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Jobs at NERSC


•  Most	are	parallel	jobs	(10s	to	100,000+	cores)	
•  Also	a	number	of	“serial”	jobs	
–  Typically	“pleasantly	parallel”	simula2on	or	data	analysis	

•  Produc>on	runs	execute	in	batch	mode	
•  Our	batch	scheduler	is	SLURM	(na>ve)	
•  Debug	jobs	are	supported	for	up	to	30	minutes	
•  Typically	run	>mes	are	a	few	to	10s	of	hours		
–  Each	machine	has	different	limits	
–  Limits	are	necessary	because	of	MTBF	and	the	need	to	
accommodate	6,000	users’	jobs	



Edison - Cray XC30


•  2.7	GB	memory	/	core	for	
applica2ons	

•  /scratch	disk	quota	of	10	TB	

•  7.6	PB	of	/scratch	disk	

•  Choice	of	full	Linux	opera2ng	
system	or	op2mized	Linux	OS	
(Cray	Linux)	

•  Intel,	Cray,	and	GNU	compilers		
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•  133,824	cores,	5,576	nodes	
•  “Aries”	interconnect	
•  2	x	12-core	Intel	’Ivy	Bridge'	

2.4	GHz	processors	per	node	
•  24	processor	cores	per	node,	

48	with	hyperthreading	
•  64	GB	of	memory	per	node		
•  357	TB	of	aggregate	memory	



Cori Phase 1 - Cray XC40


•  4	GB	memory	/	core	for	
applica2ons	

•  /scratch	disk	quota	of	20	TB	

•  30	PB	of	/scratch	disk	

•  Choice	of	full	Linux	opera2ng	
system	or	op2mized	Linux	OS	
(Cray	Linux)	

•  Intel,	Cray,	and	GNU	compilers		
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•  52,160	cores,	1,630	nodes	
•  “Aries”	interconnect	
•  2	x	16-core	Intel	’Haswell'	

2.3	GHz	processors	per	node	
•  32	processor	cores	per	node,	

64	with	hyperthreading	
•  128	GB	of	memory	per	node		
•  203	TB	of	aggregate	memory	



Cori Phase 1 Compute Nodes
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•  Cori	Phase	1:	NERSC	Cray	XC40,	1,630	nodes,	52,160	cores.	
•  Each	node	has	2	Intel	Xeon	16-core	Haswell	processors.		
•  2	NUMA	domains	per	node,	16	cores	per	NUMA	domain.																	

2	hardware	threads	per	core.	
•  Memory	bandwidth	is	non-homogeneous	among	NUMA	domains.	

To	obtain	processor	info:	
	
Get	on	a	compute	node:	
%	salloc	–N	1	
	
Then:	
%	cat	/proc/cpuinfo	
or	
%	hwloc-ls	



Login Nodes and Compute Nodes

Each	machine	has	2	types	of	nodes	visible	to	users	
•  Login	nodes	(external)	
–  Edit	files,	compile	codes,	submit	batch	jobs,	etc.	
–  Run	short,	serial	u2li2es	and	applica2ons	

•  Compute	nodes	
–  Execute	your	applica2on	
–  Dedicated	resources	for	your	job	

6	



Submitting Batch Jobs


•  To	run	a	batch	job	on	the	compute	nodes	you	must	
write	a	“batch	script”	that	contains	
–  Direc2ves	to	allow	the	system	to	schedule	your	job	
–  An	srun	command	that	launches	your	parallel	executable		

•  Submit	the	job	to	the	queuing	system	with	the	
sbatch	command	
–  % sbatch my_batch_script!
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Launching Parallel Jobs with SLURM
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sbatch 

Login	Node	 Head	Compute	Node		

Other	Compute	Nodes	
allocated	to	the	job	Head	compute	node:	

•  Runs	commands	in	batch	script	
•  Issues	job	launcher	“srun”	to	start	parallel	

jobs	on	all	compute	nodes	(including	itself)	

Login	node:	
•  Submit	batch	jobs	via	sbatch	or	salloc	
•  Please	do	not	issue	“srun”	from	login	nodes	
•  Do	not	run	big	executables	on	login	nodes	



Sample Cori Batch Script - MPI
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#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!



