
Submitting and 
Running Jobs


Helen He

NERSC User Engagement Group"
"
New User Training"
March 21, 2016




Jobs at NERSC


•  Most	are	parallel	jobs	(10s	to	100,000+	cores)	
•  Also	a	number	of	“serial”	jobs	
–  Typically	“pleasantly	parallel”	simula2on	or	data	analysis	

•  Produc>on	runs	execute	in	batch	mode	
•  Our	batch	scheduler	is	SLURM	(na>ve)	
•  Debug	jobs	are	supported	for	up	to	30	minutes	
•  Typically	run	>mes	are	a	few	to	10s	of	hours		
–  Each	machine	has	different	limits	
–  Limits	are	necessary	because	of	MTBF	and	the	need	to	
accommodate	6,000	users’	jobs	



Edison - Cray XC30


•  2.7	GB	memory	/	core	for	
applica2ons	

•  /scratch	disk	quota	of	10	TB	

•  7.6	PB	of	/scratch	disk	

•  Choice	of	full	Linux	opera2ng	
system	or	op2mized	Linux	OS	
(Cray	Linux)	

•  Intel,	Cray,	and	GNU	compilers		

3	

•  133,824	cores,	5,576	nodes	
•  “Aries”	interconnect	
•  2	x	12-core	Intel	’Ivy	Bridge'	

2.4	GHz	processors	per	node	
•  24	processor	cores	per	node,	

48	with	hyperthreading	
•  64	GB	of	memory	per	node		
•  357	TB	of	aggregate	memory	



Cori Phase 1 - Cray XC40


•  4	GB	memory	/	core	for	
applica2ons	

•  /scratch	disk	quota	of	20	TB	

•  30	PB	of	/scratch	disk	

•  Choice	of	full	Linux	opera2ng	
system	or	op2mized	Linux	OS	
(Cray	Linux)	

•  Intel,	Cray,	and	GNU	compilers		

4	

•  52,160	cores,	1,630	nodes	
•  “Aries”	interconnect	
•  2	x	16-core	Intel	’Haswell'	

2.3	GHz	processors	per	node	
•  32	processor	cores	per	node,	

64	with	hyperthreading	
•  128	GB	of	memory	per	node		
•  203	TB	of	aggregate	memory	



Cori Phase 1 Compute Nodes


-	5	-	

•  Cori	Phase	1:	NERSC	Cray	XC40,	1,630	nodes,	52,160	cores.	
•  Each	node	has	2	Intel	Xeon	16-core	Haswell	processors.		
•  2	NUMA	domains	per	node,	16	cores	per	NUMA	domain.																	

2	hardware	threads	per	core.	
•  Memory	bandwidth	is	non-homogeneous	among	NUMA	domains.	

To	obtain	processor	info:	
	
Get	on	a	compute	node:	
%	salloc	–N	1	
	
Then:	
%	cat	/proc/cpuinfo	
or	
%	hwloc-ls	



Login Nodes and Compute Nodes

Each	machine	has	2	types	of	nodes	visible	to	users	
•  Login	nodes	(external)	
–  Edit	files,	compile	codes,	submit	batch	jobs,	etc.	
–  Run	short,	serial	u2li2es	and	applica2ons	

•  Compute	nodes	
–  Execute	your	applica2on	
–  Dedicated	resources	for	your	job	

6	



Submitting Batch Jobs


•  To	run	a	batch	job	on	the	compute	nodes	you	must	
write	a	“batch	script”	that	contains	
–  Direc2ves	to	allow	the	system	to	schedule	your	job	
–  An	srun	command	that	launches	your	parallel	executable		

•  Submit	the	job	to	the	queuing	system	with	the	
sbatch	command	
–  % sbatch my_batch_script!
	

7	



Launching Parallel Jobs with SLURM


8	

sbatch 

Login	Node	 Head	Compute	Node		

Other	Compute	Nodes	
allocated	to	the	job	Head	compute	node:	

•  Runs	commands	in	batch	script	
•  Issues	job	launcher	“srun”	to	start	parallel	

jobs	on	all	compute	nodes	(including	itself)	

Login	node:	
•  Submit	batch	jobs	via	sbatch	or	salloc	
•  Please	do	not	issue	“srun”	from	login	nodes	
•  Do	not	run	big	executables	on	login	nodes	



Sample Cori Batch Script - MPI


9	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!



