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Preliminaries: Part 1 

• Disclosures 
– The views expressed in this tutorial are those of the 

people delivering the tutorial.  
– We are not speaking for our employers. 
– We are not speaking for the OpenMP ARB 

• We take these tutorials VERY seriously: 
– Help us improve … tell us how you would make this 

tutorial better.  



Hands-on Instructions 
•  We have reserved 200 nodes of Cori and 100 nodes of 

Edison at NERSC for this tutorial 
•  Please be sure to send a “THANKS NERSC” email if you 

appreciate this 
•  Your training accounts will give you access to our 

reservation 
•  Please type your password very carefully, because you will 

get cut off after 3 tries 
•  For Cori we have Haswell nodes of Cori Phase 1 
– Cori is a brand new XC40 

•  Edison is a Cray XC30 with a peak performance of more 
than 2 petaflops. Edison features the Cray Ariesinterconnect, 
Intel Xeon processors, 64 GB of memory per node. 

•  For details, see NERSC Web 
3 



Finding the web pages 

•  For the instructions, please go to the following: 
– www.nersc.gov 
– users 
–  software 
– programming-models 
– openmp 
–  sc16-openmp-tutorial 

•  https://www.nersc.gov/users/software/programming-models/
openmp/sc16-openmp-tutorial/ 
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Preliminaries: Part 2 

• Our plan for the day .. Active learning! 
– We will mix short lectures with short exercises. 
– You will use your laptop to connect to a multiprocessor  

server. 
• Please follow these simple rules 
– Do the exercises that we assign and then change things  

around and experiment. 
– Embrace active learning! 

– Don’t cheat:  Do Not look at the solutions before you  
complete an exercise … even if you get really frustrated. 



 Outline 
• OpenMP overview   
• Introducing Explicit Tasks in OpenMP     
• Working with Tasks   
• Tasks and the conceptual core of OpenMP  
• Break 
• Working with tasks: the divide and conquer 
pattern   

• Advanced tasking features   
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OpenMP* overview: 

omp_set_lock(lck) 

#pragma omp parallel for private(A, B) 

#pragma omp critical 

C$OMP parallel do shared(a, b, c) 

C$OMP PARALLEL  REDUCTION (+: A, B) 

call OMP_INIT_LOCK (ilok) 

call omp_test_lock(jlok)  

setenv OMP_SCHEDULE “dynamic” 

CALL OMP_SET_NUM_THREADS(10) 

C$OMP DO lastprivate(XX) 

C$OMP ORDERED 

C$OMP  SINGLE PRIVATE(X) 

C$OMP SECTIONS  

C$OMP MASTER C$OMP ATOMIC 

C$OMP FLUSH 

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C) 

C$OMP THREADPRIVATE(/ABC/) 

C$OMP PARALLEL COPYIN(/blk/) 

Nthrds = OMP_GET_NUM_PROCS() 

!$OMP  BARRIER 

OpenMP:  An API for Writing Multithreaded 
Applications 
 

§ A set of compiler directives and library routines  for 
parallel application programmers 

§ Greatly simplifies writing multi-threaded (MT) programs 
in Fortran, C and C++ 

§ Standardizes established SMP practice + vectorization and 
heterogeneous device programming 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board. 
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OpenMP Execution Model:  
Fork-Join pattern:  

u Master thread spawns a team of threads as needed. 

u Parallelism added incrementally until performance goals 
are met: i.e. the sequential program evolves into a 
parallel program. 

Parallel Regions 
Master 
Thread 
in green 

A Nested 
Parallel 
region 

Sequential Parts 
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Thread Creation: Parallel Regions 

•  You create threads in OpenMP* with the parallel construct. 
•  For example, To create a 4 thread Parallel region: 

double A[1000]; 
omp_set_num_threads(4); 
#pragma omp parallel 
{ 

 int ID = omp_get_thread_num(); 
     pooh(ID,A); 
} 

l Each thread calls pooh(ID,A) for ID = 0 to 3!

Each thread 
executes  a 
copy of the 
code within 
the 
structured 
block 

Runtime function to 
request a certain 
number of threads 

Runtime function 
returning a thread ID 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 



Thread Creation: Parallel Regions  

•  Each thread executes 
the same code 
redundantly. 

	double A[1000]; 
#pragma omp parallel num_threads(4) 
{ 

         int ID = omp_get_thread_num(); 
    pooh(ID, A); 
} 
 printf(“all done\n”); 

omp_set_num_threads(4) 

pooh(1,A) pooh(2,A) pooh(3,A) 

printf(“all done\n”); 

pooh(0,A) 

double A[1000]; 

A single 
copy of A is 
shared 
between all 
threads. 

Threads wait  here  for all threads to finish 
before proceeding (i.e. a barrier) 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 



OpenMP: what the compiler does 

#pragma	omp	parallel	num_threads(4)	
{	
				foobar	();	
}	

void	thunk	()	
{	
				foobar	();	
}	
	
pthread_t	tid[4];	
for	(int	i	=	1;	i	<	4;	++i)	
	pthread_create	(	

								&tid[i],0,thunk,	0);	
thunk();	
	
for	(int	i	=	1;	i	<	4;	++i)	
				pthread_join	(tid[i]);	

§  The OpenMP compiler generates code 
logically analogous to that on the right 
of this slide, given an OpenMP pragma 
such as that on the top-left"

§  All known OpenMP implementations 
use a thread pool so full cost of threads 
creation and destruction is not incurred 
for reach parallel region."

§  Only three threads are created because 
the last parallel section will be invoked 
from the parent thread. "



OpenMP data environment - motivation 
When operating in parallel – proper sharing, or NOT sharing is 
essential to correctness and performance. 
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#pragma omp parallel for  
{  

 for(i=0; i<n; i++){  
  tmp= 2.0*a[i];  
  a[i] = tmp;  
  b[i] = c[i]/tmp;  
 }  

} 

By default, all threads share a common address space.  Therefore, all threads will be 
modifying tmp simultaneously in the code on the LEFT. 

On the RIGHT –private clause directs that each thread  
will have an (uninitialized) private copy. 

 
Initialization is possible with “firstprivate” and grabbing the last value is possible with 
“lastprivate.”  Reductions are important enough to have a special clause, and defaults can 
be set (including to “none.”) 

#pragma omp parallel for private(temp) 
{  

 for(i=0; i<n; i++){  
  tmp= 2.0*a[i];  
  a[i] = tmp;  
  b[i] = c[i]/tmp;  
 }  

} 



OpenMP data environment - summary 
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Data scope attribute clause description 

private clause: declares the variables in the list to be private (not shared) to each thread. 

firstprivate clause: declares variables in the list to be private plus the private variables are initialized 
to the value of the variable when the construct is encountered (”entered”). 

lastprivate clause: declares variables in the list to be private plus the value of from the sequentially 
last iteration of the associated loops, or the lexically last section construct, is assigned to the original 
list item(s) after the end of the construct. 

shared clause: declares the variables in the list to be shared among all the threads in a team. All 
threads within a team access the same storage area for shared variables. Synchronization is generally 
advised if variables are updated. 

reduction clause: performs a reduction on the scalar variables that appear in the list, with a specified 
operator. 

default clause: allows the user to affect the data-sharing attribute of the variables appeared in the 
parallel construct. 

