtime overhead

■ Cons?
! No dynamic workload balancing

OpenMP Tutorial

Members of the OpenMP Language Committee

27

• Dynamic schedule
– schedule(dynamic [, chunk])
– Iteration space divided into blocks of chunk size
– Threads request a new block after finishing the previous one
– Default chunk size is 1

Influencing the For Loop Scheduling / 3

OpenMP Tutorial

Members of the OpenMP Language Committee

27

• Dynamic schedule
– schedule(dynamic [, chunk])
– Iteration space divided into blocks of chunk size
– Threads request a new block after finishing the previous one
– Default chunk size is 1

• Pros ?

Influencing the For Loop Scheduling / 3

OpenMP Tutorial

Members of the OpenMP Language Committee

27

• Dynamic schedule
– schedule(dynamic [, chunk])
– Iteration space divided into blocks of chunk size
– Threads request a new block after finishing the previous one
– Default chunk size is 1

• Pros ?
– Workload distribution

Influencing the For Loop Scheduling / 3

OpenMP Tutorial

Members of the OpenMP Language Committee

27

• Dynamic schedule
– schedule(dynamic [, chunk])
– Iteration space divided into blocks of chunk size
– Threads request a new block after finishing the previous one
– Default chunk size is 1

• Pros ?
– Workload distribution

• Cons?

Influencing the For Loop Scheduling / 3

OpenMP Tutorial

Members of the OpenMP Language Committee

27

• Dynamic schedule
– schedule(dynamic [, chunk])
– Iteration space divided into blocks of chunk size
– Threads request a new block after finishing the previous one
– Default chunk size is 1

• Pros ?
– Workload distribution

• Cons?
– Runtime Overhead
– Chunk size essential for performance
– No NUMA optimizations possible

Influencing the For Loop Scheduling / 3

OpenMP Tutorial

Members of the OpenMP Language Committee

28

• Can all loops be parallelized with for-constructs? No!

– Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent. BUT:

This test alone is not sufficient:

• Data Race: If between two synchronization points at least one thread writes to a memory location from
which at least one other thread reads, the result is not deterministic (race condition).

Synchronization Overview

C/C++

int i, int s = 0;

#pragma omp parallel for 
for (i = 0; i < 100; i++) 
{ 
 s = s + a[i]; 
}

OpenMP Tutorial

Members of the OpenMP Language Committee

29

• A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

• Do you think this solution scales well?

Synchronization: Critical Region

C/C++

#pragma omp critical (name) 
{ 
 ... structured block ... 
}

C/C++

int i, s = 0; 
#pragma omp parallel for 
for (i = 0; i < 100; i++) 
{

#pragma omp critical 
 { s = s + a[i]; } 
}

OpenMP Tutorial

Members of the OpenMP Language Committee

30

Programming OpenMP

Christian Terboven

Michael Klemm

Scoping

OpenMP Tutorial

Members of the OpenMP Language Committee

31

• Managing the Data Environment is the challenge of OpenMP.

• Scoping in OpenMP: Dividing variables in shared and private:

– private-list and shared-list on Parallel Region

– private-list and shared-list on Worksharing constructs

– General default is shared for Parallel Region, firstprivate for Tasks.

– Loop control variables on for-constructs are private

– Non-static variables local to Parallel Regions are private

– private: A new uninitialized instance is created for the task or each thread executing the construct

• firstprivate: Initialization with the value before encountering the construct

• lastprivate: Value of last loop iteration is written back to the initial thread

– Static variables are shared

Scoping Rules

OpenMP Tutorial

Members of the OpenMP Language Committee

31

• Managing the Data Environment is the challenge of OpenMP.

• Scoping in OpenMP: Dividing variables in shared and private:

– private-list and shared-list on Parallel Region

– private-list and shared-list on Worksharing constructs

– General default is shared for Parallel Region, firstprivate for Tasks.

– Loop control variables on for-constructs are private

– Non-static variables local to Parallel Regions are private

– private: A new uninitialized instance is created for the task or each thread executing the construct

• firstprivate: Initialization with the value before encountering the construct

• lastprivate: Value of last loop iteration is written back to the initial thread

– Static variables are shared

Scoping Rules

Tasks are

introduced later

OpenMP Tutorial

Members of the OpenMP Language Committee

32

• Global / static variables can be privatized with the threadprivate directive

– One instance is created for each thread

• Before the first parallel region is encountered

• Instance exists until the program ends

• Does not work (well) with nested Parallel Region

– Based on thread-local storage (TLS)

• TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i; 
#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i 
!$omp threadprivate(i)

OpenMP Tutorial

Members of the OpenMP Language Committee

33

• Global / static variables can be privatized with the threadprivate directive

– One instance is created for each thread

• Before the first parallel region is encountered

• Instance exists until the program ends

• Does not work (well) with nested Parallel Region

– Based on thread-local storage (TLS)

• TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i; 
#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i 
!$omp threadprivate(i)

Really: tr
y to avoid the use of th

readprivate

and sta
tic variables!