Sample Cori Batch Script - MPI


10	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

•  Need	to	specify	which	shell	to	use	for	batch	script	
•  Use	“-l”	as	login	shell	is	op2onal.		
•  Environment	is	automa2cally	imported		



Sample Cori Batch Script - MPI


11	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

Job	direc2ves:	instruc2ons	for	the	batch	system		
•  Submission	par22on	(default	is	“debug”)	
•  How	many	compute	nodes	to	reserve	for	your	job	
•  How	long	to	reserve	those	nodes	
•  More	op2onal	SBATCH	keywords	



Sample Cori Batch Script - MPI


12	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

SBATCH	op2onal	keywords:		
•  how	many	instances	of	applica2ons	to	launch	(#	of	MPI	tasks)	
•  which	QOS	to	use	via	“#SBATCH	--qos=…”	(default	is	normal)	
•  what	to	name	STDOUT	files	
•  what	account	to	charge	
•  whether	to	no2fy	you	by	email	when	your	job	finishes	
•  …	



Sample Cori Batch Script - MPI


13	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

•  By	default,	hyperthreading	is	on.	SLURM	sees	2	threads	are	available	for	
each	of	the	32	physical	CPUs	on	the	node.	

•  No	need	to	set	this	if	your	applica2on	programming	model	is	pure	MPI.	
•  If	your	code	is	hybrid	MPI/OpenMP,	set	this	value	to	1	to	run	in	pure	

MPI	mode.	



Sample Cori Batch Script - MPI


14	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

“srun”	command	launches	parallel	executables	on	the	compute	nodes	
•  srun	flags	overwrite	SBATCH	keywords	
•  No	need	to	repeat	flags	in	srun	command	if	already	defined	in	

SBATCH	keywords.		(e.g.	“srun	./my_executable”	will	also	do	in	
above	example)	



Sample Cori Batch Script - MPI


15	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

•  There	are	64	logical	CPUs	on	each	node	
•  With	40	nodes,	using	hyperthreading,	up	to	40*64=2,560	MPI	tasks	

can	be	launched:	“srun	-n	2560	./my_executable”	is	OK	



Hybrid MPI/OpenMP


16	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
!
export OMP_NUM_THREADS=8!
srun -n 160 -c 8 ./mycode.exe!

•  srun	does	most	of	op2mal	process	and	thread	binding	automa2cally.	
Only	flags	such	as	“-n”	“-c”,	along	with	OMP_NUM_THREADS	are	
needed	for	most	applica2ons	

•  Hyperthreading	is	enabled	by	default.	Jobs	reques2ng	more	than	32	
cores	(MPI	tasks	*	OpenMP	threads)	per	node	will	use	hyperthreads	
automa2cally.	



Interactive Parallel Jobs


•  You	can	run	small	parallel	jobs	interac>vely	for	up	
to	30	minutes	
login% salloc -N 2 –p debug –t 15:00 
[wait for job to start]!
compute% srun –n 64 ./mycode.exe 

17	



Serial Jobs on Cori 

•  The	“shared”	par>>on	on	Cori	allows	mul>ple	executables	from	

different	users	to	share	a	node	
•  Each	serial	job	run	on	a	single	core	of	a	“shared”	node	
•  Up	to	32	jobs	from	different	users	depending	on	their	memory	

requirements	

	

	
	
	
	
	

18	

#SBATCH -p shared!
#SBATCH -t 1:00:00!
#SBATCH --mem=4GB!
#SBATCH -J my_job!
./mycode.x!

•  Small	parallel	job	that	use	less	than	a	full	node	can	also	run	in	
the	“shared”	par>>on	

	

	
	
	
	
	

•  Do	not	specify	#SBATCH	-N”	
•  Default	“#SBATCH	-n”	is	1	
•  Default	memory	is	1,952	MB	
•  Use	-n	or	--mem	to	request	

more	slots	for	larger	memory	
•  Do	not	use	“srun”	for	serial	

executable	(reduces	overhead)	

	
)	



Edison Queue Policy (as of March 2016)


19	

Specify	these	par22ons	with		
#SBATCH -q partition_name	

Specify	these	QOS	with		
#SBATCH --qos=premium	

These	limits	are	per	user	
per	par22on/QOS	limits	

Jobs	with	insufficient	
alloca2ons	to	run	are	
directed	to	“scanvenger”	



Cori Queue Policy (as of March 2016)


20	

Large	user	limits	

For	serial	workload	

For	real2me	workflow		



Which System to Run My Jobs


•  Queue	configura>on	and	policies	are	s>ll	under	tuning	
for	max	throughput	and	system	u>liza>on.	

•  The	Cori	Phase	1	(also	known	as	the	"Cori	Data	
Par>>on")	system	is	designed	to	accelerate	data-
intensive	applica>ons.	 		
–  1-2	node	jobs	in	“regular”	par22on	for	high	throughput	jobs:	
larger	user	limits,	longer	wall	2me	limits	

–  “shared”	par22on	for	serial	workload:	very	large	user	limits	
–  “real2me”	par22on	for	real2me	workflow	(special	arrangement)	

•  Users	are	encouraged	to	run	large	size	massive	parallel	
jobs	on	Edison.	Jobs	use	683+	nodes	on	Edison	get	40%	
charging	discount.		

