
Performance Analysis using the Roofline Model
Samuel Williams (SWWilliams@lbl.gov), Charlene Yang, Khaled Ibrahim,

Thorsten Kurth, Nan Ding, Jack Deslippe, Leonid Oliker
CRD/NERSC, Lawrence Berkeley National Laboratory

Community Engagement

Introduction

Scaling Trajectories

Roofline on GPUs

Roofline for TensorFlow

Publications

RESOURCE & APPL ICATION PRODUCTIVITY THROUGH
COMPUTAT ION , I NFORMAT ION , AND DATA SC I ENCE

SCIDAC4 INSTITUTE

RAPIDS

Integration in Intel Advisor

§ https://crd.lbl.gov/roofline/publications

§ C. Yang, T. Kurth, S. Williams, "Hierarchical

Roofline Analysis for GPUs: Accelerating

Performance Optimization for the NERSC-9

Perlmutter System", CUG, 2019.

§ C. Yang, S. Williams, “Performance Analysis of

GPU-Accelerated Applications using the Roofline

Model”, GTC, 2019.

§ C. Yang, et al., "An Empirical Roofline

Methodology for Quantitatively Assessing

Performance Portability", P3HPC, 2018.

§ K. Ibrahim, S. Williams, L. Oliker, "Roofline Scaling

Trajectories: A Method for Parallel Application

and Architectural Performance Analysis",
HPBench, 2018.

§ T. Koskela, et al., "A Novel Multi-Level Integrated

Roofline Model Approach for Performance

Characterization", ISC, 2018.

#Filters
• Intensity ∝ #Filters
• Low L2 data locality
• Some use of TC’s (>FP16

FMA)… partial TC ceiling

Kernel Size
• Intensity ∝ kernel size
• Low L2 data locality
• Autotuner switched FP32

algorithm to FFT at 9x9

• Some use of TC’s (>FP16
FMA)… partial TC ceiling

Batch Size
• Constant performance(?)
• FP16 performance anti-

correlated with batch size

• Performance << TC peak
• Transformation kernels
• Low L2 locality

#Filters
• Close to FP16 TC peak
• Close to FP32 FMA peak

Kernel Size
• Good FP32 performance trend

(almost peak)
• Autotuner chose to run 9x9

FP16 in FP32 !!

Batch Size
• Autotuner chose different

(better) algorithm for FP32 with
batch size = 64 (boost)

conv2d Forward Pass

conv2d Backward Pass

§ Demonstrate methodology using conv2d from
TensorFlow+cuDNN on V100 GPU

§ Setup…
input_image = tf.random_uniform(shape=input_size, minval=0., maxval=1.,

dtype=dtype)
output_result = conv2d(input_image, ’NHWC’, kernel_size, stride_size, dtype)

§ Forward Pass (2D conv)
exec_op = output_result

§ Backward Pass (2D conv + derivative)
opt = tf.train.GradientDescentOptimizer(0.5)
exec_op = opt.compute_gradients(output_result)

§ Each kernel includes multiple sub-kernels
o Padding, permutations, conversions, compute, etc…
o Should include all of them when analyzing performance

§ TensorFlow also includes an autotuning step
o Ignore autotuning when profiling/modeling
o nvprof --profile-from-start off
o run 5 warmup iterations (autotuning / not profiled)
o start profiler (pyc.driver.start_profiler), run 20 iter, stop profiler

§ Vary parameters to understand performance

§ Developed a Roofline methodology POC for
analyzing applications running on NVIDIA GPUs

§ Use NVProf to collect Roofline-related metrics
(FLOPs, cache/DRAM data movement, etc…)

§ BerkeleyGW (Materials)
https://github.com/cyanguwa/BerkeleyGW-GPP

§ nw increases data reuse in
inner loop
o More flops for fixed data movement
o Understand cache effects
o Quantify effects of FMA:MUL ratio

(disable FMA in compiler)

§ Observations…
o High correlation with HBM BW
o FMA doesn’t hit FMA ceiling
o High RF and L2 Locality
o Minimal increases in L1 locality

§ HPGMG (Multigrid)
https://bitbucket.org/hpgmg/hpgmg

§ Multiple variants of GSRB
smoother…
o GSRB_FP does 2x the work but is

trivial to implement
o STRIDE2 requires more complex

memory access and predication

§ Observations…
o High correlation with HBM BW for

large problem sizes (level>5)
o Moderate L1 cache locality
o Low reuse in the L2 cache for

GSRB_FP variant
o STRIDE2 performance crashes due

to decline in intensity

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c3

2) (1
28)

DRAM (c1
) (1

4.3)

