
Optimizing Smoothed Particle Hydrodynamics Code Phantom on Haswell and KNL
Charlene Yang
Chris Bording

Pawsey Supercomputing Centre, Perth, Australia Daniel Price
Rebecca Nealon

Monash University, Melbourne, Australia

This poster presents the optimization work carried out on a Smoothed
Particle Hydrodynamics (SPH) code Phantom on Haswell and KNL. With
8 steps of optimization, the performance results show 3x speedup on
Haswell and 4x on KNL. A few remarks are provided to highlight the
differences on KNL in terms of architecture and optimization strategy.
This work will also serve as an example of optimizing other codes, such
as those in molecular dynamics, computer graphics and neural networks
that also deal with kd-tree, neighbour search, irregular computation and
random memory accesses.

Codebase and Platforms

Phantom [1] is a smoothed particle hydrodynamics and magnetohydrody-
namics code for Astrophysics. It is parallelized with OpenMP and widely
used for studies of accretion discs, turbulence and star formation (Fig.1).
There are four major subroutines [2], namely, maketree, getneigh, density-
iterate and force. maketree builds a three dimension tree for all the parti-
cles (Fig.2), and densityiterate and force calculate the density and force of a
particular particle based on the neighbour list provided by getneigh through
tree traversal.

Fig.1: A misaligned accretion disc around a spinning black hole

A representative simulation is the rndisc simulation, which executes all
major subroutines and runs for about 60s on 16 cores for a 106- particle,
10-timestep (112-subtimestep) setup. We will be using this as the case of
study in this work and will be running on the following two platforms.

Optimization Path and Results

Step 1:
Adjust OpenMP scheduling. Since the total number of cells are in the
100,000’s and 70% of them are empty or inactive (hence need to be skipped),
the chunksize is increased from 10 to 2000 for the two loops in densityiterate
and force.

Step 2:
Adjust number of threads to be a power of 2. Even though there are 24
cores on Haswell, 16 threads prove to have a better load balance since the
tree is based on a binary build and every level in the breath-first stage has
a 2n (n > 0) number of nodes (Fig.3). Number of threads on KNL stays the
same, i.e. 64. Extra code will be added to utilize the other cores on Haswell.

Employ nested OpenMP parallel regions. Two serial code regions in
maketree are only executed by master thread in the breadth-first build.
Nested OMP regions are used to improve thread concurrency so that all
threads work on node 1, 2 teams of half the threads work on node 2-3
simultaneously, and so on (Fig.3).

Step 3:
Remove linked lists in maketree to reduce random memory access and
LLC miss. This also helps reduce the serial code since part of it can now
be parallelized with the 3 new arrays representing the tree.

Move particles as the tree is built. Particle positions are copied at each
level according to tree structure so memory access is contiguous at the next
level. Memory movement can be costly but can be vectorized with Compress
instruction on KNL. This is not available on Haswell, but improved memory
access pattern has proved to have enough benefit to overcome this (through
vectorization) (Fig.7).

Fig.2: kd-tree construction. Each level of the tree recursively splits the particle distribution in half, bisecting the longest
axis at the centre of mass until the number of particles in a given cell is < Nmin.

Step 4:
Change data layout from AoS to SoA for xyzh in maketree to improve
vectorization efficiency in the calculation of centre of mass, node size,
quadruple moments and other quantities.

Step 5:
Vectorize the inner loop of getneigh. There is dependency in the outer loop
since child nodes cannot be determined to be relevant until the parent node
has. Inner loop is vectorizable since loop count is known with the new tree
representation from Step 3. With branches moved outside, it is efficiently
vectorized.

Data structure of cache arrays xyzcache and dxcache are changed from AoS
to SoA to make vectorization in get_dens_sums and compute_force more
efficient. Self particle is excluded from the neighbour list to help remove
the cycle statement in get_dens_sums and compute_force to make them
more efficient in Step 6-7.

Fig.3: Different parallelisms in the kd-tree build

Step 6-7:
Vectorize density and force summation loops in get_dens_sums and
compute_force. Branches are brought outside, functions are inlined, and
loop fission is applied based on the sparsity of data.