OpenMP Tutorial

Members of the OpenMP Language Committee

34

Back to our example

C/C++

int i, s = 0; 
#pragma omp parallel for 
for (i = 0; i < 100; i++) 
{

#pragma omp critical 
 { s = s + a[i]; } 
}

OpenMP Tutorial

Members of the OpenMP Language Committee

35

#pragma omp parallel

{

#pragma omp for 
for (i = 0; i < 99; i++) 
{

	  
 s = s + a[i];

 
}

} // end parallel

It‘s your turn: Make It Scale!

do i = 0, 99

 s = s + a(i)

end do

do i = 0, 24

 s = s + a(i)

end do

do i = 25, 49

 s = s + a(i)

end do

do i = 50, 74

 s = s + a(i)

end do

do i = 75, 99

 s = s + a(i)

end do

OpenMP Tutorial

Members of the OpenMP Language Committee

36

#pragma omp parallel

{

 double ps = 0.0; // private variable

#pragma omp for 
for (i = 0; i < 99; i++) 
{  
 ps = ps + a[i]; 
}

#pragma omp critical

{

 s += ps;

}

} // end parallel

(done)

do i = 0, 99

 s = s + a(i)

end do

do i = 0, 24

 s1 = s1 + a(i)

end do

s = s + s1
do i = 25, 49

 s2 = s2 + a(i)

end do

s = s + s2
do i = 50, 74

 s3 = s3 + a(i)

end do

s = s + s3
do i = 75, 99

 s4 = s4 + a(i)

end do

s = s + s4

OpenMP Tutorial

Members of the OpenMP Language Committee

37

• In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.

– reduction(operator:list)

– The result is provided in the associated reduction variable

 

– Possible reduction operators with initialization value: 
+ (0), * (1), - (0), & (~0), | (0), && (1), || (0), ^ (0), min (largest
number), max (least number)

– Remark: OpenMP also supports user-defined reductions (not covered here)

The Reduction Clause

C/C++

int i, s = 0;

#pragma omp parallel for reduction(+:s) 
for(i = 0; i < 99; i++) 
{ 
 s = s + a[i]; 
}

OpenMP Tutorial

Members of the OpenMP Language Committee

38

PI
Example

OpenMP Tutorial

Members of the OpenMP Language Committee

39

Example: Pi (1/2)

double f(double x)

{

 return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

 const double fH = 1.0 / (double) n;

 double fSum = 0.0;

 double fX;

 int i;

#pragma omp parallel for

 for (i = 0; i < n; i++)

 {

 fX = fH * ((double)i + 0.5);

 fSum += f(fX);

 }

 return fH * fSum;

}

𝜋 =
1

∫
0

4
1 + 𝑥2

OpenMP Tutorial

Members of the OpenMP Language Committee

40

Example: Pi (2/2)

double f(double x)

{

 return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

 const double fH = 1.0 / (double) n;

 double fSum = 0.0;

 double fX;

 int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

 for (i = 0; i < n; i++)

 {

 fX = fH * ((double)i + 0.5);

 fSum += f(fX);

 }

 return fH * fSum;

}

𝜋 =
1

∫
0

4
1 + 𝑥2

OpenMP Tutorial

Members of the OpenMP Language Committee

41

Programming OpenMP

Christian Terboven

Michael Klemm

OpenMP Tasking Introduction

OpenMP Tutorial

Members of the OpenMP Language Committee

42

■ Supports unstructured parallelism

! unbounded loops

! recursive functions

■ Several scenarios are possible:

! single creator, multiple creators, nested tasks (tasks & WS)

■ All threads in the team are candidates to execute tasks

Tasking Execution Model

while (<expr>) {

 ...

}

void myfunc(<args>)

{

 ...; myfunc(<newargs>); ...;

}

Task pool

Parallel Team

#pragma omp parallel

#pragma omp masked

while (elem != NULL) {

 #pragma omp task

 compute(elem);

 elem = elem->next;

}

■ Example (unstructured parallelism)

OpenMP Tutorial

Members of the OpenMP Language Committee

43

■ Tasks are work units whose execution

! may be deferred or…

! … can be executed immediately

■ Tasks are composed of

! code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

■ Tasks are created…

… when reaching a parallel region ! implicit tasks are created (per thread)

… when encountering a task construct ! explicit task is created

… when encountering a taskloop construct ! explicit tasks per chunk are created

… when encountering a target construct ! target task is created

What is a Task in OpenMP?