●

●

●

●

●
●●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c2

c4
c8

c16c32c64

1 2 4 8 16 32 64
#Threads

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c3

2) (1
28)

DRAM (c1
) (1

4.3)

●

●

●

●

●
●●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c2

c4
c8

c16c32c64

§ Performance as a
function of thread
concurrency provides
little insight

§ Need better approach
to understand turn
overs in performance

§ NAS Parallel Benchmarks
§ Intensity (data movement)

varies with concurrency and
problem size

§ Large problems (green and
red) move more data per
thread, and exhaust cache
capacity

§ Use Roofline to analyze thread scalability
§ “Roofline Scaling Trajectories”

o 2D scatter plot of performance as a function of intensity and
concurrency

o Identify loss in performance due to increased cache pressure (data
movement)

§ Falling Intensity → hit the bandwidth ceiling quickly
and degrade.

Ø Useful for understanding locality/BW contention

induced scaling bottlenecks

§ Roofline has been integrated into Intel’s Advisor
Performance Tool…
ü Automatically instruments applications

(one dot per loop nest/function)
ü Computes FLOPS and AI for each function / loop nest
ü Integrated Cache Simulator (hierarchical roofline)

ü Automatically benchmarks target system (calculates ceilings)
ü AVX-512 support including vector masks
ü Full integration with existing Advisor capabilities

§ Fully supported on NERSC’s Edison and Cori
(Haswell and Knights Landing) Systems

§ http://www.nersc.gov/users/software/performance-
and-debugging-tools/advisor/

% module load advisor/2018.integrated_roofline
% cc -g -dynamic -openmp -O2 -o mycode.exe mycode.c
% source advixe-vars.sh
% advixe-cl -collect survey --project-dir ./your_project --

<your-executable-with-parameters>
% advixe-cl -collect tripcounts -enable-cache-simulation -

flop --project-dir ./your_project -- <your-executable-with-
parameters>

§ Strong collaboration with NERSC, Intel, and NVIDIA
§ We’ve run Roofline tutorials at SC’17, SC’18, SC’19,

ECP’18, ECP’19, ISC’18, ISC’19, NERSC, etc…

Each DOT represents a loop
nest or function in the

TARGET APPLICATION

(profiled)

Each CEILING represents the peak
CPU/Memory throughput of the

TARGET PLATFORM

(benchmarked)

§ Increasingly, many applications have large, non-
floating-point components (e.g. Genomics, Graphs,
etc…)

§ Traditional FLOP Roofline is irrelevant (no FLOPs)
§ Advisor Roofline support expanded to include Integer

and Integer+FLOP Rooflines

§ Roofline is a throughput-
oriented performance model

§ Tracks rates not times
§ Independent of ISA and

architecture
§ applies to CPUs, GPUs,

Google TPUs, FPGAs, etc…
§ Defines Good Performance

§ Arithmetic Intensity is a
measure of data locality
o Ratio of Total Flops to Total Bytes
o Includes cache and prefetcher effects
o Can be very different from total

loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to

sustained GB/s (time cancels)

§ Hierarchical Roofline
o Applies to all levels of memory

hierarchy on both CPUs and GPUs
o Different data movements for

L2/HBM/PCIe imply different
arithmetic intensities

o Differences in L2/HBM/PCIe intensity
highlight differences in locality
(similar AI’s imply streaming)

§ Focus on important Loops,
Kernels, Applications, …
o loops/kernels/apps attaining better

than 50% of Roofline will see limited
benefit from optimization

o Users can use Roofline to identify
underperforming loops/kernels/apps

Peak FLOP/s

A
tta

in
ab

le
 F

LO
P

/s

DRAM G
B/s

Arithmetic Intensity (FLOP:Byte)

DRAM
bound

Compute
bound

Transition @ AI ==
Peak Gflop/s / Peak GB/s ==

‘Machine Balance’

Peak FLOP/s

A
tta

in
ab

le
 F

LO
P

/s

HBM G
B/s

50
%

 of
 S

TREAM

Arithmetic Intensity (FLOP:Byte)

50% of
Peak

PCIe Bound
PCIe AI*BW <
HBM AI*BWA

tt
ai

na
bl

e
FL

O
P/

s

PCIe G
B/s

HBM
 G

B/s

Arithmetic Intensity (FLOP:Byte)

L2
 G

B/s
Peak FLOP/s

mailto:SWWilliams@lbl.gov
https://crd.lbl.gov/roofline/publications
https://github.com/cyanguwa/BerkeleyGW-GPP
https://bitbucket.org/hpgmg/hpgmg
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/