0 1 2 3 4 5 6

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Cell index

A
ve

ra
ge

 n
um

be
r o

f n
ei

gh
bo

ur
s

Subroutine get_dens_sums

1st iter
3rd iter
5th iter

Fig.4: Data sparsity in density summation

Neighbours that satisfy a certain criteria are only 5-10% of the neighbours
provided by getneigh for some cells, and it gets even more sparse as the
iterative process goes on (Fig.4). To make sure summations have dens
memory to access, loops are broken up into two parts, loops 1-4 and loop 5
in get_dens_sums (Fig.5) (similar in compute_force). Sparse data is collected
(loop 3) and loops are vectorized before and after the breakpoint. Again, loop
3 can be vectorized with Vector Compress on KNL but not on Haswell. But
there is still improvement observed in performance (Fig.7) which mainly
comes from the vectorization of loop 2 and 5.

Fig.5: Loop in get_dens_sums is split at if (q2i < radkerns).

10
�3

10
�2

10
�1

10
0

10
1

10
�2

10
�1

10
0

10
1

10
2

10
3

DRAM 100GB/s

ScalarAdd 132GFLOP/s

VectorAdd 1056GFLOP/s
VectorFMA 2122GFLOP/s

MCDRAM 450GB/s

L2 2000GB/sL1 10000GB/s

Arithmetic Intensity (cache�aware) (FLOPs/Byte)

P
er

fo
rm

an
ce

 (G
FL

O
P

s/
se

c)

baseline
optimized

Fig.6: Cache-aware roofline model on KNL

Step 8:
Improve vectorization efficiency in get_dens_sums and compute_force. Add
CONTIGUOUS attribute to assumed shape arrays to avoid multiversioning.
Adjust size of cache arrays to make sure that column length is a multiple
of vector length and so all columns are 32byte-aligned on Haswell for
multidimensional arrays and 64byte on KNL. Use !$omp simd declare
annotation, !DIR$ FORCEINLINE directive, and -ipo compilation flag to
ensure function calls (and calls within calls) are properly inlined.

After these 8 steps, loops have been moved rightwards and upwards on the
roofline model for both Haswell and KNL (Fig.6 for KNL). Walltime has been
reduced by 3x on Haswell and 4x on KNL (Fig.7), and this means months
of time is saved for a typical simulation in real life with low-to-medium
resolution and millions of timesteps.

Fig.7: Optimization path

Remarks on Optimization Strategies

•Thread parallelism: KNL has more cores than Haswell but all are running
at a much lower frequency. Well balanced load is critical for codes to achieve
good thread concurrency and thus performance.
•Data parallelism: KNL has wider vectors and improved instruction sets.
Data parallelism should be exploited as much as possible to auto-vectorize
and to use SIMD instructions.
•Memory awareness: Data layout, alignment and spacial/temporal locality
is more important on KNL than Haswell due to its wider vectors and lack of
L3 cache. Vector-friendly and cache-friendly data arrangement is greatly
encouraged. MCDRAM also favors cache-friendly codes because even
though it has higher bandwidth, its latency still stays close to DDR’s.

References
[1] https://phantomsph.bitbucket.io.
[2] Daniel J. Price, James Wurster, and Chris Nixon et al. Phantom: A
smoothed particle hydrodynamics and magnetohydrodynamics code for
astrophysics. arXiv:1702.03930.

Abstract

Haswell E5-2690v3 Xeon Phi 7210 (quad-flat)

Cores 12 cores x2 @2.6GHz 64 cores @1.3GHz

TDP 135 W x2 215 W

Memory 64GB DDR 96GB DDR + 16GB MCDRAM

Cache L1 32K, L2 256K, L3 30M L1 32K, L2 512K (1M shared)

q2icounter = 0
do nn=1,(nneigh/nneighblk)*nneighblk,nneighblk
	 do n = nn,nn+nneighblk-1
 		 calculate rij2, q2i(n)
 	 enddo
 	 counter=0
 	 do n = nn,nn+nneighblk-1
 		 if (q2i(n) < radkern2hi21) then
 		 counter=counter+1
 		 cache(q2icounter+counter)= q2i(n)
 	 endif
 	 enddo
 	 q2icounter=q2icounter+counter
enddo

do n=(nneigh/nneighblk)*nneighblk+1,nneigh
enddo

do n=1,q2icounter
	 calculate rhosum
enddo

 cache blocking

 pure compute, vectorized

vector compress, KNL only

 remainder loop

 pure compute, vectorized

1
2

3

4

5

GOVERNMENT OF
WESTERN AUSTRALIA

