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General principles for CPU + GPU

Offload parallel work to GPU (device)
Keep latency sensitive serial work on the CPU (host)

Keep data where it used (on device or host)
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GPU programming models

Multiple options for compiled languages (i.e. C, C++, Fortran)

Python, ML/AI covered in after the break today
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portability

\

GPU Programming models landscape

Py
eC_)penMP -
>
NVIDIA.
- CUDA’>

ease of use / level of control
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CUDA

Native model for NVIDIA GPUs

Reference point for other models

e Full control
e Maximum performance

possible
e Not portable (NVIDIA only)
e \erbose
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CUDA - kernels

CUDA C++ extends C++ by allowing the
programmer to define C++ functions, called
kernels, that, when called, are executed N

// Kernel definition times in parallel by N different CUDA
__global__ void VecAdd(float* A, float* B, threads, as opposed to only once like regular
float* C) C++ functions.

{

A kernel is defined using the  global

int i = threadIdx.x; declaration specifier and the number of

C [ i ] = A[ i] + B[ i] , CUDA threads that execute that kernel for a
} given kernel call is specified using a
new<<<. ..>>>execution configuration
int main() syntax (see C++ Language Extensions). Each
{ thread that executes the kernel is given a

unique thread ID that is accessible within the

// Kernel invocation with N threads kernel through built-in variables.

VecAdd<<<1, N>>>(A, B, C); - CUDA C Programming Guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.htm
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-language-extensions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.htm

CUDA - thread hierarchy

Each kernel consists of a grid =

Block (Q 0) | Blodk(1, 0) | Block (2 0)

A grid consists of blocks and can be 1,2 or 3

dimensional W‘ Blodk (1, 1) ﬁmn

A block consists of threads and can be 1,2
or 3 dimensional

<<<blocks, threads per block>>>

blocks, threads_per_block is either int or
dim3
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CUDA - memory hierarchy

Thread

Thread Block
M —
W 44— Per-block shared

Gnd 0

Blodk (0, 0) || Block(1,0) || Black(2,0) |

Blodk (0, 1) || Block (1,1) || Black (2, 1)

Gt Global memory
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)
p—.
Block (0, 2) Block (1, 2)
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CUDA resources

CUDA C++ programming guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
Recommended reading no matter the programming language/ model you intend to use

NVIDIA blog and GTC talks/slides
https://developer.nvidia.com/blog
https://www.nvidia.com/en-us/on-demand/

Tip: There is a lot of CUDA content available, check the dates since
CUDA has evolved over the years with added features and relaxed
restrictions!

U.S. DEPARTMENT OF Offlce of
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https://developer.nvidia.com/blog
https://www.nvidia.com/en-us/on-demand/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

C++ based “frameworks”

Cross platform abstraction layers
Modern C++

Target accelerators and CPUs from multiple vendors

Pro Con
Powerful abstractions Requires “buy in”
Integrated tools/ libraries learning curve
Portability Vendor support and ecosystem maturity
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k o) k k OS (pronounced ‘sickle)

a cross-platform abstraction layer
that enables code for
heterogeneous processors to be
written using C++ with the host
and kernel code for an application
contained in the same source file

n “Ecosystem” with
programming model,
memory abstractions, math
kernels, tools, etc

Office of
Science
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The Kokkos C++
k O k k o S Performance Portability
EcoSystem

[GTC 19 S9662]

*billed as an “Ecosystem” with programming

model, memory abstractions, math kernels, tools,
etc

*ECP funded project, multiple DOE labs
contributing
o NERSC has staff members contributing
https://qithub.com/kokkos

o extensive tutorlals examgles etc available

3: Piogrammln Moddl Extensions for the Exascale Era

10.1109/TPDS.2021.3097283
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https://github.com/kokkos

Kokkos abstractions

* Views
o like a shared_ptr to multidimensional data in a “MemorySpace”
o with a “Layout” ie which index is fast

* Memory spaces — T
@) Where data |S Stored )ata ' Parallel Execution

- Execution spaces
o Where code is run

" Execution Spaces (“Where")

- CPU, GPU, Executor Mechanism

> Execution Patterns .