1.  Variables are shared by default. 
2.  Global variables are shared by default. 
3.  Automatic variables within subroutines called from within a parallel region are private 

(reside on a stack private to each thread), unless scoped otherwise. 
4.  Default scoping rule can be changed with default clause. 
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A recurring example:   
Numerical integration 

∫ 	4.0 
(1+x2) dx = π 

0 

1 

∑ F(xi)Δx ≈ π 
i = 0 

N 

Mathematically, we know that: 

We can approximate the integral as a 
sum of rectangles: 

Where each rectangle has width Δx and 
height F(xi) at the middle of interval i. 

F(
x)

 =
 4

.0
/(1

+x
2 )

 

4.0 

2.0 

1.0 
X 0.0 
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Serial PI program 

static long num_steps = 100000; 
double step; 
int main () 
{    int i;    double x, pi, sum = 0.0; 
 

   step = 1.0/(double) num_steps; 
 

   for (i=0;i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
   } 
   pi = step * sum; 

} 

See OMP_exercises/pi.c 
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Example: Pi with a loop and a reduction 
#include <omp.h> 
static long num_steps = 100000;         double step; 
void main () 
{    int i;    double x, pi, sum = 0.0;  
      step = 1.0/(double) num_steps; 
      #pragma omp parallel  
      { 
           double x; 
          #pragma omp for reduction(+:sum) 

     for (i=0;i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
     } 

       } 
   pi = step * sum; 

} 

Create a scalar local to each thread to hold 
value of x at the center of each interval 

Create a team of threads … 
without a parallel construct, you’ll 
never have more than one thread 

Break up loop iterations 
and assign them to 
threads … setting up a 
reduction into sum.  Note 
… the loop index is local to 
a thread by default. 



Results*: pi with a loop and a reduction 
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*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 GHz and 4 Gbyte DDR3 memory at 1.333 GHz. 

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.   

threads PI Loop 

1 1.91 

2 1.02 

3 0.80 

4 0.68 



Exercise: matrix multiplication 

•  We have provided a simple matrix multiplication program 
matmult.c 

•  Build and run this serial program 
– Make matmult 
–  ./matmult 100 200 300 

•  Parallelize the program using OpenMP. 

18 



 Outline 
• OpenMP overview   
• Introducing Explicit Tasks in OpenMP     
• Working with Tasks   
• Tasks and the conceptual core of OpenMP  
• Break 
• Working with tasks: the divide and conquer 
pattern   

• Advanced tasking features   
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Not all programs have simple loops OpenMP 
can parallelize 

•  Consider a program to traverse a linked list: 

      p=head; 
      while (p) { 

          processwork(p); 
            p = p->next; 
      } 
 

•  OpenMP can only parallelize loops in a basic standard form 
with loop counts known at runtime 
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Linked lists with parallel loops 

 while (p != NULL) { 
  p = p->next; 

       count++; 
 } 
 p = head; 
 for(i=0; i<count; i++) { 
       parr[i] = p; 
       p = p->next; 
    } 
 #pragma omp parallel  
 { 
      #pragma omp for schedule(static,1) 
      for(i=0; i<count; i++) 
         processwork(parr[i]); 
 } 

Count number of items in the linked list 

Copy pointer to each node into an array 

Process nodes in parallel with a for loop 

Default schedule Static,1 
One Thread 48 seconds 45 seconds 
Two Threads 39 seconds 28 seconds 

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2 
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Linked lists with parallel loops 

 while (p != NULL) { 
  p = p->next; 

       count++; 
 } 
 p = head; 
 for(i=0; i<count; i++) { 
       parr[i] = p; 
       p = p->next; 
    } 
 #pragma omp parallel  
 { 
      #pragma omp for schedule(static,1) 
      for(i=0; i<count; i++) 
         processwork(parr[i]); 
 } 

Count number of items in the linked list 

Copy pointer to each node into an array 

Process nodes in parallel with a for loop 

Default schedule Static,1 
One Thread 48 seconds 45 seconds 
Two Threads 39 seconds 28 seconds 

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2 

There has got to be a better way!!! 



What are tasks? 

•  Tasks are independent units of work 
•  Tasks are composed of: 
–  code to execute 
– data to compute with 

•  Threads are assigned to perform the 
work of each task. 
– The thread that encounters the task construct 

may execute the task immediately. 
– The threads may defer execution until later Serial Parallel 



What are tasks? 

•  The task construct includes a structured 
block of code 

•  Inside a parallel region, a thread 
encountering a task construct will 
package up the code block and its data 
for execution 

•  Tasks can be nested: i.e. a task may 
itself generate tasks. 

Serial Parallel 



Task Directive 

25 

#pragma omp parallel 
{  
  #pragma omp master  
   {  
  #pragma omp task 
      fred();  
  #pragma omp task 
      daisy();  
  #pragma omp task 
     billy();  
   }  
} 

Thread 0 packages 
tasks 

Create some threads 

Tasks executed by 
some thread in some 
order 

All tasks complete before this barrier is released 

#pragma omp task [clauses] 

                     structured-block     



Exercise: Simple tasks 
•  Write a program using tasks that will “randomly” generate one of two 

strings: 
–  I think race cars are fun 
–  I think car races are fun 

•  Hint: use tasks to print the indeterminate part of the output (i.e. the “race 
cars” or “car races” part). 

•  This is called a “Race Condition”.  It occurs when the result of a program 
depends on how the OS schedules the threads. 

•  NOTE: A “data race” is when threads “race to update a shared variable”.  
They produce race conditions.  Programs containing data races are 
undefined (in OpenMP but also ANSI standards C++’11 and beyond). 

#pragma omp parallel 
#pragma omp task 
#pragma omp master 
#pragma omp single 
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 Outline 
• OpenMP overview   
• Introducing Explicit Tasks in OpenMP     
• Working with Tasks   
• Tasks and the conceptual core of OpenMP  
• Break 
• Working with tasks: the divide and conquer 
pattern   

• Advanced tasking features   
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When/where are tasks complete? 

