OpenMP

Programming OpenMP

Christian Terboven
Michael Klemm

OpenMP Tutorial
Members of the OpenMP Language Committee

Agenda (in total 7 Sessions)

Session 1: OpenMP Introduction
- Welcome
- OpenMP Overview
—> Parallel Region
- Worksharing
- Scoping
—> Tasking (short introduction)
- Executing OpenMP programs
- Homework assignments ©
- Compile and run on Perlmutter CPUs

Session 2: Tasking

Session 3: Optimization for NUMA and SIMD

Session 4: What Could Possibly Go Wrong Using OpenMP
Session 5: Introduction to Offloading with OpenMP
Session 6: Advanced OpenMP Offloading Topics

Session 7: Selected / Remaining Topics

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

OpenMP

Programming OpenMP

An Overview Of OpenMP

Christian Terboven RWTH
Michael Klemm OpenMI?

OpenMP Tutorial

OpenMP

History

o De-facto standard for Shared-Memory Parallelization.

e 1997: OpenMP 1.0 for FORTRAN Open M P

o 1998: OpenMP 1.0 for C and C++
e 1999: OpenMP 1.1 for FORTRAN

http://www.OpenMP.org
« 2000: OpenMP 2.0 for FORTRAN
o« 2002: OpenMP 2.0 for Cand C++
e 2005: OpenMP 2.5 now includes _ _
both programming languages. RWTH Aachen University
is @ member of the

 05/2008: OpenMP 3.0 OpenMP Architecture
« 07/2011: OpenMP 3.1 Review Board (ARB)

_ since 2006.
. 07/2013: OpenMP 4.0 Vel e
« 11/2015: OpenMP 4.5 = Affinity
. 11/2018: OpenMP 5.0 - lesldig

= Tool support

« 11/2020: OpenMP 5.1 = Accelerator support

« 11/2021: OpenMP 5.2

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

What is OpenMP?

Parallel Region & Worksharing

e Tasking

« SIMD / Vectorization

o Accelerator Programming

« Memory Management

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

What is OpenMP?
« Parallel Region & Worksharing P/araIIeIRegion
\ ran! (,
o Tasking 2G4

Vectorization

« SIMD / Vectorization

[t’s
Worksharing

o Accelerator Programming

« Memory Management

Memory Management

Accelerators

| 1 R ¢ H |
§ w3

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Get your C/C++ and Fortran Reference Guide!
Covers all of OpenMP 5.2!

fortran contert. | [nan] Sectiors 5.2 spac | [nan] Seciors 5 1 spac | () See Clouse i onpg. 9

OpenMP 5.2 API Syntax Reference Guide Directives and Constructs (continued)
en The OpenMP® AP|is a scalable model that OpenMP s suitable for 2 wide range of
— s N N - gwesparallel programmers asimpleand algorithms running on multicore nodes and {begin decae varant 343115 m,_e simd s
openmp.org flexble nterface for developing portable chips, NUMA systems, GPUs, and other such ad f 2 tase function and the E bt b asabii oeatioif
parallel applications in C/C++ and Fortran, devices attached to a CPU. consest in .r.m It ,.e a» m; versiors. mpmmmurp arguments using
e SMD insrections fom a sy lawocation n 3 SIMD locp

amp
fouse (1] ciouse] Apeagma omp declare simd (cousef [, Jdouse) . |
f Lo oL PPN i Apeagma om requires chose (1, covae].. |

e (1L .1 fpeagma ome declare simd [cluse{ [, couse]
Getting Started & ERRE e foctin et decrton o e i BRI

Navinﬂn; mls reference guide OpenMP directive syntax o Yhomp decare simd oo ramell [obuse] dowe

dochrs oo e mach dousef |

Informational and utility directives

requires (£21(251)

Species th Seatures that an mpiementation s provide
der

C/CH+ content of For Fortran content | [n.nn] Sections in 5.2.5pec | [nn.n] Sections in 5.1 spec | E1 See Clause info on pg. 9 L ade to compile and to execu

agma omp begle
deciar vu’\.’ deflniy stomic_defaut_mem_ mﬂlr(uq_nl | soq_rel | releend)