Sample Cori Batch Script - MPI
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#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

•  Need	to	specify	which	shell	to	use	for	batch	script	
•  Use	“-l”	as	login	shell	is	op2onal.		
•  Environment	is	automa2cally	imported		



Sample Cori Batch Script - MPI
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#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

Job	direc2ves:	instruc2ons	for	the	batch	system		
•  Submission	par22on	(default	is	“debug”)	
•  How	many	compute	nodes	to	reserve	for	your	job	
•  How	long	to	reserve	those	nodes	
•  More	op2onal	SBATCH	keywords	



Sample Cori Batch Script - MPI
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#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

SBATCH	op2onal	keywords:		
•  how	many	instances	of	applica2ons	to	launch	(#	of	MPI	tasks)	
•  which	QOS	to	use	via	“#SBATCH	--qos=…”	(default	is	normal)	
•  what	to	name	STDOUT	files	
•  what	account	to	charge	
•  whether	to	no2fy	you	by	email	when	your	job	finishes	
•  …	



Sample Cori Batch Script - MPI
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#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

•  By	default,	hyperthreading	is	on.	SLURM	sees	2	threads	are	available	for	
each	of	the	32	physical	CPUs	on	the	node.	

•  No	need	to	set	this	if	your	applica2on	programming	model	is	pure	MPI.	
•  If	your	code	is	hybrid	MPI/OpenMP,	set	this	value	to	1	to	run	in	pure	

MPI	mode.	



Sample Cori Batch Script - MPI
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#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

“srun”	command	launches	parallel	executables	on	the	compute	nodes	
•  srun	flags	overwrite	SBATCH	keywords	
•  No	need	to	repeat	flags	in	srun	command	if	already	defined	in	

SBATCH	keywords.		(e.g.	“srun	./my_executable”	will	also	do	in	
above	example)	



Sample Cori Batch Script - MPI
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#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

•  There	are	64	logical	CPUs	on	each	node	
•  With	40	nodes,	using	hyperthreading,	up	to	40*64=2,560	MPI	tasks	

can	be	launched:	“srun	-n	2560	./my_executable”	is	OK	



Hybrid MPI/OpenMP
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#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
!
export OMP_NUM_THREADS=8!
srun -n 160 -c 8 ./mycode.exe!

•  srun	does	most	of	op2mal	process	and	thread	binding	automa2cally.	
Only	flags	such	as	“-n”	“-c”,	along	with	OMP_NUM_THREADS	are	
needed	for	most	applica2ons	

•  Hyperthreading	is	enabled	by	default.	Jobs	reques2ng	more	than	32	
cores	(MPI	tasks	*	OpenMP	threads)	per	node	will	use	hyperthreads	
automa2cally.	



Interactive Parallel Jobs


•  You	can	run	small	parallel	jobs	interac>vely	for	up	
to	30	minutes	
login% salloc -N 2 –p debug –t 15:00 
[wait for job to start]!
compute% srun –n 64 ./mycode.exe 
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Serial Jobs on Cori 

•  The	“shared”	par>>on	on	Cori	allows	mul>ple	executables	from	

different	users	to	share	a	node	
•  Each	serial	job	run	on	a	single	core	of	a	“shared”	node	
•  Up	to	32	jobs	from	different	users	depending	on	their	memory	

requirements	
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#SBATCH -p shared!
#SBATCH -t 1:00:00!
#SBATCH --mem=4GB!
#SBATCH -J my_job!
./mycode.x!

•  Small	parallel	job	that	use	less	than	a	full	node	can	also	run	in	
the	“shared”	par>>on	

	

	
	
	
	
	

•  Do	not	specify	#SBATCH	-N”	
•  Default	“#SBATCH	-n”	is	1	
•  Default	memory	is	1,952	MB	
•  Use	-n	or	--mem	to	request	

more	slots	for	larger	memory	
•  Do	not	use	“srun”	for	serial	

executable	(reduces	overhead)	

	
)	



Edison Queue Policy (as of March 2016)
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Specify	these	par22ons	with		
#SBATCH -q partition_name	

Specify	these	QOS	with		
#SBATCH --qos=premium	

These	limits	are	per	user	
per	par22on/QOS	limits	

Jobs	with	insufficient	
alloca2ons	to	run	are	
directed	to	“scanvenger”	



Cori Queue Policy (as of March 2016)
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Large	user	limits	

For	serial	workload	

For	real2me	workflow		



Which System to Run My Jobs


•  Queue	configura>on	and	policies	are	s>ll	under	tuning	
for	max	throughput	and	system	u>liza>on.	

•  The	Cori	Phase	1	(also	known	as	the	"Cori	Data	
Par>>on")	system	is	designed	to	accelerate	data-
intensive	applica>ons.	 		
–  1-2	node	jobs	in	“regular”	par22on	for	high	throughput	jobs:	
larger	user	limits,	longer	wall	2me	limits	

–  “shared”	par22on	for	serial	workload:	very	large	user	limits	
–  “real2me”	par22on	for	real2me	workflow	(special	arrangement)	

•  Users	are	encouraged	to	run	large	size	massive	parallel	
jobs	on	Edison.	Jobs	use	683+	nodes	on	Edison	get	40%	
charging	discount.		
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Monitoring Your Job

•  Once	your	job	is	submieed,	it	enters	the	queue	and	
will	start	when	resources	are	available	

•  Overall	job	priori>es	are	a	combina>on	of	par>>on,	
QOS,	queue	wait	>me,	job	size,	wall	>me	request,	and	
fair	share.		