•  At thread barriers (explicit or implicit) 
– applies to all tasks generated in the current parallel region up to the 

barrier 

•  At taskwait directive 
–  i.e. Wait until all tasks defined in the current task have completed.   
– Fortran:  !$OMP TASKWAIT 
– C/C++:  #pragma omp taskwait 

– Note: applies only to tasks generated in the current task, not to 
“descendants” . 
– The code executed by a thread in a parallel region is considered a task 

here 



Example 
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#pragma omp parallel 
{  
  #pragma omp master  
   {  
  #pragma omp task 
      fred();  
  #pragma omp task 
      daisy();  
     #pragma taskwait 
  #pragma omp task 
     billy();  
   }  
} 

fred() and daisy() 
must complete before 
billy() starts 



The task construct (OpenMP 4.5) 
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if([ task :]scalar-expression) 
untied 
default(shared | none)  
private(list)  
firstprivate(list)  
shared(list)  
final(scalar-expression)  
mergeable  
depend(dependence-type : list)  
priority(priority-value)  

#pragma omp task [clause[[,]clause]...] 
 structured-block  

where clause is one of the following:  

OpenMP 3.0 (May’08) 

OpenMP 3.1 (Jul’11) 

OpenMP 4.0 (Jul’13) 

OpenMP 4.5 (Nov’15) 

The evolution of the task construct 

Generates an 
explicit task 



The task construct (OpenMP 4.5) 
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if([ task :]scalar-expression) 
untied 
default(shared | none)  
private(list)  
firstprivate(list)  
shared(list)  
final(scalar-expression)  
mergeable  
depend(dependence-type : list)  
priority(priority-value)  

#pragma omp task [clause[[,]clause]...] 
 structured-block  

where clause is one of the following:  

OpenMP 3.0 

OpenMP 3.1 

OpenMP 4.0 

OpenMP 4.5 

The evolution of the task construct 

Generates an 
explicit task 

Consider the data 
environment associated 
with a task 



Data scoping with tasks 
•  Variables can be shared, private or firstprivate with respect to 

task 
•  These concepts are a little bit different compared with 

threads: 
–  If a variable is shared on a task construct, the references to it inside 

the construct are to the storage with that name at the point where the 
task was encountered 
–  If a variable is private on a task construct, the references to it inside 

the construct are to new uninitialized storage that is created when the 
task is executed 
–  If a variable is firstprivate on a construct, the references to it inside the 

construct are to new storage that is created and initialized with the 
value of the existing storage of that name when the task is 
encountered 

32 
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Data scoping defaults 
•  The behavior you want for tasks is usually firstprivate, because the task 

may not be executed until later (and variables may have gone out of 
scope) 
–  Variables that are private when the task construct is encountered are firstprivate by 

default 

•  Variables that are shared in all constructs starting from the innermost 
enclosing parallel construct are shared by default 

#pragma omp parallel shared(A) private(B) 
{ 
   ... 
#pragma omp task 
   { 
       int C; 
       compute(A, B, C); 
   } 
} 

A is shared 
B is firstprivate 
C is private 



Example: Fibonacci numbers 

•  Fn = Fn-1 + Fn-2 

•  Inefficient O(n2) recursive 
implementation! 

int fib (int n) 
{ 
   int x,y; 
   if (n < 2) return n; 
 
   x = fib(n-1); 
   y = fib (n-2); 
   return (x+y); 
} 
 
Int main() 
{ 
   int NW = 5000; 
   fib(NW); 
} 



Parallel Fibonacci 
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•  Binary tree of tasks 

•  Traversed using a recursive 
function 

•  A task cannot complete until all 
tasks below it in the tree are 
complete (enforced with taskwait) 

•  x,y are local, and so by default 
they are  private to current task 

–  must be shared on child tasks so they 
don’t create their own firstprivate 
copies at this level!  

int fib (int n) 
{   int x,y; 
   if (n < 2) return n; 
 
#pragma omp task shared(x) 
   x = fib(n-1); 
#pragma omp task shared(y) 
   y = fib (n-2); 
#pragma omp taskwait 
   return (x+y); 
} 
 
Int main() 
{  int NW = 5000; 
   #pragma omp parallel 
   {  
       #pragma omp master 
             fib(NW); 
   } 
} 
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Using tasks 
•  Getting the data attribute scoping right can be quite tricky 
– default scoping rules different from other constructs 
– as ever, using default(none) is a good idea 

•  Don’t use tasks for things already well supported by OpenMP 
– e.g. standard do/for loops 
– the overhead of using tasks is greater 

•  Don’t expect miracles from the runtime 
– best results usually obtained where the user controls the 

number and granularity of tasks 
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Exercise: Traversing linked lists   

•  Consider the program linked.c 
– Traverses a linked list, computing a sequence of Fibonacci numbers 

at each node 

•  Parallelize this program using OpenMP tasks 

#pragma omp parallel 
#pragma omp task 
#pragma omp taskwait 
#pragma omp master 
#pragma omp single 
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Linked lists with tasks 

#pragma omp parallel  
{ 
   #pragma omp single 
  { 
       p=head; 
      while (p) { 

      #pragma omp task firstprivate(p)  
                  processwork(p); 
            p = p->next; 
      } 
   } 
} 

Creates a task with its 
own copy of “p” 
initialized to the value 
of “p” when the task is 
defined  
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Thread 0: 
 
p = listhead ; 
while (p) {  
< package up task > 
   p=next (p) ; 
} 
 
while (tasks_to_do){ 
  < execute task >  
}  
 
< barrier >  
  

Other threads: 
 
 
 
 
while (tasks_to_do) { 
< execute task >  
}  
 
 
 
 
< barrier >  

Parallel linked list traversal 
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Parallel pointer chasing on multiple lists 

#pragma omp parallel  
{  
   #pragma omp for private(p) 
   for ( int i =0; i <numlists; i++) {  
       p = listheads[i] ; 
       while (p ) {  
       #pragma omp task firstprivate(p) 
           { 
             process(p); 
           }  
       p=next(p); 
       } 
   } 
} 

All threads package 
tasks 
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The OpenMP specification 

•  A specification is written for implementers, not users. 
•  There is a great deal of low level detail in a spec that helps 

prevent ambiguity even in strange “corner cases” most users 
never encounter. 
– Users can usually ignore such “corner cases”, implementers cannot. 

•  The OpenMP specification opens with a jargon-rich 
discussion that confuses most users and hence is ignored in 
OpenMP tutorials. 

•  But as you move from OpenMP-novice to OpenMP-expert, 
you need to absorb that content. 
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Execution model jargon 
•  A program begins execution as a single thread … the initial 

thread. 
•  Initial thread executes sequentially within an implicit parallel 

region which defines a task region called the initial task region 
•  When a parallel region is encountered: 
– The task region of the thread encountering the parallel construct is 

suspended. 
– Team of threads is created with the thread encountering the parallel 

construct becoming the master of the new team. 
– Each thread in the team runs an implicit task (one per thread, a tied task) 
– When the team of threads complete, the task region associated with the 

master continues as that thread (and only that thread) proceeds beyond 
the barrier. 
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Yuck … why all this complicated jargon?   Because now we can define the data 
environment precisely in terms of task regions and we cleanly cover all the corner cases 

within a single, task based structure. 



Data Environments and Tasks 

•  The data environment consists of: 
– Variables: a named data storage block the value of which can change 

as a program runs 
–  Internal control variables: Conceptual variables that specify runtime 

behavior of threads and tasks 
– Thread private variables: a variable replicated with one instance per 

thread which provides access to a different block of storage per 
thread. 

•  A task is … a specific instance of executable code and its 
data environment 

44 

By defining OpenMP constructs in terms of tasks, we only have to define the data 
environment concepts once … not separately for each type of construct.   

This brings a level of consistency that greatly helps people who must implement 
OpenMP.  