% 3 combingtion of the base-lang 2 shes: -
sams end decae ariont e

::4(7:4:"" e 4 et - ctrc Spragma omp drectie specifi Secagns ooy aligned (argument 05t] : algnment]) memaory allocators 1o be used in 3 tangy
Tlomp - deectvel drectespecsicosion)] Somp dedare vriant (bose proc e) & of more st items 1o be abged to withous specifying the uses_allocators
[lusieg omep : directive| dvective specy variont groc same) k‘ cowse]... | pach Aty chause on the comesponding
Ik“p‘;rnn(speafanan — [See target cn gage 5 o
ective-specification adjust_angs (adjust op : arpument st
|$¢ﬂ\pw Arective-name odjustop. mothing, need_device per
opend_op el ypen

OpenMP Examples Document

5 are formed exchushely with pragmas.
ot civectives are formed from ether pragms ce strbutes
with code sampls s lakopaomn tram drectives are formed with comments in
free form sed fiae foem seurces (codes].

1+ feor-stepi) 1

notisbranch
simdien (lengtt)

rop |
N aepype{ 1| heopype)
arter

Directives and Constructs

res ths sl deesces scoes cuh
P routines and directives wae
ueified a3dress spoor
unified_shared_memory
CGuseantees thet in addison to the resuirement
Vot fine i of nifed_uddress, scrag ocaions n memary
The name of a function variant that & a base
language identite: Cov, 2 templateid.

lisk
OpenhP canstructs corsist of a directive and, # defined in the syntax, an associated structured biock that follows. » OpenMP directives except simd and any match costent-sefectov-specication)
dedarative directive may not 3ppear in Fortran PURE procedures. « structured-block is a construct or block of enscutabie statements with single entry at the top REQUIRED. Specit
and a single ext 3t the battom. « st ck is 3 structured block that s 3 Fartran BLOCK construct. » loosely structured-&lock is 3 structured block that arquments o
sn't stricthy structured and doesn't start with a Fortran BLOCK canstruct. « amp-integer-expression s of 3 &ar int type or scalar integer type. vartare
+ amp-fogiea-expression is a ¢/C++ scalar expression or logical expressicn.
0 31 guaiatie devices
Data environment directives SCaN [55] 2114 "
3 peciies that scan computations updste the I3 ftems cn
threadprivate 21 2212) i st g oo e i e
‘wrvh‘\ at variables are replicated, with each thread o gHo0p, worksterng-nop SIM
its cun copy Exch copy of s threadprivtevarsle
i itakeed once e fist referemce to that copy

allocate (¢} 12.135]
Specities how a set of variables is alocated. voriase-aroc-oeme — assume, [begin Jassumes je.3.24] (25
The name of a function variant that Apragrma omp declare tacge (extended-isf} Prowides Irwarian n::m implementation that may be
language identtte or oprm poses.
clmsemotch ’""""""‘""d“"""“‘”” bdnsze—) " assumes chuse [, cowse]. |
mteh et o pecezo) st 2
clouse: REQUIRED match clywse 'V""“"'“"""'""”‘" douse ({[,]
[covseflcovse]... peagma in assumes cisuse [, chuse] . |
allgn [a\gnment) declorations definion seg drviarator-defion ey
agnmest. An Inceger po 45,.““ s apragma ome end dedare target Apragma omp end

spragma emp alocate 15 (covie | iouse) .
2 omp scon clovee Somp alocate it cbssef [, cowse . |

#seaye e
structared-biock-sequence

Wyragma omp threadprvate §i:d)

Somp threadarivate (st)

OpenMP Tutorial
Members of the OpenMP Language Committee

A comme-sesorsted [t of
< i variabies

Dedires 1 reduction. “mm»
Toduction n_redudbon, orteck,roducton couse,
Apragm omp dedlare redsction | \
reduction-identifer ;
(intiataer closse]

A expression

An asigrement sta

lguse: Intakaes (ictlzer.exer)
nitalizer-expe: omp_priv - iniitirr or
Surction-nome [orgsment-Ast}
reduction idescfer
e inguge e |
e c the folowng

a8, |1

e following operators: 4, *,
and, ce., equ, nev.
ntrinsic procedare rames: mas, min,
heor

typename{ist: Alist of type names

fype st A lstof type

CLASS{*) or abtract tyge.

