
Data-driven Workflows on Crays with Hybrid Scheduleding 
A Case Study of Celera on Magnus

This poster presents an example of data-driven 
workflows running on a SLURM+ALPS scheduled 
Cray machine at Pawsey Supercomputing Centre. 
This example adapts the de novo assembly software 
WGS-Celera, which originally has no SLURM support, 
to be able to dynamically request resources and 
distribute work through the hybrid scheduling system 
on Magnus, a Cray XC40 at Pawsey. The changes 
made to the code are uploaded to GitHub, and some 
insights about the adaptation are offered in this poster 
to benefit other users of Celera or other similarly-
structured workflows around the world.

I. BACKGROUND 

While a few HPC sites are experimenting with native SLURM on their 
Cray systems, the majority of Cray machines on the TOP500 List are still 
using a hybrid scheduling mechanism, be it SLURM+ALPS, PBS+ALPS or 
Torque+ALPS (see Fig. 1). The reason is either trying to avoid disruption to 
production system or having a long-standing tradition with PBS or other 
workload managers.

Fig. 1: Hybrid scheduling mechanism on TOP500 listed Crays

This hybrid scheduling mechanism consists of two parts: on the top a 
third-party workload manager looks after job prioritizing, scheduling and 
accounting, and at the bottom Cray’s primitive resource manager ALPS [1] 
takes care of task placement and job execution. Communication between 
the two layers is through BASIL, an XML-based interface [1]. Take Magnus, 
a Cray XC40 at Pawsey Supercomputing Centre, as an example. Users need 
to sbatch on the external login nodes to request resources and then aprun 
from the MOM nodes to launch jobs to the compute nodes.

II. PROBLEM AND SOLUTION

Since there are no workload scheduler daemons running on the compute 
nodes, submitting jobs from the backend is impossible. This makes it difficult 
for some complex data-driven workflows and a few examples are listed 
in Table I. These workflows consist of a number of analysis stages in the 
pipeline. Different stages may require different amount of compute resources 
depending on the output of previous stages (e.g. data size), and the difference 
can be very significant. Being able to flexibly request resources and distribute 
jobs therefore is a challenge, especially on the Cray supercomputers where 
hybrid scheduling mechanism is deployed. 

Table I: Complex data-driven workflows

WGS-Celera [2] is an example of these data-driven workflows. It is a de novo 
assembly pipeline, and like other examples in Table I, it has a Perl script on 
the high level, managing roughly 10 steps of the assembly process, and on 
the low level it has about 50 C programs (some serial and some are OpenMP 
threaded) to perform heavy-duty computation. The Perl script runCA controls 
the overall flow of the pipeline, and it occasionally dispatches separate jobs 
to the queue (e.g. SLURM on Magnus) to run different steps on different 
pools of compute resources (of different sizes). When that finishes, it then 
resumes to the main workflow, i.e. detect the completed steps and restart 
from the next unfinished step. 

The latest version of Celera is 8.3rc and it doesn’t have SLURM support 
originally. Therefore work was first done to add SLURM options in so it can 
submit, delete and alter jobs, job arrays and support job dependencies. Then 
the following three steps were taken in order to fully adapt Celera to run on 
Magnus, a Cray XC40 at Pawsey with SLURM+ALPS hybrid scheduling. 

1. Categorize the work in Celera to three tiers: 
Tier-1) workflow management, such as detecting pipeline progression, 
locating restart points, creating directories and secondary job scripts, 
Tier-2) light computation, such as serial and small threaded jobs that 
can run on one node, and 
Tier-3) heavy computation, which is mainly jobs that require significantly 
more resources than Tier-2 jobs. 

2. Place Tier-1 work on MOM nodes, Tier-2 on smaller pool of compute 
resources and submit Tier-3 as separate jobs to the queue so they can 
leverage different sizes (bigger than Tier-2) of pools of resources flexibly. 
(Note: submission needs to be initiated from MOM nodes). 

 
3. Identify different data parallelism in Tier-3 and implement it by either 

using job arrays (for threaded jobs) or job packing via environment variable 
ALPS_APP_PE (for serial jobs).  

Fig. 2: Celera pipeline on Magnus

Fig. 2 depicts the adapted Celera workflow on Magnus. The numbers, 17, 4, 
etc, are for a specific dataset (see Section III) and other user cases will have 
different sizes for those jobs. In general, the workflow is kick started with 
a primary job being submitted from the external login nodes. This job runs 
runCA on the MOM nodes and launches Tier-2 jobs such as gatekeeper and 
meryl to the compute node(s) it’s allocated to. When up to large data/compute-
intensive steps such as ovl_trim and ovc_ass, runCA submits a separate job 
to the queue, accompanied by itself as another job which depends on the 
finish of ovl_trim or ovc_ass. The new runCA job then detects the restarting 
point and proceed to the next unfinished step of the pipeline. 