 Outline 
• OpenMP overview   
• Introducing Explicit Tasks in OpenMP     
• Working with Tasks   
• Tasks and the conceptual core of OpenMP  
• Break 
• Working with tasks: the divide and conquer 
pattern   

• Advanced tasking features   

45 



Divide and Conquer Pattern 

•  Divide and conquer is an important design pattern with two 
distinct phases 
– Use when a method to divide problem into subproblems and to 

recombine solutions of subproblems into a global solution is available 

•  Divide phase: 
– Breaks down problem into two or more sub-problems of the same (or 

related) type 
– Continue division until these sub-problems become simple enough to 

be solved directly 

•  Conquer phase  
– Executes the computations on each of the “indivisible” sub-problems.  
– May also combine solutions of sub-problems until the solution of the 

original problem is reached. 
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Divide and Conquer Pattern 

•  Implementation is typically done with recursive algorithms 
– The nature of recursion forms smaller sub-problems that are very 

much like the larger problem being solved 
– The return from recursive calls can be used to combine partial 

solutions into an overall solution 

•  Coding Solution 
– Define a split operation 
– Continue to split the problem until subproblems are small enough to 

solve directly 
– Recombine solutions to subproblems to solve original global problem 

•  Note:  
– Computing may occur at any operation phase (split, direct solution, 

recombination) 



Divide and conquer 

•  Split the problem into smaller sub-problems; continue until 
the sub-problems can be solve directly 

n  3 Options: 
¨  Do work as you split 

into sub-problems 
¨  Do work only at the 

leaves 
¨  Do work as you 

recombine 



Quicksort 

•  Serial Quicksort algorithm is implemented recursively 
•  Given: Unsorted array of elements (each with assoc. key) 
•  Goal: Sorted array of elements 
•  Divide phase: 
–  In each unsorted sub-array, choose an element from as the “pivot” 

element 
– Partition the array contents such that the pivot item ends up at the 

point that divides the array into elements that are less than or equal to 
the pivot item and elements that are greater than the pivot item 

•  Conquer Phase: 
– Pivot element has been placed in sorted position after each partition 

•  Worst case complexity: O(n2) 
•  Average case complexity: O(n log n) 
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Quicksort Algorithm 

 
• Partition() compares all items against “pivot” 
– Linear search through array (serial) 
– Moves items less than pivot, greater than pivot 
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void QuickSort(int *A, int p, int r) 
{ 
  if (p < r) { 
    int q = Partition(A, p, r); 
    QuickSort (A, p, q-1);  
    QuickSort (A, q+1, r); 
  } 
} 



Quicksort Illustration 
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485 041 340 526 188 739 489 387 

041 188 340 387 485 498 526 739 

041 340 188 387 485 739 489 526 

041 340 188 387 485 526 489 739 

041 188 340 387 485 489 526 739 

041 188 340 387 485 489 526 739 



Quicksort Code 
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void QuickSort(int *A, int p, int r) 
{ 
  if (r-p <= 1) 
    return; /* List of length one or zero */ 
  else { 
    int q = Partition(A, p, r); /* Find pivot */ 
#pragma omp task 
    QuickSort (A, p, q-1);  
#pragma omp task 
    QuickSort (A, q+1, r); 
  } 
} 
 
. . .  
 
#pragma omp parallel 
{ 
#pragma omp single 
  QuickSort(A, 0, N-1); 
} 



Exercise: Akari 

•  Japanese logic puzzle from Nikoli 
•  Goal: Place chess rooks on open squares such that 
– No two rooks attack each other 
– Numbered squares surrounded by specified number of rooks  
– All open squares are “covered” by one or more rooks 
– Black squares block attack of rooks 
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Rooks Application 

•  Input: board size and list of number and black squares 
•  Place rooks around all “4” squares ( placeFour()) 
•  Using backtracking: 
– Get next numbered square in list 
– Try all rook combinations around square, via recursive call 
–  “3” square => 4 combinations     ( placeThree()) 
–  “2” square => 6 combinations     ( placeTwo()) 
–  “1” square => 4 combinations     ( placeOne()) 

–  If no more numbered squares, compile list of all open squares 
– Using backtracking: 
–  Try rook in/out next open square from list 
–  Solution reached when no more open squares 
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Search Tree 
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Exercise: Rooks with tasks 

•  Build the serial code with  make rooks command. 
•  Run the serial code with one of the small test files (rooks15.txt, rooks60.txt). 

 > ./rooks rooks60.txt 
•  Run the serial code with the larger data file and note the execution time: 

 > ./rooks rooks111.txt 
•  Edit the solveboard.c source file. Decide which level of the search should 

generate tasks for the recursive calls by restoring the pragma lines within one or 
more functions. 

•  Rebuild the parallel version of the application. 
•  Set a number of OpenMP threads and run/time the new executable. How does 

this compare to the serial code run time? 
•  If there is time, you can experiment with more or fewer parts of the code to 

generate tasks for the recursive calls to solveBoard() or change the number of 
threads used. How do these runs compare to the serial execution time? 



 Outline 
• OpenMP overview   
• Introducing Explicit Tasks in OpenMP     
• Working with Tasks   
• Tasks and the conceptual core of OpenMP  
• Break 
• Working with tasks: the divide and conquer 
pattern   

• Advanced tasking features   

57 



Task dependencies 

!$omp task depend(type:list)  
where type is in, out or inout and list is a list of variables. 
–  list may contain subarrays: OpenMP 4.0 includes a syntax for C/C++ 
–  in: the generated task will be a dependent task of all previously 

generated sibling tasks that reference at least one of the list items in 
an out or inout clause 
–  out or inout: the generated task will be a dependent task of all 

previously generated sibling tasks that reference at least one of the 
list items in an in, out or inout clause 
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Task dependencies example 

#pragma omp task depend (out:a) 
   { ... } //writes a 
#pragma omp task depend (out:b) 
   { ... } //writes b 
#pragma omp task depend (in:a,b) 
   { ... } //reads a and b  
 
•  The first two tasks can execute in parallel 
•  The third task cannot start until the first two are complete 
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1D Stencil Example 

The heat equation: 
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double k = 0.5; // heat transfer coefficient 
double dt = 1.; // time step 
double dx = 1.; // grid spacing 
 
double heat(double left, double mid, double right) 
{ 
    return mid+(k*dt/dx*dx)*(left-2*mid+right); 
} 



1D Stencil Example 

Application of the heat equation to a 1D array 
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void heat_part( int size, double* next,  
                double* left,  
                double *mid, double *right) 
{ 
    next[0] = heat(left[size-1], mid[0], mid[1]); 
 
    for (int i = 1; i < size-1; ++i) 
        next[i] = heat(mid[i-1], mid[i], mid[i+1]); 
 
    next[size-1] = heat(mid[size-2], mid[size-1], 
                        right[0]); 
} 
 



1D Stencil Example 

Dividing the work into partitions of the array 
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for (int i = 0; i < np; ++i) { 
    heat_part( nx, &next[i*nx],  
               &current[idx(i-1, np)*nx],  
               &current[i*nx],  
               &current[idx(i+1, np)*nx]); 
} 
 