© 2023 Opene ARB

exdlushoe (1)
Inchusive V]

dedlrenupperm) 2217.4)
Decires s
deflon s megperides

pragma omp dacare mappet e e
ype vav) (clovsef |, ok
1S0mp doctare mapper {imapper dencier: fype 1 1ar) &
Icipuse L) chosse].. |
couse
map [[modifier, frmap-modtier, . |
mop-pe: |) E1
map type: aloc, from, o, tofrom
ap- odfir: shwers, deve, prsent, mappesdeouh
iteratoe{tevatar defintians)
mapges idencer.
o knguage icentiier of defauk £
fype: Avald type In scoze
vov: A valid base-language identifier

slecator (locotr) hether var ar
ock

alocatar
type omp_allocator_handie t
#ind omg _allecator hansie_hind

allocators (6.
specte 2 OpeaMP memceyaocatrs r ued ke
certain variabies that are allocated by
allocate stmt.

15amp atocaters [douse] , chasse]

abocote-semt

[$omp end sllecaton |
dlause: allecate (1
allocate stmt: A Fortran ALLOCATE

Variant directives
[bqln]mdlnmnpu TAA[23.4)
pecity mukgle dire
o af hichma o conctionsiy st
metadeecve
pragma omp metadiective (couse]) couse]
o begin metadirectiv (ciusef [, e

stmels)

Memory
Memorv spaces (e
efined memory spaces regresent
s crage tnd retevs of vraties
Mercey spice St sebocs:
v St vy ues Dol wsage
orp i o e e Liage sy
orp.cont venpar Vribeswt
orp. et bw_renpxe Hghbaiwdh

orplow bt ren gace Lowlskerey

1$amp metadrective ciouse! ,

180mp begin metadirectie (cousef] ciouse) .|

o: (drectve variant])

e varant
otherwise ((drectve varisnt])
osaly selecta
was named default

owe1223

o

t5omp dectare target [clouse([, [cose] .|

diouse:

device_type [host | nohost | any]

mrlnmv\\! st}

[iempend dpotch] omma separated st of ramed variabies,

S
Indirectfimotnd byfot]
Determines
e ik

ciouse:

depond cepend P, | dependence ¢pe ocstor k]

=piation o
s_device_ptr (ur) tarpet regicn that refer
. devie ok
nosoment [ormo-g:
1f cnp dogicat expessian
construct s not added fo
the Open¥P context
noariats (:«\: g

yression evabistes 1 troe, no

‘one clase st be enter

are ot permitted

fant i seiected for the call in the
sepicable dispatch regon
nowsit ()

© 2023 Operip AR

nctions cale
e At s

* For the second o+ form of dechire target, o lesst
celink

+ For begin declare target, the enter and ink csses

agma omp assume clavse ||
structured-block

1$omp assumes cisuse | [L] ciou

se 1) covse]
b

Somp assume chose | | w,‘m,‘t. I
stricthstr
[18emp end assame)
clouse
hwent drective-nome { [, drecsvename]...)
Uts drectives sbsere in
contains (dvectie. same | , dvective-name))
Usts drectives ikely 10 be i the scope
holds fomp-gat expvesion]
An expression guaranteed 10 be true in the
scop
“Indicates that no Oge
no_cpenmp_rostines
edicates that o O
are execyted in the 50
no_parallelsm
edicates that no Oper® tasks or SIMD
wil be exmcated in the scope