- parallel_for/reduce/scan, task-spawn

" Execution Policies (‘How")

- Range, Team, Task-Graph

Office of
Science
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1 #include <cmath>
2 #include <iostream>
3 #include <vector>

4

5 #include <Kokkos_Core.hpp>

6

7 int main(int argc, char *argv[]) {

Kokkos::initialize(argc, argv);

int n = 100000;
Kokkos: :View<double *> a("a", n), b("b", n), c("c", n);

std::cout << "Kokkos execution space: "
<< Kokkos: :DefaultExecutionSpace: :name() << std::endl;

Kokkos: :parallel_for(
"{nitialize", n, KOKKOS_LAMBDA(size_t const i) {
auto x = static_cast<double>(1);
a(i) = sin(x) * sin(x);
b(1) = cos(x) * cos(x);

Rk

Kokkos: :parallel_for(
"xpy", n, KOKKOS_LAMBDA(size_t const i) { c(i) = a(i) + b(il); });

double sum = 0.0;
Kokkos: :parallel_reduce(

“sum", n, KOKKOS_LAMBDA(size_t const i, double &lsum) { lsum += c(i); },

sum);
std::cout << "sum =
}
Kokkos: :finalize();
return 0;

<< sum / n << std::endl;

NEF 15

Vector Addition Kokkos

e Accessing everything through views
e “Basic” usage of Kokkos
o default memory and execution
space selected at compile time
e While it doesn’t matter with a 1d case
the view abstraction hides the layout of
data in memory which allows
o good cache utilization on CPU
o coalescing on GPU

R U.S. DEPARTMENT OF Ofﬂce Of
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(pronounced ‘sickle’) e A100 support under active

development
e DPC++ is native model for
Aurora @ ALCF
o supported by Intel

a cross-platform abstraction layer e Support from NERSC and
Codeplay is available

that enables code for e Modern C++

heterogeneous processors to be A

written using C++ with the host
and kernel code for an application
contained in the same source file

0 BERKELEY LAB & ENERGY  oreor
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SYCL, OpenCL and SPIR-V, as open industry
standards, enable flexible integration and
deployment of multiple acceleration technologies

( codeplay’

ComputeCpp
Multiple
Backends

DPC++
Uses LLVM/Clang
Part of oneAPI

CUDA+PTX
NVIDIA GPUs

4 &
OpenCL

O’pen?:l; OpenCL +
CSPIR. SPIR(-V)

Intel CPUs Intel CPUs
Intel GPUs

Intel FPGAs

Intel GPUs
Intel FPGAs
AMD GPUs

(depends on driver stack)
Arm Mali
IMG PowerVR
Renesas R-Car
Reference: https://www.khronos.org/sycl/

R

C ComputeCpp

NG

OpenCL+PTX

NVIDIA GPUs

OpenMP

SYCL.

Source Code

triSYCL

Open source
test bed

|ejuawpiadx3

Any CPU

7 @
OpenCL

Gr

17

OpenCL +

SPIR/LLVM

XILINX FPGAs
POCL

(open-source OpenCL

supporting CPUs and NVIDIA
GPUs and more)

il

SYCL enables Khronos to
influence ISO C++ to (eventually)
support heterogeneous compute

£ XILINX.

%
neoSYCL

SX-AURORA
TSUBASA

UNIVERSITAT

hipSYCL HEIDELBERG

e

> |
NVIDIA

OpenMP

Any CPU NVIDIA GPUs
&
m
AMD GPUs Intel CPUs
NEC VEs

Multiple Backends in Development
SYCL beginning to be supported on multiple
low-level APIs in addition to OpenCL
e.g., ROCm and CUDA
For more information: http://sycl.tech

wilive vl
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SYCL, OpenCL and SPIR-V, as open industry SYCL enables Khronos to P
standards, enable flexible integration and ‘SYCL : influence ISO C++ to (eventually) ISO
deployment of multiple acceleration technologies Source Code support heterogeneous compute &

