Present and Future Computing Requirements

Case Study: Subsurface Flow and Reactive Transport

Tim Scheibe
Pacific Northwest National Laboratory
tim.scheibe@pnnl.gov
Project Description

1. Multiple projects (all funded by BER / CESD / SBR):
 1. SciDAC Groundwater Science Application and SAPs (ended) – Hybrid multiscale simulation of subsurface reactive transport
 2. PNNL Subsurface Scientific Focus Area – Impact of microenvironments and transition zones
 3. University-led project (ending) – Coupling genome-scale microbial metabolism and subsurface reactive transport models (linked to Rifle Integrated Field Challenge project)
1. Project Description

Our present focus is…

► More physics/chemistry/biology, less empiricism
 ■ Pore-scale and other high-resolution flow/transport modeling
 ■ Mechanistic biological models
► Addressing the “tyranny of scales”
 ■ Hybrid multiscale simulation to link pore- and continuum-scale models

Data courtesy of John Zachara, PNNL

Tartakovsky et al., J. Porous Media, 2009
(Micromodel image: Carolyn Pearce, PNNL)
By 2017 we expect to...

* Develop fully coupled pore- and continuum-scale hybrid simulator – Next generation of subsurface simulation tools?
By 2017 we expect to...

- Simulate multiphase flow, solute and energy transport, geochemical reactions, geomechanical effects, and multi-organism microbial communities.

Viscous fingering

Capillary fingering
By 2017 we expect to...

- Link subsurface models to larger-scale earth system simulations (e.g., community land model)
2. Computational Strategies

Codes we use are...

- eSTOMP: Continuum-scale porous media flow and reactive transport
 - Algorithms:
 - Finite difference spatial discretization
 - Newton non-linear outer loop
 - Linear inner solve
 - Operator split (reactions / transport / flow)
 - Built on Global Arrays (GA) Toolkit and PETSc
 - Parallel scaling limited by
 - Scales well to over 130,000 processors
 - Weak scaling limited by global linear system solve
 - Load balancing for reactions

Benchmark Problem: uranium bioremediation
- 18m x 20m x 6.3m, 2.2M grid cells
- 300 time steps, 1 simulated day, checkpoint each 6 sim hours
- 5 lithofacies, 102 biogeochemical species, 7 mineral reaction network
Codes we use are...

- **eSTOMP**: Continuum-scale porous media flow and reactive transport

 - **Computational Challenges**
 - Integrating mechanistic models of microbially-mediated reactions with complex communities of organisms
 - Small (N=500) LP solution at each iteration of each time step at each grid cell
 - Convergence issues
 - E.g., fully coupled well model in eSTOMP-CO2
2. Computational Strategies

Codes we use are...

- SPH: Pore-scale porous media flow and reactive transport
 - Algorithms:
 - Smoothed Particle Hydrodynamics – lagrangian mesh-free particle method
 - No global linear matrix solve
 - Local force calculation requires tree search for neighbors
 - Reactions – system of ODEs
 - Built on Global Arrays (GA) Toolkit
 - Parallel scaling limited by
 - Had been I/O limited but this has been addressed through use of H5PART

Example Problem: mixing-controlled precipitation reaction
1 mm3, 7 M computational particles
About 100 mineral grains
Two dissolved species react to form a precipitated mineral species
Codes we use are...

- **SPH**: Pore-scale porous media flow and reactive transport

 Computational Challenges

 - Boundary conditions:
 - Periodic conditions usually used; how to deal with solute concentrations?
 - Flux-based boundary conditions had been difficult to implement

 - Time steps required for stability are typically very small
 - Strictly is for compressible flows – use for nearly incompressible fluids leads to challenges
 - Slow compared to grid-based methods for single-phase flow
Codes we use are...

- **SPH for multiphase flow**
 - Can simulate surface tension and contact angle by varying particle-particle attractive forces
 - Application to new BER directions in carbon cycling within terrestrial ecosystems.
 - Currently testing 3D air-water simulations with microbial reactions for cellulose degradation

![Viscous fingering](image1)
![Capillary fingering](image2)
![Stable displacement](image3)
Codes we use are...

- **TETHYS**: Pore-scale porous media flow and transport
 - Algorithms:
 - Finite volume unstructured spatial discretization
 - Built on Global Arrays (GA) Toolkit and PETSc
 - Parallel scaling limited by
 - I/O, code structure
 - Computational challenges
 - Runs as unsteady problem to steady state – wait times in queue is limiting
 - Mesh-based approach limits application to problems with moving interfaces (e.g., multiphase flow, precipitation/dissolution reactions, biofilms)

Example Problem: Navier-Stokes flow and tracer transport in a laboratory column
20 cm length, 10 cm diameter, 40 M computational nodes
50 micron spatial resolution derived from X-ray microtomography
4000 cores on Hopper
Codes we use are...