owe1223

OpenMP

Recent Books About OpenMP

OpenMP

Application Programming Interface
Specification Version 5.2

THE OPENMP
COMMON CORE

Making OpenMP Simple Again

USING OPENMP-
THE NEXT STEP- =

Affinity, Accelerators, Tasking, and SIMD

[
725!
Z
@
o
.
=
o
|
-
I
m
z
m
X
=
(7]
-
m
o

-
=
m
o
o
m
z
=<
o
0
o
=
S
<
S
™

Ruud van der Pas, Eric Stotzer,

and Christian Terboven Timothy G. Mattson, Yun (Helen) He,

and Alice E. Koniges

OpenMP Architecture Review Board | openmp.org

A printed copy of the 5.2 A book that covers all of the A book about the OpenMP
specifications, 2021 OpenMP 4.5 features, 2017 Common Core, 2019

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Programming OpenMP

Parallel Region

Christian Terboven RWTH
Michael Klemm OpenMI?

OpenMP

OpenMP‘s machine model

e« OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

Parallelization in OpenMP
employs multiple threads.

n OpenMP Tutorial
Members of the OpenMP Language Committee

The OpenMP Memory Model

« All threads have access to private
the same, globally shared memory private
memory

« Datain private memory is
only accessible by the thread
owning this memory memory

accelerator

« No other thread sees the private

change(s) in private memory private memory
memory

« Data transfer is through shared
memory and is 100% transparent

to the application private
memory

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

The OpenMP Execution Model

« OpenMP programs start with

e Serial Part
just one thread: The Initial Thread. [l laese
o Worker threads are spawned I;aerailgil
at Parallel Regions, together Worker 8
with the initial thread they form the Threads g
Team of threads. E E E
E E ESeriaI Part
« In between Parallel Regions the nn
Worker threads are put to sleep. mm
The OpenMP Runtime takes care Vv.
of all thread management work. . Parallel
= Region
« Concept: Fork-Join. -
\

« Allows for an incremental parallelization!

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Parallel Region and Structured Blocks

« The parallelism has to be expressed explicitly.

C/C++ Fortran

fpragma omp parallel 'Somp parallel
{

... structured block
structured block

!Somp end parallel

e Structured Block Specification of number of threads:

— Exactly one entry point at the top — Environment variable: OMP NUM THREADS=...

— Exactly one exit point at the bottom _ Or:Vianum threads clause:

— Branching in or out is not allowed add num threads (num) to the

— Terminating the program is allowed parallel construct
(abort / exit)

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Programming OpenMP

Using OpenMP Compilers

Christian Terboven RWTH
Michael Klemm OpenMI?

OpenMP Tutorial

OpenMP

Production Compilers w/ OpenMP Support

= GCC

= clang/LLVM

= HPE CPE

= AOCC, AOMP, ROCmCC

= |ntel Classic and Next-gen Compilers
= |IBM XL

= ... and many more

= See for a list

OpenMP Tutorial
Members of the OpenMP Language Committee

https://www.openmp.org/resources/openmp-compilers-tools/

Compiling OpenMP OpenMP

= Enable OpenMP via the compiler’'s command-line switches
- GCC: -fopenmp
- clang: -fopenmp
- HPE/Cray CPE: -homp or -fopenmp
- AOCC, AOCL, ROCmCC: -fopenmp
- Intel: -fopenmp or —gopenmp (classic) or —fiopenmp (next-gen)
- IBM XL: -gsmp=omp

= Switches have to be passed to both compiler and linker:

$ gcc [...] -fopenmp -0 matmul.o -c matmul.c
$ gcc [...] —-fopenmp -o matmul matmul.o

S./matmul 1024
Sum of matrix (serial): 134217728.000000, wall time 0.413975, speed-up 1.00
Sum of matrix (parallel): 134217728.000000, wall time 0.092162, speed-up 4.49

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Starting OpenMP Programs on Linux

« From within a shell, global setting of the number of threads:
export OMP NUM THREADS=4

./program

e From within a shell, one-time setting of the number of threads:
OMP NUM THREADS=4 ./program

OpenMP Tutorial
Members of the OpenMP Language Committee

Hello OpenMP World

17 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Programming OpenMP

Worksharing
Christian Terboven RWTH
Michael Klemm OpenMI?