| O codeplay’y” ¢ computeCpp £ XILINX. DMV
E DPC++ ComputeCpp hipSYCL

L\ad  Uses LLVM/Clang CUDA and
Part of oneAPI HIP/ROCm

|
NVIDIA
CuDA

OpenMP

OpenMP

|ejuawpiadx3

\

1UDIA GPUs
4 @
OpenCL

& NERSC and ALCF are iy

working with Codeplay + Development
to enable this on A100  entoosenct

Intel CPUs
Intel GPUs
Intel FPGAs

(depends on driver stack)

Arm Mali

IMG PowerVR d CUDA
Renesas R-Car http://sycl.tech
Reference: https://www.khronos.org/sycl/
NER 18 Z BERKELEY LAB JENERGY | scionce
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Argonne‘) C codeplay”

NATIONAL LABORATORY

*project targeting open-source LLVM based support for A100
o Perlmutter and ThetaGPU
o other platforms with A100 ie DGX

LLVM CUDA backend support for SYCL2020

o Unified Shared Memory, unnamed lambdas, reductions,
subgroups, and more

*Extensions for A100 performance in development
o Tensor Core APls/ Types
o Asynchronous copy and barriers




1 #include <CL/sycl.hpp>

s o Vector Addition

4

5 namespace sycl = cl::sycl; .

: SYCL with

7 int main() {

8 const int n = 100000;

9 const sycl::range<l> m{n}; BUffe rS

10 sycl::buffer<double, 1> b_a{n}, b_b{n}, b_c{n};

11 { -

12 auto a = b_a.get_access<sycl::access: :mode: :discard_write>(); [ Familiar to OpenCL devs

13 auto b = b_b.get_access<sycl::access::mode::discard_write>();

R e o Buffers + Accessors allow
15 a[l] = sin(i)*sin(1); compiler to infer dependencies
16 b[1] = cos(i)*cos(1);

17} and data movement

LR Nice idea, but similar amount
19 sycl::queue qg{sycl::gpu_selector{}}; . “ iy ”

20 qg.submit([&](sycl::handler& h) { of tedium as “traditional

21 auto a = b_a.get_access<sycl::access::mode: :read>(h);

22 auto b = b_b.get_access<sycl::access::mode::read>(h); CUDA for Complex data

23 auto ¢ = b_c.get_access<sycl::access::mode: :write>(h); structures

24

25 h.parallel_for<class xpy>(m, [=](sycl::id<1l> 1) { c[i] = a[i] + b[i]; });

26 1)

270t

28 double sum = 0.0;

29 auto ¢ = b_c.get_access<sycl::access::mode: :read>();

£{0) for (size_t 1=0; i<n; i++) sum += c[1];

siil std::cout << "sum = " << sum/n << std::endl;

32 }

33N tUER= 0

34 } < .S. DEPARTMENT OF Ofﬁce Of
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1 #include <CL/sycl.hpp> o
includ h

? #include <cnath> Vector Addition

4

2 namespace sycl = cl::sycl; SYCL With USM

int main() {
const int n = 100000;
9 const sycl::range<l> m{n};
10  sycl::queue g{sycl::gpu_selector{}};
11  double *a = sycl::malloc_shared<double>(n, q);
12 double *b = sycl::malloc_shared<double>(n, q);
13 double *c = sycl' malloc_shared<double>(n, q);

e Newin SYCL 2020
e Analogous to CUDA with

14 for (S'LZG t L= @, . = n; i++) { managed memory
15 a[i] = sin(i)*sin(1);

16 b[1] = cos(i)*cos(1);

17 }

18

19 g.submit([&](sycl::handler& h) {

pA0) h.parallel_for<class xpy>(m, [=](sycl::id<1> i) { c[i1] = a[l] + b[il]; });

21 i)

22 q.wailt();

23

24 double sum = 0.0;

25 for (size_t 1=0; i<n; i++) sum += c[i];

26 std::cout << "sum = " << sum/n << std::endl;
return 0;

U.S. DEPARTMENT OF Ofﬂce Of
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SYCL @ NERSC

A100 via LLVM available now!
(Perlmutter modulefile coming soon)

We want to hear from you!