//idx does the wrapping here 
int idx(int i, int size) 
{ 
    return (i < 0) ? (i + size) % size : i % size; 
} 
 



1D Stencil Example 

Reads and writes need to be done on separate arrays 
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U[0] = malloc(np*nx * sizeof(double)); 
U[1] = malloc(np*nx * sizeof(double)); 
 
double* current = U[0]; 
double* next    = U[1]; 
 



1D Stencil Example 

Each iteration alternates between arrays 
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for(int t = 0; t < nt; t++) { 
    for (int i = 0; i < np; ++i) { 
        heat_part( nx, &next[i*nx],  
                   &current[idx(i-1, np)*nx], 
                   &current[i*nx],  
                   &current[idx(i+1, np)*nx]); 
    } 
    current = U[(t+1) % 2]; 
    next    = U[ t    % 2]; 
} 



1D Stencil Example 

Because of the partitioning, one task directive is needed 
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for(int t = 0; t < nt; t++) { 
    for (int i = 0; i < np; ++i) { 
#pragma omp task untied depend(out: next[i*nx]) \ 
            depend(in: current[idx(i-1, np)*nx],\ 
            current[i*nx], current[idx(i+1, np)*nx]) 
        heat_part( nx, &next[i*nx],  
                   &current[idx(i-1, np)*nx], 
                   &current[i*nx],  
                   &current[idx(i+1, np)*nx]); 
    } 
    current = U[(t+1) % 2]; 
    next    = U[ t    % 2]; 
} 
#pragma omp taskwait 



 Outline 
•   OpenMP overview   

-  Brief summary of OpenMP and the server we’ll be using for this tutorial. 
-  Hands-on: Parallel Loops, matrix multiply.   

•  Introducing Explicit Tasks in OpenMP    
-  Define the task construct 
-  Hands-on: The “Racy Car output exercise”.   

•  Working with Tasks   
-  Task data environment, default rules plus private, shared and firstprivate 
-  Task synchronization: barrier and task wait 
-  Hands-on: traversing a linked list 

•  Tasks and the conceptual core of OpenMP   
•  How tasks relate to the conceptual core of OpenMP (implicit parallel regions, implicit tasks, task 

completion, and other low level details from the task-concepts/execution model section of the spec) 
•  Break 
•  Working with tasks: the divide and conquer pattern   

-  Divide and conquer design pattern 
-  Hands-on: Recursive pi programs 
-  Cache oblivious algorithms 
-  Hands on: recursive matrix multiply 

•  Advanced tasking features   
-  Task dependencies 
-  Hands-on coMD 

•  Advanced Tasking features   
-  Task Groups, task-loops, thread-switching, tied vs. untied tasks, mergable, final 
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Task definitions 
•  Task: a specific instance of executable code and its data 

environment. 
•  Task region: all the code encountered during the execution of 

a task. 
•  When a task construct is encountered by a thread, the 

generated task may be: 
– Deferred: executed by some thread independently of generating task. 
– Undeferred: completes execution before the generating task continues.  
–  Included: Undeferred and executed by the thread that encounters the 

task construct. 

•  Tasks once started may suspend, wait, and restart. 
– Tied tasks: if a thread is suspended, the same thread will restart the 

thread at a later time. 
– Untied tasks: if a task is suspended, any thread in the binding team may 

restart the thread at a later time.   
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The task construct (OpenMP 4.5) 
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if([ task :]scalar-expression) 
untied 
default(shared | none)  
private(list)  
firstprivate(list)  
shared(list)  
final(scalar-expression)  
mergeable  
depend(dependence-type : list)  
priority(priority-value)  

#pragma omp task [clause[[,]clause]...] 
 structured-block  

where clause is one of the following:  

OpenMP 3.0 

OpenMP 3.1 

OpenMP 4.0 

OpenMP 4.5 

The evolution of the task construct 

Generates an 
explicit task 



The task construct: the newer/rarely used clauses 
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final(scalar-expression) 

OpenMP 3.0           OpenMP 3.1              OpenMP 4.0               OpenMP 4.5 

The created task, if suspended, can be executed by 
a different thread 

If the scalar-expression is true, generated tasks are 
undeferred and execute immediately by the 
encountering thread. 

The task is mergable if it is undeferred and 
included (i.e. uses the parent tasks data 
environment). 

Gives a hint to the compiler to schedule tasks with 
a larger priority value (>0) before tasks with a 
lower value. 

untied 

mergeable  

priority(priority-value)  



Waiting for tasks to complete 
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#pragma omp taskwait 

Causes current task region to suspend and wait for completion of all the child 
tasks created before the taskwait to complete 
•  A standalone directive 
•  Defines a task scheduling point 

#pragma omp taskgroup 
 structured-block  

A thread encounters the taskgroup construct.  It executes the code in the 
structured block. 
That thread suspends and waits at the end of the taskgroup region until all child 
tasks and any of their descendant tasks are complete. 

OpenMP 3.0 

OpenMP 4.0 



 #pragma omp single 
 { 
   for (i=0; i<ONEZILLION; i++) 
     #pragma omp task 
       process(item[i]); 
 } 

•  Consider the following example ... Where the program may generate so 
many tasks that the internal data structures managing tasks overflow. 
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Task switching 

•  Solution … Task switching;  Threads can switch to other tasks at certain 
points called thread scheduling points. 

•  With Task switching, a thread can  
–  Execute an already generated task … to “drain the task pool” 
–  Execute the encountered task immediately (instead of deferring task 

execution for later) 



Explicit task scheduling 
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#pragma omp taskyield 

Tells the OpenMP runtime that the current task can be suspended in favor of 
execution of a different task 
•  A standalone directive 
•  Defines an explicit task scheduling point 

OpenMP 3.1 

#include <omp.h> 
void something_useful ( void ); 
void mutual_excl_op( void ); 
void foo ( omp_lock_t * lock, int n ) 
{   for (int  i = 0; i < n; i++ )       
    #pragma omp task       
    {    something_useful();     
         while ( !omp_test_lock(lock) ) {        
                  #pragma omp taskyield     
          }     
          mutual_excl_op();     
          omp_unset_lock(lock); 
     } 
} 

Grab a lock if you can, 
return if you can’t 

Tell the runtime it can  
suspend current task and 

schedule another 

Release the lock that protected 
mutual_excl_op() 

 A function that 
only one task at 

a time can 
execute (mutual 

exclusion) 



Task scheduling Points 
•  Task switching can only occur at Task Scheduling points. 
•  Task scheduling points happen …  
– After generation of an explicit task 
– After completion of a task region 
–  In a taskyield region 
–  In a taskwait region 
– At the end of a taskgropup or barrier 
–  In and around regions associated with target constructs (not 

discussed here). 