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

For Worksharing

« If only the parallel construct is used, each thread executes the Structured Block.
e Program Speedup: Worksharing

e OpenMP‘s most common Worksharing construct: for

C/C++ Fortran

int 1i; INTEGER :: 1

fpragma omp for !'Somp do

for (i = 0; i < 100; i++) DO 1 = 0, 99

{ afi] = b[i] + cl1i]
ali] = b[i] + c[i]l; END DO

}

— Distribution of loop iterations over all threads in a Team.
— Scheduling of the distribution can be influenced.

Loops often account for most of a program’s runtime!

OpenMP Tutorial

Members of the OpenMP Language Committee

Worksharing illustrated

Pseudo-Code
Here: 4 Threads

Thread 1 |[doi=0, 24
a(i) = b(i) + c(i)
end do

Thread 2 |do i = 25, 49

erial a(i) = b(i) + (i)
doi=0,99 ond do

ali) =b(i) +c(i)| - —
end do d0|=50, 74

a(i) = b(i) + c(i)
Thread 3 |end do

doi=75, 99
a(i) = b(i) + c(i)
Thread 4 |end do

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

The Barrier Construct

e OpenMP barrier (implicit or explicit)

— Threads wait until all threads of the current Team have reached the barrier
C/C++

fpragma omp barrier

« All worksharing constructs contain an implicit barrier at the end

OpenMP Tutorial
Members of the OpenMP Language Committee

The Single Construct

C/C++

fpragma omp single [clause]
structured block

Fortran

!'Somp single [clause]
structured block
!'Somp end single

OpenMP

The single construct specifies that the enclosed structured block is executed by only on thread of the

team.

— Itis up to the runtime which thread that is.

Useful for:
— 1/0

— Memory allocation and deallocation, etc. (in general: setup work)

— Implementation of the single-creator parallel-executor pattern as we will see later...

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

The Master Construct (will be deprecated in OpenMP 6.0)

C/C++ Fortran
#fpragma omp master[clause] !'Somp master[clause]
structured block Structured block
!'Somp end master

« Replacement: see the masked construct later

« Note: The masked construct is no worksharing construct and does not contain an implicit barrier at the end.

OpenMP Tutorial
Members of the OpenMP Language Committee

Demo C_)penMP
Vector Addition

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Influencing the For Loop Scheduling / 1

e for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

— schedule(static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to
threads in a round-robin fashion. If chunk is not specified: #threads blocks.

— schedule (dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size,
blocks are scheduled to threads in the order in which threads finish previous blocks.

— schedule (guided [, chunk]):Similarto dynamic, but block size starts with implementation-defined
value, then is decreased exponentially down to chunk.

e Defaultis schedule (static).

OpenMP Tutorial
Members of the OpenMP Language Committee

Influencing the For Loop Scheduling / 2

Static Schedule
— schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin

fashion

OpenMP Tutorial
Members of the OpenMP Language Committee

1,2

P2

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0,8

0,6

0,4

0,2

Influencing the For Loop Scheduling / 2

Static Schedule
— schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin

fashion

Pros?

OpenMP Tutorial
Members of the OpenMP Language Committee

1,2

P2

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0,8

0,6

0,4

0,2

Influencing the For Loop Scheduling / 2

Static Schedule
— schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin
fashion

Pros?
- No/low runtime overhead

OpenMP Tutorial
Members of the OpenMP Language Committee

1,2

P2

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0,8

0,6

0,4

0,2

Influencing the For Loop Scheduling / 2

Static Schedule
— schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin

fashion

Pros?
- No/low runtime overhead

Cons?