•  You	can	monitor	it	with:	
–  sqs !
–  squeue !
On	the	web:	
htps://my.nersc.gov	
htps://www.nersc.gov/users/live-status/	:	“Queue	Look”	
htps://www.nersc.gov/users/job-logs-and-analy2cs/completed-jobs/	
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SLURM User Commands

•  sbatch:	submit	a	batch	script	
•  salloc:	request	nodes	for	an	interac2ve	batch	session	
•  srun:	launch	parallel	jobs	
•  scancel:	delete	a	batch	job	
•  sqs:	NERSC	custom	queue	display	with	job	priority	ranking	info	
•  squeue:	display	info	about	jobs	in	the	queue	
•  sinfo:	view	SLURM	configura2on	about	nodes	and	par22ons	
•  scontrol:	view	and	modify	SLURM	configura2on	and	job	state		
•  sacct:	display	accoun2ng	data	for	jobs	and	job	steps	
•  htps://www.nersc.gov/users/computa2onal-systems/cori/

running-jobs/monitoring-jobs/	
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Tips for Getting Better Throughput

•  Line	jumping	is	allowed,	but	it	may	cost	more	
•  Submit	shorter	jobs,	they	are	easier	to	schedule	

–  Checkpoint	if	possible	to	break	up	long	jobs	
–  Short	jobs	can	take	advantage	of	‘backfill’	opportuni2es	
–  Run	short	jobs	just	before	maintenance	

•  Very	important:	make	sure	the	wall	clock	>me	you	
request	is	accurate	
–  As	noted	above,	shorter	jobs	are	easier	to	schedule	
–  Many	users	unnecessarily	enter	the	largest	wall	clock	2me	
possible	as	a	default	

•  Queue	wait	>me	sta>s>cs	
–  htps://www.nersc.gov/users/queues/queue-wait-2mes/	

	



Advanced Workflow Management


•  Bundle	jobs	(mul>ple	“srun”s	in	one	script,	
sequen>al	or	simultaneously)	

•  Use	Job	Arrays	for	submihng	and	managing	
collec>ons	of	similar	jobs		
–  Beter	managing	jobs,	not	necessary	faster	turnaround	
–  Each	array	task	is	considered	a	single	job	for	scheduling	

•  Use	job	dependency	features	to	chain	jobs	that	
have	dependency	
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Charge Factors & Discounts


•  Each	machine	has	a	“machine	charge	factor”	(MCF)	
that	mul>plies	the	“raw	hours”	used	
–  Edison	MCF	=	2.0	
–  Cori	MCF	=	2.5	

•  Each	QOS	has	a	“QOS	charge	factor”	(QCF)		
–  premium	QCF	=	2.0	
–  normal	QCF	=	1.0	(default)	
–  low	QCF	=	0.5	
–  scavenger	QCF	=	0	

•  On	Edison:	
–  Jobs	reques2ng	683	or	more	nodes	get	a	40%	discount	
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How Your Jobs Are Charged


•  Your	repository	is	charged	for	each	node	your	job	was	
allocated	for	the	en>re	dura>on	of	your	job.	
–  The	minimum	allocatable	unit	is	a	node	(except	for	the	“shared”	
par00on	on	Cori).	Edison	have	24	cores/node	and	Cori	has	32	
cores/node.	

	
–  Example:		4	Cori	nodes	for	1	hour	with	“premium”	QOS	
MPP	hours	=	(4)	*	(32)	*	(1	hour)	*	(2)	*	(2.5)	=	640	MPP	hours	

–  “shared”	jobs	are	charged	with	physical	CPUs	used	instead	of	
en2re	node.	

•  If	you	have	access	to	mul>ple	repos,	pick	which	one	to	
charge	in	your	batch	script	
#SBATCH –A repo_name 

MPP	hours	=	(#	nodes)	*	(#	cores	/	node)	*	(wall2me	used)	*	(QCF)	*	(MCF)	



More Information


NERSC	Web	pages:	
•  Edison

hep://www.nersc.gov/users/computa>onal-systems/edison/running-jobs/	
•  Cori

hep://www.nersc.gov/users/computa>onal-systems/cori/running-jobs/	

	
Contact	NERSC	Consul>ng:	

–  Toll-free	800-666-3772		
–  510-486-8611,	op2on	#3	
–  Email	consult@nersc.gov	
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Thank You