- **TETHYS**: Pore-scale porous media flow and transport
 - Validation study with MRI
Current HPC Usage

Machines currently used:

- NERSC (2.5 M hours in 2012)
- Chinook (EMSL) and Olympus (PNNL Institutional Computing) (< 1M hours in 2012)

Concurrency, run time, # runs/year:

- eSTOMP: typ. 100-1000 cores per run, O(1 day), many runs can be performed simultaneously for UQ, hundreds to thousands run/yr
- SPH: typ. 1000-2000 cores per run, O(1 day), hundreds runs/yr
- Hybrid SPH/STOMP: <100 cores per SPH, minutes turnaround, total allocation 1000 cores, 6 hours, < 100 runs/yr
- TETHYS: 4000 cores per run, several days clock time, < 10 runs / yr
Current HPC Usage

- Data / memory requirements:
 - Data I/O and storage generally small
 - Memory requirements not limiting (or can be addressed with code efficiency)

- Necessary software, services or infrastructure
 - Workflow management tools for hybrid simulation (SWIFT)
 - Visualization (VISIT)
 - GA and PETSc
Future HPC Usage

- At-scale codes are currently near maximum reasonable usage needs
 - Pore-scale simulation domain volumes are approaching “Darcy” scale from which macroscopic processes/parameters can be defined
 - Trying to simulate application-relevant domains with full pore-scale resolution is not a reasonable target in the foreseeable future
 - Many orders of magnitude (≈10^{15}) scale gap (cm to km)
 - Couldn’t meaningfully characterize at this scale anyway
 - x32 might be utilized through
 - More UQ
 - More complex microbial modeling (communities with many functional groups)
 - eSTOMP factor of 10 increase for a single in-silico species model
 - More coupling, complex processes
 - Multiphase flow, geomechanical processes
 - Larger domains (CO2 vs. contaminant plumes)
Hybrid Multiscale Simulation

A more interesting and potentially transformative approach is a new paradigm for subsurface modeling – directly coupling pore- and continuum-scale codes in a single simulation domain:

- Spans scale gap between fundamental process representations and applications
- Maintains reasonable efficiency
- Takes advantage of multiple levels of concurrency
Micromodel Experiments

- Mixing-controlled calcium carbonate precipitation (Zhang et al., ES&T 44(20), 2010).

FIGURE 2. Images of center of micromodels with CaCO$_3$ precipitates formed along the mixing zone at different saturation states (a) $\Omega_d/\Omega_v = 3.4/2.8$, (b) $\Omega_d/\Omega_v = 3.8/3.1$, (c) $\Omega_d/\Omega_v = 4.6/3.9$, and (d) $\Omega_d/\Omega_v = 5.2/4.5$.
Hybrid Multiscale Simulation

- Multiscale dimension reduction approach
 - Reduce degrees of freedom (number of time steps) solved in microscale simulation by iterating between microscale and macroscale
 - Perform numerical closure on microscale with short bursts of pore-scale simulation where insufficient general closure exists

(figure after Kevrekidis et al. 2003)

Tartakovsky and Scheibe, *Advances in Water Resources*, 2011
Hybrid Multiscale Simulation

▸ Multiscale dimension reduction approach

$t_d = 27.5$

$t_d = 223.3$

$t_d = 1112.5$

Tartakovsky and Scheibe, *Advances in Water Resources*, 2011
Hybrid Multiscale Simulation

- Current work: Put into the context of many possible pore-scale subdomains in a focused region with adaptivity

Uses SALSSA workflow environment and SWIFT job management tools
Future HPC Usage – Multiscale Hybrid

- Compute hours needed
 - Could effectively use x32 to make significant advances

- Changes to parallel concurrency, run time, number of runs per year
 - Multiple levels of concurrency
 - Run times and number of runs comparable, but each run would involve many “sub-runs”

- Changes to data read/written
 - I/O during simulation larger but long-term storage still small

- Changes to memory needed
 - Not significantly different

- Changes to software/services/infrastructure required
 - Workflow management tools critical
 - Visualization during simulation
Strategies for New Architectures

- Our strategy for running on new many-core architectures (GPUs or MIC) is ...
 - Poorly defined but under development
 - SPH may become more attractive under new architectures

- To date we have prepared for many core by ...
 - Collaborating with computational scientists under PNNL eXtreme-Scale Computing Initiative to perform testbed studies

- We are already planning to do ...

- To be successful on many-core systems we will need help with
 - Updated programming models on which we heavily rely
 - E.g., will Global Arrays work well on new architectures, or be revised to do so?
Summary

• What new science results might be afforded by improvements in NERSC computing hardware, software and services?
 • New approach to multiscale simulation of subsurface processes
 • Move from parameterized phenomenological models to mechanistic process-based predictive models

• What "expanded HPC resources" are important for your project?
 • Programming models for new architectures
 • Workflow management and visualization tools
Questions?