SciDAC – PSI (Plasma Surface Interactions): Present and Future Computing Requirements

Brian D. Wirth*,#, on behalf of

<table>
<thead>
<tr>
<th>Institution (Lead)</th>
<th>Principal Investigator (Lead)</th>
<th>Additional Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANL</td>
<td>Tim Tautges (FASTMath)</td>
<td>Emil M. Constantinescu, Jungho Lee, Barry Smith (FASTMath)</td>
</tr>
<tr>
<td>GA/DIII-D</td>
<td>Vincent Chan</td>
<td>Adam McLean (LLNL on assignment at DIII-D)</td>
</tr>
<tr>
<td>LANL</td>
<td>Xianzhu Tang</td>
<td>Jim Ahrens (SDAV), David Higdon (QUEST), Ollie Lo (SDAV), Danny Perez, Arthur Voter, Blas Uberuaga</td>
</tr>
<tr>
<td>ORNL</td>
<td>Brian D Wirth</td>
<td>David E. Bernholdt, Jay Jay Billings, John Canik, Jeremy Meredith (SDAV), Philip C. Roth (SUPER), Roger Stoller, Stanislav Golubov</td>
</tr>
<tr>
<td>PNNL</td>
<td>Rick Kurtz</td>
<td>Giridhar Nandipati, Kenny Roche</td>
</tr>
<tr>
<td>UCSD</td>
<td>Sergei Krasheninnikov</td>
<td>Roman Smirnov</td>
</tr>
<tr>
<td>UIUC</td>
<td>David Ruzic</td>
<td>Davide Curreli, Kyle Lindquist</td>
</tr>
<tr>
<td>UMass</td>
<td>Dimitrios Maroudas</td>
<td></td>
</tr>
</tbody>
</table>

* bdwirth@utk.edu
#

This work is supported by the U.S. Department of Energy, Office of Fusion Energy Sciences and Advanced Scientific Computing Research (ASCR) through the SciDAC-3 program.
SciDAC-PSI project description

- Focus on plasma materials interaction (PMI) encompassing 3 coupled spatial regions:
 - Edge/scrape-off-layer region of the plasma (X. Tang, J. Canik);
 - Near surface material response to extreme thermal & particle fluxes under the influence of, and feedback to, the plasma sheath (B. Wirth, B. Uberuaga and D. Maroudas); and
 - Structural materials response to intense, 14 MeV-peaked neutron spectrum (R. Kurtz)

- Utilize both particle-based and continuum approaches to develop & deploy validated, high performance simulation tools for these distinct spatial domains, and develop techniques for multiscale integration and interfacing across these domains

- Successful completion of the project (2017) will provide simulation tools to evaluate tungsten-based plasma facing component and divertor components in a burning plasma environment. More specifically:
 - What physical parameters control the time dependent evolution of the near-surface morphology and composition of the re-deposition layer – key phenomena to model include recycling, surface morphology, gas bubble, precipitate and second phase domains (including porosity), and gas fueling/recycling
 - What are the effects of high-energy neutron damage on mediating, or exacerbating, near-surface defect evolution and tritium species permeation and retention?
 - What is the impact of dilute impurities (O, Be, …) on surface morphology evolution and plasma contamination and how does mixed material transport in tokamaks impact erosion and impurity generation?
 - How does the evolving bulk microstructure impact the thermal properties, and thereby feedback into PFC evolution by modifying the resulting temperature profiles?
Surface dynamics under combined thermal/particle fluxes

- T < 700 K
 - Non-specific damage
 - 4.3×10^{19} He$^+$ m$^{-2}$/s
 - 8 eV, 300 K

- 900 K < T < 1900 K
 - Fuzz / coral
 - 5×10^{22} m$^{-2}$ s$^{-1}$, 8 eV, 1120 K

- T > 2000 K
 - Holes
 - 2000 s, 1120 K, 60 eV He$^+$ PISCES-B pure He plasma
 - 9000 s, 1120 K, 60 eV He$^+$ PISCES-B pure He plasma
 - 22000 s, 1120 K, 60 eV He$^+$ PISCES-B pure He plasma

References:
- Baldwin et al., Nucl. Fusion 48, 035001 (2008)
- N. Ohno et al., in IAEA-TM, Vienna, 2006
- M. Baldwin et al., NF 48(2008)035001
Complex, interlinked PSI phenomena

Figure of merit:
Incident plasma ion flux near divertor strikepoint: $10^{24} \text{ m}^{-2}\text{s}^{-1}$

Steady-state sputtering yield $O \left(10^{-4}\right)$ on surface monolayer ($10^{19} \text{ atoms/m}^2$) results in sputtering of every atom every 0.1 sec -> every atom sputter $>10^8 \text{ times/year}$

SciDAC-PSI computational strategies
Molecular Dynamics calculations

- ‘Common’ MD codes: LAMMPS, SPASM
 - typically run on small clusters/small atomistic domains (usually because of throughput), especially for ‘discovery’ science
 - LANL has demonstrated SPASM for 1 billion atoms for 1 nanosecond
 - LAMMPS has been demonstrated on GPUs/TITAN
- Accelerated MD codes – PRD has been run on roadrunner over 12,000 replicas