OpenMP Tutorial
Members of the OpenMP Language Committee

1,2

P2

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0,8

0,6

0,4

0,2

Influencing the For Loop Scheduling / 2

Static Schedule
— schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin
fashion

Pros?
- No/low runtime overhead

Cons?
- No dynamic workload balancing

OpenMP Tutorial
Members of the OpenMP Language Committee

1,2

P2

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0,8

0,6

0,4

0,2

OpenMP

Influencing the For Loop Scheduling / 3

« Dynamic schedule

— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size

— Threads request a new block after finishing the previous one

— Default chunk size is 1

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Influencing the For Loop Scheduling / 3

« Dynamic schedule

— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size

— Threads request a new block after finishing the previous one

— Default chunk size is 1

e Pros?

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Influencing the For Loop Scheduling / 3

« Dynamic schedule

— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size

— Threads request a new block after finishing the previous one
— Default chunk size is 1

e Pros?
— Workload distribution

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Influencing the For Loop Scheduling / 3

« Dynamic schedule

— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size

— Threads request a new block after finishing the previous one
— Default chunk size is 1

e Pros?
— Workload distribution

« Cons?

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Influencing the For Loop Scheduling / 3

« Dynamic schedule

— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size

— Threads request a new block after finishing the previous one
— Default chunk size is 1
e Pros?
— Workload distribution
« Cons?
— Runtime Overhead
— Chunk size essential for performance

— No NUMA optimizations possible

OpenMP Tutorial
Members of the OpenMP Language Committee

Synchronization Overview

e Can all loops be parallelized with £ or-constructs? No!

OpenMP

— Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent. BUT:
This test alone is not sufficient:

C/C++

for (i = 0;

{

int i, int s

fpragma omp parallel for

i < 100; i++)

s = s + al[il;

}

Data Race: If between two synchronization points at least one thread writes to a memory location from

which at least one other thread reads, the result is not deterministic (race condition).

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP
Synchronization: Critical Region

A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

C/C++

#fpragma omp critical (name)
{
structured block ...

}

e Do you think this solution scales well?

C/C++

int 1, s = 0;

fpragma omp parallel for
for (1 = 0; i < 100; i++)
{

fpragma omp critical
{ s =8 + alil; }

}

OpenMP Tutorial

Members of the OpenMP Language Committee

OpenMIP

Programming OpenMP

Scoping

Christian Terboven RWTH
Michael Klemm OpenMI?

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Scoping Rules

« Managing the Data Environment is the challenge of OpenMP.

e Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs
— General default is shared for Parallel Region, firstprivate for Tasks.
— Loop control variables on for-constructs are private
— Non-static variables local to Parallel Regions are private

— private: A new uninitialized instance is created for the task or each thread executing the construct
e firstprivate: Initialization with the value before encountering the construct
 lastprivate: Value of last loop iteration is written back to the initial thread

— Static variables are shared

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Scoping Rules

« Managing the Data Environment is the challenge of OpenMP.

e Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs

— General default is shared for Parallel Region, firstprivate for Tasks.

— Loop control variables on for-constructs are private [J

— Non-static variables local to Parallel Regions are private

— private: A new uninitialized instance is created for the task or each thread executing the construct
e firstprivate: Initialization with the value before encountering the construct
 lastprivate: Value of last loop iteration is written back to the initial thread

— Static variables are shared

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Privatization of Global/Static Variables

« Global / static variables can be privatized with the threadprivate directive

— Oneinstance is created for each thread
« Before the first parallel region is encountered
 Instance exists until the program ends
« Does not work (well) with nested Parallel Region

— Based on thread-local storage (TLS)
o TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword thread (GNU extension)

C/C++ Fortran
static int 1i; SAVE INTEGER :: 1
fpragma omp threadprivate (i) !'Somp threadprivate (i)

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Privatization of Global/Static Variables

« Global / static variables can be privatized with the threadprivate directive 6"@

— Oneinstance is created for each thread

« Before the first parallel region is encountered 6Q(\
 Instance exists until the program ends (60
« Does not work (well) with nested Parallel Region &‘x\

— Based on thread-local storage (TLS) 0 \,

o TIsAlloc (Win32-Threads), pthread_key_creat éPb)&Thre@&,ekeyword ___thread (GNU extension)