Overall, this adaptation equates to 295 changes to the original runCA script 
and the patch has been made available on GitHub [3]. 

III. VERIFICATION AND TESTS

Verification on this adaption is carried out on an Escherichia Coli (E.coli) 
K12 MG1655 bacterium dataset [4]. The dataset consists of one SMRT Cell 
of data sequenced by P4-C2 PacBio RS II, with a library size of 20 kb. The 
assembly is run on Magnus, where each node has 24 Haswell cores and 64GB 
memory. In total it takes 333.6 core hours to complete and the breakdown of 
the runtime is in Table II. 

Table II: Assembling E. Coli K12 with Celera on Magnus

The resulting assembly is then compared with the reference genome 
GI49175990 Ref NC000913.3 [5]. As is evident in Fig. 3, the Celera assembly 
(y-axis) matches the reference sequence (x-axis) (i.e. the two diagonal lines) 
over the entire range of the genome with one single contig (i.e. N50=4737053 
which is very close to the reference size, 4641651). Note that there are two 
diagonal lines instead of one (the frame shift) and it’s due to the fact that E. 
Coli chromosome is circular and the experimental assembly may start from 
a different point than the reference sequence. 

With this success, the research group from Lions Eye Institute has now started 
assembling a larger data, tawny dragon lizard genome (1.96 Gb 0.5TB), on 
Magnus. Two steps have finished using 148 nodes and 214 nodes respectively. 

Fig. 3: Dotplot of Celera assembly against NCBI reference genome

IV. REMARKS 

In summary, this case study has successfully adapted a complex data-driven 
workflow WGS-Celera to run on a Cray XC40 system where hybrid SLURM 
and ALPS scheduling is deployed. Different stages of the workflow have 
been able to dynamically request resources and distribute work based on 
work type and data size. Insights are offered for other similarly-structured 
workflows to be tuned to work in a hybrid scheduling environment at other 
leadership HPC sites. 

Acknowledgements
This work is supported by Pawsey Supercomputing Centre in Western Australia through the use of 
advanced computing resources.

References
[1] http://docs.cray.com/books/S-2425-52xx.
[2] https://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/wgs-8.3.
[3] https://github.com/PawseySupercomputing/Celera-Assembler-Users.
[4] http://sourceforge.net/projects/wgs-assembler/files/wgs-assembler/wgs-8.0/datasets.
[5] http://www.ncbi.nlm.nih.gov/nuccore/U00096.3.

ABSTRACT

Cray XC40 Compute Intel Xeon E5-2690V3 Haswell, 1,488 nodes, 35,712 
cores, 1,097 TeraFLOPS

Memory DDR4-2133, 64GB per node, 93 TB total
Interconnect Cray Aries, 72 Gb/s per node
Topology Cray Dragonfly, 56% populated
Storage Sonexion 1600, 3 PB, w/ 70 GB/s, Lustre filesystem
Other specs weight 1.7 tonnes/cabinet, power 50 kW/cabinet

Mangus

Fields Software High-level 
Scripts

Low-level 
Programs

Genomics Celera, VelvetOptimiser Perl C

Fluid Dynamics ANSYS, FLUENT Shell Fortran/C/C++

Chemistry ADF, BAND Shell Fortran/C

Geophysics Madagascar Python C

Magnus Jobs Celera Pipeline CPUs Time

job script Setting up for trimming 
0-Estimate mer threshold 24 00:03:29

ovl ecoli-trim[17] 0-Build overlap store for trimming 408 00:37:23

rCA ecoli-trim 0-Deduplicate and trim reads 24 00:00:59

job script Setting up for assembly 24 00:01:35

ovl ecoli-assembly[4] 1-Build overlap store for assembly 96 00:19:57

rCA ecoli-assembly Connecting 24 00:00:28

frg ecoli-assembly[1] 3-Fragment error correction 24 00:04:16

rCA ecoli-assembly Connecting 24 00:00:24

ovc ecoli-assembly[11] 3-Overlap error correction 24 00:05:15

rCA ecoli-assembly 4-Construct unitigs 24 00:00:45

utg ecoli-assembly[2] 5-Compute unitig consensus 24 02:17:38

rCA ecoli-assembly 6-Compute insert sizes 
7-Scaffolding with CGW 24 00:01:23

ctg ecoli-assembly[1] 8-Compute contig consensus 24 00:00:24

rCA ecoli-assembly 9-Terminate 24 00:01:20

GOVERNMENT OF
WESTERN AUSTRALIA

Charlene Yang Pawsey Supercomputing Centre, Perth, Western Australia
charlene.yang@pawsey.org.au

Seyhan Yazar
George Gooden 
Alex Hewitt

Lions Eye Institute, The University of Western Australia
seyhanyazar@lei.org.au 
georgegooden@lei.org.au
alexhewitt@lei.org.au