OpenMP Tutorial

Members of the OpenMP Language Committee

44

■ OpenMP programmers need a specific idiom to kick off task-parallel execution: parallel
masked

! OpenMP version 5.0 introduced the parallel master construct

! With OpenMP version 5.1 this becomes parallel masked

OpenMP Tasking Idiom

 1 int main(int argc, char* argv[])
 2 {
 3 [...]
 4 #pragma omp parallel
 5 {
 6 	 #pragma omp single
 7 {
 9
start_task_parallel_execution();
 9 }
10 }
11. [...]
12.}

 1 int main(int argc, char* argv[])
 2 {
 3 [...]
 4 #pragma omp parallel
 5 {
 6 	 #pragma omp masked
 7 {
 9
start_task_parallel_execution();
 9 }
10 }
11. [...]
12.}

OpenMP Tutorial

Members of the OpenMP Language Committee

45

■ Only one thread enters fib() from main().

■ That thread creates the two initial work tasks and starts the parallel recursion.

■ The taskwait construct is required to wait for the result for x and y before the task can sum up.

Fibonacci Numbers (in a Stupid Way ☺)
14 int fib(int n) {
15 if (n < 2) return n;
16 int x, y;
17 #pragma omp task shared(x)
18 {
19 x = fib(n - 1);
20 }
21 #pragma omp task shared(y)
22 {
23 y = fib(n - 2);
24 }
25 #pragma omp taskwait
26 return x+y;
27.}

 1 int main(int argc,
 2 char* argv[])
 3 {
 4 [...]
 5 #pragma omp parallel
 6 {
 7 	 #pragma omp masked
 8 {
 9 fib(input);
10 }
11 }
12 [...]
13.}

OpenMP Tutorial

Members of the OpenMP Language Committee

46

■ T1 enters fib(4)

fib(4)

Task Queue

OpenMP Tutorial

Members of the OpenMP Language Committee

46

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for

fib(3) and fib(2)

Task Queue

fib(3) fib(2)

OpenMP Tutorial

Members of the OpenMP Language Committee

46

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for

fib(3) and fib(2)

Task Queue

■ T1 and T2 execute tasks
from the queue

fib(3) fib(2)

OpenMP Tutorial

Members of the OpenMP Language Committee

46

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for

fib(3) and fib(2)

Task Queue

■ T1 and T2 execute tasks
from the queue

fib(3) fib(2)■ T1 and T2 create 4 new
tasks

fib(2) fib(1) fib(1) fib(0)

OpenMP Tutorial

Members of the OpenMP Language Committee

46

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for

fib(3) and fib(2)

Task Queue

■ T1 and T2 execute tasks
from the queue

fib(3) fib(2)■ T1 and T2 create 4 new
tasks

■ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)

OpenMP Tutorial

Members of the OpenMP Language Committee

47

■ T1 enters fib(4)

fib(4)
■ T1 creates tasks for

fib(3) and fib(2)

■ T1 and T2 execute tasks

from the queue
fib(3) fib(2)■ T1 and T2 create 4 new

tasks
■ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)■ …

fib(1) fib(0)

OpenMP Tutorial

Members of the OpenMP Language Committee

48

Programming OpenMP

Christian Terboven

Michael Klemm

Hands-on Exercises

OpenMP Tutorial

Members of the OpenMP Language Committee

49

■ We have implemented a series of small hands-on examples that you can use and play with.

! Download:	 https://github.com/NERSC/openmp-series-2024

! Build:	 make

■ Each hands-on exercise has a folder “solution”

! It shows the OpenMP solution that we have added

! You can use it to cheat ☺, or to check if you came up with the same solution

Exercises

https://github.com/NERSC/openmp-series-2024
https://github.com/NERSC/openmp-series-2024
https://github.com/NERSC/openmp-series-2024

OpenMP Tutorial

Members of the OpenMP Language Committee

50

Exercises: Overview

Exercise no. Exercise name OpenMP Topic Day / Order (proposal)

1 Hello World Getting started Start with this (if OpenMP is new for you)

2 Pi Worksharing, Scoping First day

3 Jacobi Worksharing, Scoping First day

4 Work-Distribution Worksharing First day

5 Min/Max Worksharing, Reduction First day

OpenMP Tutorial

Members of the OpenMP Language Committee

51

to be continued …