•  At a task scheduling point, any of the following can happen 
for any tasks bound to the current team 
– Begin execution of a tied or untied task   
– Resume any suspended task  (tied or untied) 
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Task Scheduling Details 

•  An included task is executed immediately after generation of 
the task 

•  Scheduling of new tied tasks is constrained by the set of task 
regions that are currently tied to the thread, and that are not 
suspended in a barrier region.  
–  If this set is empty, any new tied task may be scheduled.  
– Otherwise, a new tied task may be scheduled only if it is a descendent 

task of every task in the set. 

•  A dependent task shall not be scheduled until its task 
dependences are fulfilled. 

•  When an explicit task is generated by a construct containing an 
if clause for which the expression evaluated to false, and the 
previous constraints are already met, the task is executed 
immediately after generation of the task. 
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Task Execution around task scheduling points 

•  Think of a task as a set of “task regions” between task 
scheduling points 

•  Each “task region” executes uninterrupted from start to end in 
the order they are encountered.   

•  A correct program must behave correctly and consistently with 
all conceivable scheduling sequences that are compatible with 
the rules above. 
–  If multiple “task regions” between scheduling points modify values in 

threadprivate storage, a data race is produced and the state of 
threadprivate storage is not defined. 
– Lock acquire and release in different task regions may break program-

order lock protocols and deadlock. 
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The taskloop construct (OpenMP 4.5) 
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if([ taskloop :]scalar-expr) 

 shared(list) 

private(list)  

firstprivate(list)  

lastprivate(list)  

default(shared | none)  

grainsize(grain-size)  

num_tasks(num-tasks)  

collapse(n)  

final(scalar-expr)  

priority(priority-value)  

untied 

mergeable 

nogroup 

#pragma omp taskloop [clause[[,]clause]...] 
 structured-block  

where clause is one of the following:  

•  The structured block contains loops in 
the standard form 

•  Loop iterations are turned into tasks 
that execute within a taskgroup (unless 
the nogroup clause is present) 

•  Grainsize specifies the number of 
iterations per task 

•  Num_tasks stipulates the number of 
tasks to create (unless there are too 
few loop iterations) 



Conclusion 

•  OpenMP was created to handle loop-level programs and basic 
multi-threading programs with the Single Program Multiple 
Data (SPMD) pattern. 

•  With OpenMP 3.0, the task construct was added to support 
irregular programs: 
– While loops or loops whose iteration limits are not known at compiler 

time. 
– Recursive algorithms 
– divide and conquer problems. 

•  The task construct has expanded over the years with new 
features to support irregular problems with tasks in each new 
release of OpenMP 
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Programming Irregular 
Applications with OpenMP* 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board. 

Thank You  
for attending 

Please fill out your 
tutorial evaluations 



Backup slides to keep around … 
important raw material 

79 



BLAS 3 based Gaussian Elimination  
A = LU 
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Mergesort 

•  Prototypical Divide and Conquer via recursive algorithm 
•  Given: Unsorted array of elements (each with assoc. key) 
•  Goal: Sorted array of elements 
•  Divide Phase: 
– Split the unsorted array into two unsorted sub-arrays 
– Continue splitting each sub-array until a single element is reached 
–  At this point, each sub-array contains a sorted list  

•  Conquer phase: 
– Take two adjacent sorted sub-arrays and uses merge to create a 

larger sorted sub-array 
–  The recursive solution provides a means to automatically retrace the 

divide computations in the reverse order 
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Mergesort Illustration 
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485 041 340 526 188 739 489 387 

485 041 340 526 188 739 489 387 

485 041 340 526 188 739 489 387 

485 041 340 526 188 739 489 387 

041 485 340 526 188 739 387 489 

041 340 485 526 188 387 489 739 

041 188 340 387 485 498 526 739 



Parallel Mergesort Questions 

•  Very regular pattern of array division 
•  In parallel: 
– Where do merge results get stored? 
–  Serial Merge deposits elements from sorted lists A and B into third array C 

(size equal to A+B) 
–  Alternating scheme via parameters? (ala recursive Towers of Hanoi) 

–  If tasks used, how do they coordinate to not overwrite other task 
results? 
–  Allocate new storage for each merge result? 
–  In-place merge algorithm? 
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Program: OpenMP tasks (divide and conquer pattern) 
#include <omp.h> 
static long num_steps = 100000000; 
#define MIN_BLK  10000000 
double pi_comp(int Nstart,int Nfinish,double step) 
{   int i,iblk; 
   double x, sum = 0.0,sum1, sum2; 
   if (Nfinish-Nstart < MIN_BLK){ 
      for (i=Nstart;i< Nfinish; i++){ 
         x = (i+0.5)*step; 
         sum = sum + 4.0/(1.0+x*x);  
      } 
   } 
   else{ 
      iblk = Nfinish-Nstart; 
      #pragma omp task shared(sum1) 
           sum1 = pi_comp(Nstart,         Nfinish-iblk/2,step); 
      #pragma omp task shared(sum2) 
            sum2 = pi_comp(Nfinish-iblk/2, Nfinish,       step); 
      #pragma omp taskwait 
         sum = sum1 + sum2; 
   }return sum; 
} 

 int main () 
 { 
   int i; 
   double step, pi, sum; 
    step = 1.0/(double) num_steps; 
    #pragma omp parallel   
    { 
        #pragma omp single 
            sum =    

 pi_comp(0,num_steps,step); 
     } 
      pi = step * sum; 
 }    



Results*: pi with tasks 
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*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.   

threads 1st SPMD SPMD 
critical 

PI Loop Pi tasks 

1 1.86 1.87 1.91 1.87 

2 1.03 1.00 1.02 1.00 

3 1.08 0.68 0.80 0.76 

4 0.97 0.53 0.68 0.52 



Cache Oblivious algorithms 
•  Linear algebra libraries are 

expected to deliver peak 
performance. 

•  Library developers go to great 
lengths to divide their problems 
into blocks that fit into the 
caches on a particular system. 

•  This works great, but (1) it 
requires skills few 
programmers have, and (2) 
code may need to change in 
response to small chances in a 
memory hierarchy.  

86 
Source:  Field G. Van Zee and Robert van de Geijn,  BLIS: A framework for Rapidly Instantiating BLAS 
functionality, submitted to ACM TOMS, 2013. 

•  An Alternative approach: Cache Oblivious algorithms.  Use divide and 
conquer to naturally decompose a problem into small subproblems that fit 
a memory hierarchy.   No explicit cache blocking required!! 

Blocked Matrix Multiply with BLIS 



Cache Oblivious matrix multiplication using a 
recursive algorithm 

•  Quarter each input matrix and output matrix 
•  Treat each submatrix as a single element and multiply 
•  8 submatrix multiplications, 4 additions 

A B C 

A1,1 A1,2 

A2,1 A2,2 

B1,1 B1,2 

B2,1 B2,2 

C1,1 C1,2 

C2,1 C2,2 

C1,1 = A1,1·B1,1 + A1,2·B2,1 

C2,1 = A2,1·B1,1 + A2,2·B2,1 

C1,2 = A1,1·B1,2 + A1,2·B2,2 

C2,2 = A2,1·B1,2 + A2,2·B2,2 
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Recursive matrix multiplication 
 How to multiply submatrices? 