Road Runner experience (PRD):
Flop count: petaflop
number of cores: 120,000
wall clock time: 24 hours
total memory: 12000 GB
minimum memory per core: 0.1 GB
total data read & written per run: 100 GB
size of checkpoint file: 0.1 GB

* http://lammps.sandia.gov/bench.html#titan
Kinetic Monte Carlo simulations

- kSOME code under-development at PNNL (Kurtz and Roche)
 ‘Object’ Monte Carlo codes in materials science are traditionally sequential/single processor. Ken Roche working on optimizing algorithm and parallelization

- Identified unstructured I/O and related data tracking to improve performance

- Initial parallelization effort focused on threaded approach to update reaction tables simultaneously (rather than sequentially): Current strong scaling realized

- Planned parallel version of kSOME will allow mutually inclusive models of parallelization:
 - Distributed memory over distinct configurations;
 - Distributed memory within particular configurations
 - Shared or distributed memory over update of evolving defect configuration

- Current performance optimization has demonstrated that 320 nm x 320 nm x 35 nm simulation cell simulated to 4 seconds during 1 MeV Kr ion irradiation of thin foils which requires 160 Million MC steps went from 52.5 hours CPU time (original) to 32.5 hours (CPU + box method data tracking + pthreads)
Irradiation conditions:

- System Size = 315 nm x 315 nm x 35.44 nm
- 1 Mev Kr ion irradiation at 80 °C

Other code improvements (K. Roche):

- A suite of profile benchmarks on Titan completed
- Experimented with asynchronous communication tests and mixed mode MPI + threads on Titan nodes for several basic operations
PARASPACE/Xolotl-PSI: Spatially-dependent reaction-diffusion models

Large set of coupled, PDE’s that are spatially discretized (Paraspace) and solved using sparse-matrix, implicit time integration: Future will utilize finite element solutions with

\[
\frac{\partial C_i}{\partial t} = P_i(\bar{x}) - \bar{\nabla} \cdot \bar{J}_i + GR_i(\bar{x}) - AR_i(\bar{x}) = P_i(\bar{x}) + \frac{D_i}{kT} C_i + D_i \nabla C_i + GR_i(\bar{x}) - AR_i(\bar{x})
\]

* Reaction events are non-linear (quadratic) but ‘local’, reaction rate densities described by classical, dilute limit reaction-diffusion theory

* Current approach utilizes finite-difference to obtain large, sparse-matrix which is solved using a linear solver using open-MP & backward difference time integration

* Future: finite element formalism, implicit-explicit (IMEX) ODE solvers and/or differential variational inequality (DVI) solvers in (PETSc)

Simulation & experimental thermal desorption of W irradiated with 5 keV Kr, followed by 250 eV He

Current HPC Usage

- m1709 (SciDAC-PSI) is new 2013 repository – envision 5M cpu hours in 2013
- m1200 (atomistics of plasma surface interactions) used ~0.4M cpu hours in 2013

Anticipated 2013 MD/AMD runs:
- ~80 total simulations for 10 million atoms for approximately 10 ns (MD/LAMMPS) (256 cores) - requires ~10 queue submissions/checkpoints
- ~20 total simulations consisting of 50 million atoms for approximately 10 ns (MD/LAMMPS) (1024 cores)
- ~20 Accelerated MD simulations for 10 million atoms for approximately 1 ms
- kSOME (KMC) optimization and testing

* http://lammps.sandia.gov/bench.html#titan
HPC requirements for 2017 & new architectures

- Xolotl-PSI currently being written/coded, based on a finite element implementation of the reaction-diffusion problem, coupled to PETSc solvers and including intrinsic code performance and uncertainty quantification ‘hooks’, as well as flexibility for HPC computing infrastructure (e.g., GPUs or other large-scale single-instruction, multiple-data oriented processors)
 - Details of code & performance/scaling remain to be determined

- 3 Dimensional modeling of surface response to plasma with cross-sections on the scale of mm2 to cm2 and depth of several microns constitutes a problem on the scale of $O(10^{12}-10^{13})$ unknowns. The need for long time integration (> 2 years of radiation damage) requires the ability to use large time steps and inexpensive time steps – anticipate use of IMEX solvers but still much remains unknown.

- Estimate of specific details of compute hours, memory, concurrency will be provided in case study document
Performance of plasma facing components (PFCs) and materials is an inherently multiscale challenge – significant effort ongoing to utilize multiscale materials modeling and high performance computing – but this is in the very early stages of research and implementation – lots of effort at different scales, few (none) integrated codes using high-performance computing.

Continued 2x/year increases in HPC capability can be expected to drive understanding of the passing of information across particle-based simulation techniques (e.g., multiscale integration) and enable large-scale, continuum level simulations of surface topology, chemistry and gas inventory during steady-state PFC operation in ITER-like conditions.