X \o
OV, ¥
C/C++ \‘e “Q Fortran

static int l(*‘o 066 SAVE INTEGER :: 1

fpragma !'Somp threadprivate (i)

?@z\

OpenMP Tutorial
Members of the OpenMP Language Committee

Back to our example

OpenMP Tutorial
Members of the OpenMP Language Committee

C/C++

int i, s = 0;

#fpragma omp parallel for
for (1 = 0; i < 100; i++)
{

#fpragma omp critical
{ s =s + alil; }

}

OpenMIP

It‘s your turn: Make It Scale! OpenMP

#pragma omp parallel

{ doi=0, 24
s=s+ afi)
end do
#pragma omp for
for (1 = 0; 1 < 99; i++) do i = 25, 49
{ s=s+ afi)
doi=0,99 end do
_ s=s+a(i) | ==p
s =s +alil; ond do doi=50,74
s=s+a(i)
} end do
doi=75,99
} // end parallel s=s+ali)
end do

OpenMP Tutorial
Members of the OpenMP Language Committee

(done)

#pragma omp parallel

{

double ps = 0.0;

#pragma omp for
for (1 = 0; 1 < 99;
{
ps = ps + al[i]
}

#pragma omp critical

{
s += ps;
}

} // end parallel

OpenMP Tutorial
Members of the OpenMP Language Committee

// private variable

i4++)

.
4

doi=0,99
s=s+ali)
end do

OpenMIP

doi=0, 24
s, =s, +afi)

end do

S=Ss+s,

doi= 25, 49
s, =, + afi)

end do

S=s+s,

doi=50,74
S3 = S5+ ali)

end do

S=Ss+s,

doi=75, 99
s, =5, + ali)

end do

S=s+s,

OpenMIP

The Reduction Clause

« In areduction-operation the operator is applied to all variables in the list. The variables have to be shared.

— reduction (operator:list)
— The result is provided in the associated reduction variable

C/C++
int i, s = 0;

fpragma omp parallel for reduction (+:s)

for(i = 0; 1 < 99; i++)

{
s = s + alil;

}
— Possible reduction operators with initialization value:

+ (0), * (1), - (0), & (~0), | (O0), && (1), |l (O0), ~ (0), min (largest
number), max (least number)

— Remark: OpenMP also supports user-defined reductions (not covered here)

OpenMP Tutorial

Members of the OpenMP Language Committee

Example

OpenMP Tutorial
Members of the OpenMP Language Committee

Example: Pi (1/2) OpenMIP

double f(double x)
{ 1
return (4.0 / (1.0 + x*x)); o J 4
} 1 + x?
double CalcPi (int n) s
{
const double fH =1.0/ (double) n; 4 . ' ' 1
double fSum = 0.0; 35 / T s
double fX; of . L
int i; "n..
25 \\ 25
#pragma omp parallel for sl . b

for (i=0; i < n; i++) = \15
{ | |

fX =fH * ((double)i + 0.5); 1 ol

fSum += f(fX); 05} 105
} 0 0
return fH * fSum; 05 0 05 1 15

}

OpenMP Tutorial
Members of the OpenMP Language Committee

Example: Pi (2/2) OpenMIP

double f(double x)
{ 1
return (4.0 / (1.0 + x*x)); o J 4
} 1 + x?
double CalcPi (int n) s
{
const double fH =1.0/ (double) n; 4 . ' ' 1
double fSum = 0.0; 35 / T s
double fX; of . L
int i; "n..
25 \\ 25
#pragma omp parallel for private(fX,i) reduction(+:fSum) al It 1

for (i=0; i < n; i++) = \15
{ | |

fX =fH * ((double)i + 0.5); 1 ol

fSum += f(fX); 05} 105
} 0 0
return fH * fSum; 05 0 05 1 15

}

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Programming OpenMP

OpenMP Tasking Introduction

Christian Terboven RWTH
Michael Klemm OpenMI?