•  Use the same routine that is computing the full matrix 
multiplication 
– Quarter each input submatrix and output submatrix 
– Treat each sub-submatrix as a single element and multiply 

A B C 

A1,1 A1,2 

A2,1 A2,2 

B1,1 B1,2 

B2,1 B2,2 

C1,1 C1,2 

C2,1 C2,2 

C111,1 = A111,1·B111,1 + A111,2·B112,1 +  
             A121,1·B211,1 + A121,2·B212,1 

C1,1 = A1,1·B1,1 + A1,2·B2,1 

88 

A1,1 

A111,1 A111,2 

A112,1 A112,2 

B1,1 

B111,1 B111,2 

B112,1 B112,2 

C1,1 

C111,1 C111,2 

C112,1 C112,2 



C1,1 = A1,1·B1,1 + A1,2·B2,1 

C2,1 = A2,1·B1,1 + A2,2·B2,1 

C1,2 = A1,1·B1,2 + A1,2·B2,2 

C2,2 = A2,1·B1,2 + A2,2·B2,2 

Recursive matrix multiplication 
  Recursively multiply submatrices 

•  Also need stopping criteria for recursion 
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void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,  

                double **A, double **B, double **C) 

{// Dimensions: A[mf..ml][pf..pl]  B[pf..pl][nf..nl]  C[mf..ml][nf..nl] 

   

// C11 += A11*B11 

 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A,B,C);   

// C11 += A12*B21 

 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A,B,C);   

   . . .  

} 

l  Need range of indices to define each submatrix to be used 



Exercise: Parallel recursive matrix multiply 

•  Source code implementing this algorithm is provided in the 
file matmul_recur.c  

•  Parallelize this program using OpenMP tasks 
#pragma omp parallel 
#pragma omp task 
#pragma omp taskwait 
#pragma omp master 
#pragma omp single 
double omp_get_wtime() 
int omp_get_thread_num(); 
int omp_get_num_threads(); 
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#define THRESHOLD 32768   // product size below which simple matmult code is called 
 
void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,  
                double **A, double **B, double **C) 
    
// Dimensions: A[mf..ml][pf..pl]    B[pf..pl][nf..nl]   C[mf..ml][nf..nl] 
   
{   
   if ((ml-mf)*(nl-nf)*(pl-pf) < THRESHOLD)    
      matmult (mf, ml, nf, nl, pf, pl, A, B, C);    
   else   
   {  
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl) 
{   
      matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C);  // C11 += A11*B11 
      matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C);  // C11 += A12*B21 
} 
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl) 
{ 
      matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C);  // C12 += A11*B12 
      matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C);  // C12 += A12*B22 
} 
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl) 
{ 
     matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C);  // C21 += A21*B11 
     matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C);  // C21 += A22*B21 
} 
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl) 
{ 
     matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C);  // C22 += A21*B12 
     matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C);  // C22 += A22*B22 
} 
#pragma omp taskwait 
 
   }    
}    

Recursive matrix multiplication 
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•  Could be executed in parallel as 4 tasks 
–  Each task executes the two calls for the same output submatrix of C 

•  However, the same number of multiplication operations needed 



Extra: LU Example 
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LU Decomposition  

93 

•  The matrix is divided into NxN 
blocks, and a task operates on 
one block. 

•  Each iteration the working 
matrix gets one block smaller 
in each dimension, resulting in 
a task graph resembling the 
one to the right. 



LU Decomposition  
 

94 

For Comparison, the tasking 
version without dependencies 
resembles a fork join 
programming model, similar to 
a worksharing version. 



LU Decomposition  
There are 4 different 

operations (diag, row, col, 
and inner), and the the 
dependencies between 
these operations are shown 
in the graph to the right. 

95 Source: CS164 lecture Fall 2014, Kurt Keutzer of UC Berkeley 



LU Decomposition  
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void diag_op(const block &B) { 

    for(int i = 0; i < B.width; i++)  

        for(int j = i+1; j < B.width; j++) { 

            B.start[j*B.stride+i] /= B.start[i*B.stride+i]; 

            for(int k = i+1; k < B.width; k++)  

                B.start[j*B.stride+k] -= B.start[j*B.stride+i] * B.start[i*B.stride+k];  

}} 

void col_op(const block &B1, const block &B2) { 

    for(int i=0; i < B2.width; i++) 

        for(int j=0; j < B1.height; j++) { 

            B1.start[j*B1.stride+i] /= B2.start[i*B2.stride+i]; 

            for(int k = i+1; k < B2.width; k++)  

                B1.start[j*B1.stride+k] += -B1.start[j*B1.stride+i] * B2.start[i*B2.stride+k];  

}} 

void row_op(const block &B1, const block &B2) { 

    for(int i=0; i < B2.width; i++) 

        for(int j=i+1; j < B2.width; j++) 

            for(int k=0; k < B1.width; k++) 

                B1.start[j*B1.stride+k] += -B2.start[j*B2.stride+i] * B1.start[i*B1.stride+k]; 

} 

void inner_op(const block &B1, const block &B2, const block &B3) { 

    for(int i=0; i < B3.width; i++) 

        for(int j=0; j < B1.height; j++) 

            for(int k=0; k < B2.width; k++) 

                B1.start[j*B1.stride+k] += -B3.start[j*B3.stride+i] * B2.start[i*B2.stride+k]; 

} 

 

 
 



•  Each operation is put into a function, and the core logic 
(without tasks) is shown below 

LU Decomposition  
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void LU(int num_blocks) { 

    for(int i=0; i<num_blocks; i++) { 
        diag_op( block_list[i][i] ); 
        for(int j=i+1; j<num_blocks; j++){ 
            row_op( block_list[i][j], block_list[i][i] ); 
            col_op( block_list[j][i], block_list[i][i] ); 
        } 
        for(int j=i+1; j<num_blocks; j++) { 
            for(int k=i+1; k<num_blocks; k++) { 
                inner_op( block_list[j][k], block_list[i][k], 
                                            block_list[j][i] ); 
            } 
        } 
    } 
} 
 



•  Now to add the directives that create tasks and establish 
dependencies. 

LU Decomposition  

98 

for(int i=0; i<num_blocks; i++) { 
#pragma omp task depend(inout: block_list[i][i]) 
    diag_op( block_list[i][i] ); 

    for(int j=i+1; j<num_blocks; j++) { 
#pragma omp task depend(in   : block_list[i][i]) \ 
                 depend(inout: block_list[i][j]) 
        row_op( block_list[i][j], block_list[i][i] ); 
#pragma omp task depend(in   : block_list[i][i]) \ 
                 depend(inout: block_list[j][i]) 
        col_op( block_list[j][i], block_list[i][i] ); 
    } 
    for(int j=i+1; j<num_blocks; j++) { 
        for(int k=i+1; k<num_blocks; k++) { 
#pragma omp task depend(   in: block_list[i][k], block_list[j][i]) \ 
                 depend(inout: block_list[j][k]) 
            inner_op( block_list[j][k], block_list[i][k], 
                                        block_list[j][i] ); 
        } 
    } 
} 
#pragma omp taskwait 
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•  This approach forces the amount of work per task and the 
blocking size for the targeted cache to be the same.  