-	21	-	



Monitoring Your Job

•  Once	your	job	is	submieed,	it	enters	the	queue	and	
will	start	when	resources	are	available	

•  Overall	job	priori>es	are	a	combina>on	of	par>>on,	
QOS,	queue	wait	>me,	job	size,	wall	>me	request,	and	
fair	share.		

•  You	can	monitor	it	with:	
–  sqs !
–  squeue !
On	the	web:	
htps://my.nersc.gov	
htps://www.nersc.gov/users/live-status/	:	“Queue	Look”	
htps://www.nersc.gov/users/job-logs-and-analy2cs/completed-jobs/	

22	



SLURM User Commands

•  sbatch:	submit	a	batch	script	
•  salloc:	request	nodes	for	an	interac2ve	batch	session	
•  srun:	launch	parallel	jobs	
•  scancel:	delete	a	batch	job	
•  sqs:	NERSC	custom	queue	display	with	job	priority	ranking	info	
•  squeue:	display	info	about	jobs	in	the	queue	
•  sinfo:	view	SLURM	configura2on	about	nodes	and	par22ons	
•  scontrol:	view	and	modify	SLURM	configura2on	and	job	state		
•  sacct:	display	accoun2ng	data	for	jobs	and	job	steps	
•  htps://www.nersc.gov/users/computa2onal-systems/cori/

running-jobs/monitoring-jobs/	

-	23	-	



24	

Tips for Getting Better Throughput

•  Line	jumping	is	allowed,	but	it	may	cost	more	
•  Submit	shorter	jobs,	they	are	easier	to	schedule	

–  Checkpoint	if	possible	to	break	up	long	jobs	
–  Short	jobs	can	take	advantage	of	‘backfill’	opportuni2es	
–  Run	short	jobs	just	before	maintenance	

•  Very	important:	make	sure	the	wall	clock	>me	you	
request	is	accurate	
–  As	noted	above,	shorter	jobs	are	easier	to	schedule	
–  Many	users	unnecessarily	enter	the	largest	wall	clock	2me	
possible	as	a	default	

•  Queue	wait	>me	sta>s>cs	
–  htps://www.nersc.gov/users/queues/queue-wait-2mes/	

	



Advanced Workflow Management


•  Bundle	jobs	(mul>ple	“srun”s	in	one	script,	
sequen>al	or	simultaneously)	

•  Use	Job	Arrays	for	submihng	and	managing	
collec>ons	of	similar	jobs		
–  Beter	managing	jobs,	not	necessary	faster	turnaround	
–  Each	array	task	is	considered	a	single	job	for	scheduling	

•  Use	job	dependency	features	to	chain	jobs	that	
have	dependency	

-	25	-	



Charge Factors & Discounts


•  Each	machine	has	a	“machine	charge	factor”	(MCF)	
that	mul>plies	the	“raw	hours”	used	
–  Edison	MCF	=	2.0	
–  Cori	MCF	=	2.5	

•  Each	QOS	has	a	“QOS	charge	factor”	(QCF)		
–  premium	QCF	=	2.0	
–  normal	QCF	=	1.0	(default)	
–  low	QCF	=	0.5	
–  scavenger	QCF	=	0	

•  On	Edison:	
–  Jobs	reques2ng	683	or	more	nodes	get	a	40%	discount	

26	



How Your Jobs Are Charged


•  Your	repository	is	charged	for	each	node	your	job	was	
allocated	for	the	en>re	dura>on	of	your	job.	
–  The	minimum	allocatable	unit	is	a	node	(except	for	the	“shared”	
par00on	on	Cori).	Edison	have	24	cores/node	and	Cori	has	32	
cores/node.	

	
–  Example:		4	Cori	nodes	for	1	hour	with	“premium”	QOS	
MPP	hours	=	(4)	*	(32)	*	(1	hour)	*	(2)	*	(2.5)	=	640	MPP	hours	

–  “shared”	jobs	are	charged	with	physical	CPUs	used	instead	of	
en2re	node.	

•  If	you	have	access	to	mul>ple	repos,	pick	which	one	to	
charge	in	your	batch	script	
#SBATCH –A repo_name 

MPP	hours	=	(#	nodes)	*	(#	cores	/	node)	*	(wall2me	used)	*	(QCF)	*	(MCF)	



More Information


NERSC	Web	pages:	
•  Edison

hep://www.nersc.gov/users/computa>onal-systems/edison/running-jobs/	
•  Cori

hep://www.nersc.gov/users/computa>onal-systems/cori/running-jobs/	

	
Contact	NERSC	Consul>ng:	

–  Toll-free	800-666-3772		
–  510-486-8611,	op2on	#3	
–  Email	consult@nersc.gov	

	
28	



Thank You