OpenMP Tutorial

OpenMP

Tasking Execution Model

" Supports unstructured parallelism = Example (unstructured parallelism)
- unbounded loops

#pragma omp parallel
#pragma omp masked

while (<expr>) { while (elem '= NULL) ({
s #pragma omp task
} compute (elem) ;
ZTTCCUTOTVEG TUTTCUUTTO elem = elem->next;

void myfunc(<args>)

{
.; myfunc(<newargs>); ...;
} Parallel Team

-y
- s

= Several scenarios are possible:)
—> single creator, multiple creators, nested tasks (tasks & WS)

= All threads in the team are candidates to execute tasks

OpenMP Tutorial
Members of the OpenMP Language Committee

What is a Task in OpenMP? OpenMP

= Tasks are work units whose execution
- may be deferred or...

- ... can be executed immediately

= Tasks are composed of
—> code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

= Tasks are created...
... when reaching a parallel region - implicit tasks are created (per thread)

... when encountering a task construct - explicit task is created
... when encountering a taskloop construct - explicit tasks per chunk are created

... when encountering a target construct - target task is created

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP Tasking Idiom

OpenMP

= OpenMP programmers need a specific idiom to kick off task-parallel execution: parallel

masked

- OpenMP version 5.0 introduced the parallel master construct

= With OpenMP version 5.1 this becomes parallel masked

1 int main(int argc, char* argv[])
2 A
3 [«..]
4 #pragma omp parallel
5 {
6 #pragma omp masked
7 {
9
start task parallel execution();
9 }
10 }
11. [+..]
12.}

1 int main(int argc, char* argv[])
2 A

3 [o..]

4 #pragma omp parallel

5 {

6 #pragma omp single

7 {

9

start task parallel execution();
9 }

10 }
11. [...]
12.}

OpenMP Tutorial
Members of the OpenMP Language Committee

Fibonacci Numbers (in a Stupid Way ©) OpenMP

1 int main(int argc, 14 int fib(int n) {

2 char* argv[]) 15 if (n < 2) return n;

3 16 int x, y;

4 [«..] 17 #pragma omp task shared(x)
5 #pragma omp parallel 18 {

6 { 19 x = fib(n - 1);

7 #pragma omp masked 20 }

8 { 21 #pragma omp task shared(y)
9 fib(input); 22 {
10 } 23 y = fib(n - 2);
11 } 24 }
12 [...] 25 #pragma omp taskwait
13.} 26 return x+y;

27.}

= Only one thread enters £fib() frommain().
= That thread creates the two initial work tasks and starts the parallel recursion.
= The taskwait construct is required to wait for the result for x and y before the task can sum up.

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

T1 enters fib(4)

Task Queue

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

Task Queue

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

T1 and T2 execute tasks
from the queue

Task Queue

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

T1 and T2 execute tasks
from the queue

T1 and T2 create 4 new @ @

tasks

Task Queue

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

T1 and T2 execute tasks

from the queue

T1 and T2 create 4 new @
tasks

T1 - T4 execute tasks

Task Queue

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

T1 and T2 execute tasks

from the queue
T1 and T2 create 4 new @
tasks

T1 - T4 execute tasks

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Programming OpenMP

Hands-on Exercises

Christian Terboven RWTH
Michael Klemm OpenMI?

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Exercises

= We have implemented a series of small hands-on examples that you can use and play with.
- Download:

- Build: make

= Each hands-on exercise has a folder “solution”
- It shows the OpenMP solution that we have added

- You can use it to cheat ©, or to check if you came up with the same solution

OpenMP Tutorial
Members of the OpenMP Language Committee

https://github.com/NERSC/openmp-series-2024
https://github.com/NERSC/openmp-series-2024
https://github.com/NERSC/openmp-series-2024

Exercises: Overview

Hello World

Pi

Jacobi
Work-Distribution
Min/Max

o B~ W N BB

OpenMP Tutorial
Members of the OpenMP Language Committee

Getting started
Worksharing, Scoping
Worksharing, Scoping
Worksharing
Worksharing, Reduction

OpenMP

Start with this (if OpenMP is new for you)
First day
First day
First day
First day

OpenMP