•  This becomes an issue on larger matrix sizes, and on 
architectures with smaller caches. Either the number of 
tasks gets very large and increases overhead, or the tasks 
don’t take advantage of Cache. 

•  A cache oblivious algorithm provides a way to control the 
number of tasks while still optimizing for one or more levels 
of cache within each task. 
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B0,2 
 

B0,3 
 

B1,2 B1,3 
 

B0,0 B0,1 

B1,0 
 

B1,1 
 

B2,2 B2,3 
 

B3,2 
 

B3,3 
 

B2,0 B2,1 

B3,0 B3,1 
 

•  To start with an 
example, take a matrix 
divided into 4x4 blocks 
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Row Row 

Inner Inner 

Diag Row 

Col Inner 

Inner Inner 

Inner Inner 

Col Inner 

Col Inner 

•  The first version would 
go through the first 
iteration and create 
tasks for these blocks, 
then move on to the next 
iteration. 
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Row 

Col 

Diag 

Inner 

•  The recursive version 
starts by calling Diag to 
divide the whole matrix 
into quadrants.  

•  Each of these quadrants 
is processed, and then 
Diag is called again on 
the output of Inner, 
which handles the 
second half of iterations. 
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Diag Row 

Col Inner 

Row 

Col Inner 

•  Within diag, the blocks 
are processed as shown. 
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Diag Row 

Col Diag 

Row 

Col Inner 

•  Then, like mentioned 
earlier, diag is called 
again to handle the next 
iteration. 
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Diag Row 

Col Diag 

Col Inner 

•  Similarly, row and inner 
are called for the first 
iteration. 

Row Row 

Inner Inner 
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Diag Row 

Col Diag 

Col Inner 

•  Then row is called again 
for the second iteration. Row Row 

Row Row 
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Diag Row 

Col Diag 

Inner 

•  Once the row quadrant 
is finished, the col 
quadrant is similarly 
processed. 

Row Row 

Row Row 

Col Inner 

Col Inner 
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Diag Row 

Col Diag 

Inner 

•  And again, col is 
processed for the 
second iteration. 

Row Row 

Row Row 

Col Col 

Col Col 
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Diag Row 

Col Diag 

•  Each of the blocks in 
inner is processed using 
row and column 0 for the 
first iteration. Then 
processed again using  
row and column 1 for the 
second iteration. 

Row Row 

Row Row 

Col Col 

Col Col 

Inner Inner 

Inner Inner 
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Diag Row 

Col Diag 

•  Now the Inner quadrant 
is done and ready to be 
passed to diag, and 
perform what would be 
the third iteration. 

Row Row 

Row Row 

Col Col 

Col Col 

Diag Row 

Col Inner 
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Diag Row 

Col Diag 

•  And the final step is diag 
on the last block, for the 
fourth iteration. 

Row Row 

Row Row 

Col Col 

Col Col 

Diag Row 

Col Diag 
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And now code for the serial version Diag Row 

Col Inner 
void rec_diag(int iter, int mat_size) { 
    int half = mat_size/2; 
    if(mat_size == 1) { 
        diag_op(block_list[iter][iter]); 
    } else { 
        rec_diag (iter, half); 
        rec_row  (iter, iter+half, half); 
        rec_col  (iter, iter+half, half); 
        rec_inner(iter, iter+half, iter+half, half); 
        rec_diag (iter+half, half); 
    } 
} 
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void rec_row(int iter, int i, int mat_size) { 
    int half= mat_size/2; 
    if(mat_size == 1) { 
        row_op(block_list[iter][i],   
               block_list[iter][iter]); 
    } else { 
        //left side 
        rec_row  ( iter, i, half); 
        rec_inner( iter, iter+half, i, half); 
        rec_row  ( iter+half, i, half); 
        //right side 
        rec_row  ( iter, i+half, half); 
        rec_inner( iter, iter+half, i+half, half); 
        rec_row  ( iter+half, i+half, half); 
    } 
} 
 
 

Row Row 

Inner Inner 
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void rec_col(int iter, int i, int mat_size) { 
    int half= mat_size/2; 
    if(mat_size == 1) { 
        col_op(block_list[i][iter],  
               block_list[iter][iter]); 
    } else { 
        //top half 
        rec_col  ( iter, i, half); 
        rec_inner( iter, i, iter+half, half); 
        rec_col  ( iter+half, i, half); 
        //bottom half 
        rec_col  ( iter, i+half, half); 
        rec_inner( iter, i+half, iter+half, half); 
        rec_col  ( iter+half, i+half, half); 
    } 
} 
 

Col Inner 
 

Col Inner 
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void rec_inner(int iter,  
               int i, int j, int mat_size) { 
    int half = mat_size/2; 
    int offset_i = i+half; 
    int offset_j = j+half;  
if(mat_size == 1){ 
        inner_op(block_list[i][j],  
                 block_list[iter][j],  
                 block_list[i][iter]); 
    } else { 
        rec_inner( iter,        i,        j, half); 
        rec_inner( iter,        i, offset_j, half); 
        rec_inner( iter, offset_i,        j, half); 
        rec_inner( iter, offset_i, offset_j, half); 
 
        rec_inner( iter+half,        i,        j, half); 
        rec_inner( iter+half,        i, offset_j, half); 
        rec_inner( iter+half, offset_i,        j, half); 
        rec_inner( iter+half, offset_i, offset_j, half); 
    } 
} 
 

Inner Inner 

Inner Inner 
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•  Adding only tasking directives with depend the clause to this 
serial version would result in the program creating the same 
tasks as the previous version. 

•  In order to get the locality benefits of the cache oblivious 
algorithm, a cutoff is needed. 
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void rec_diag(int iter, int mat_size) { 
    int half = mat_size/2; 
    if(half == nesting_size_cutoff) { 
#pragma omp task depend( inout: block_list[iter][iter]) 
        rec_diag (iter, half); 
#pragma omp task depend( in: block_list[iter][iter]) \ 
                 depend( inout: block_list[iter][iter+half]) 
        rec_row  (iter, iter+half, half); 
#pragma omp task depend( in: block_list[iter][iter]) \ 
                 depend( inout: block_list[iter+half][iter]) 
        rec_col  (iter, iter+half, half); 
#pragma omp task depend( in: block_list[iter][iter+half], block_list[iter
+half][iter]) \ 
                 depend( inout: block_list[iter+half][iter+half]) 
        rec_inner(iter, iter+half, iter+half, half); 
#pragma omp task depend( inout: block_list[iter+half][iter+half]) 
        rec_diag (iter+half, half); 
    } else if(mat_size == 1) { 
        diag_op(block_list[iter][iter]); 
    } else { 
        rec_diag (iter, half); 
        rec_row  (iter, iter+half, half); 
        rec_col  (iter, iter+half, half); 
        rec_inner(iter, iter+half, iter+half, half); 
        rec_diag (iter+half, half); 
    } 
} 
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substantially. 
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