* #sycl in NERSC User slack
* help.nersc.gov

 NERSC. 22
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Parallel Fortran

do concurrent (i=1:n)

y(i) = a*x(i) + y(i)
end do

A = matmul(B,C)

Office of
Science
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Parallel STL

With C++17 comes with several parallel algorithms:
- transform, reduce, for_each_n,

See:
* <numeric> Compiler support for this is
- <algorithm> -emerging, nve++ in particular can
. <exgcution> _generate GPU accelerated code

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar

.L = \»‘f\‘«‘ EEEEEEEEEEEEEE i
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https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

Adding two vectors with stdpar

ATl e Currently a simple case like
e e el adding two vectors in parallel

#include <vector>

#include <iostream> does not require anything more

#include <execution>

#include <algorithm> than C++ and a compiler that
int main() { supports parallel STL.:

int n = 100000;
std: :vector<double> a(n), b(n), c(n);

nvc++ -stdpar vecadd.cpp

for (size_t 1 = 0; 1 < n; 1++) {

ali] sin(i)*sin(i);
b[1] cos(i)*cos(i);

}

std::transform(std: :execution::par_unseq, a.begin(), a.end(), b.begin(), c.begin(),
[I(double x, double y){return x + y;} );

auto sum = std::reduce(std::execution::par_unseq, c.begin(), c.end());
std::cout << "sum = " << sum << std::endl;

return 0;

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar

22| BERKELEY LAB
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https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

Useful things for Science
(and to watch for in the future)

<atomic>, std::atomic_ref

std: :barrier

<ranges>

zip_iterator -today in thrust, boost
counting_iterator - for now write your own, soon iota
mdspan - C++23 (maybe) - https://github.com/kokkos/mdspan

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar

L =
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https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

OpenMP programming model
Presented by Chris Daley
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OpenMP for CPUs and GPUs

*OpenMP is a set of directives and APls to parallelize C, C++ and
Fortran applications

*Many NERSC codes use OpenMP on the CPU:

#pragma omp parallel for
for (int i=0; 1i<N; ++1)

x[1]

+= 1.0;

* This presentation will show you how to use OpenMP on the GPU

m

28
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OpenMP thread hierarchy for GPUs

#pragma omp target < Execute code on device
I
#pragma omp teams < Create coarse-grained
% parallelism appropriate
| | for GPUs

League of N teams

|
#pragma omp parallel

Y
Team O Team 1 Team 2
M threads M threads M threads
YYYY YYYY YYYY

Office of

3‘“ EN ERGY Science
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Comparison to CUDA thread hierarchy

CUDA grid of thread blocks

1 CUDA thread block = 1 OpenMP team
Workshare with “distribute”

#pragma omp teams distribute
for (int j=0; j<N; ++7)

waay 1 CUDA thread = 1 OpenMP thread
Workshare with “for/do”

#pragma omp parallel for
for (int i=0; 1i<N; ++1)

Image from CUDA C++ Programming Guide

.
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Getting data to/from the GPU

*The CPU and GPU have distinct memory spaces

- OpenMP manages the device data environment using a combination of
implicit and explicit data management

Explicitly map the data buffer “x” to/from the GPU using the map clause:

printf ("$p\n", &x[0]); // CPU: e.g. prints 0x612710
#pragma omp target map (tofrom:x[:N])

{

printf ("$p\n", &x[0]); // GPU: e.g. prints 0x2aaae5afal00

Office of
Science
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Executing our simple example on the GPU

int N = 16384;
double *x = malloc (N * sizeof (double)) ;
for (int 1i=0; 1<N; ++1) x[1] = 0.0;

#pragma omp target teams distribute parallel for map(tofrom:x[:N])
for (int 1=0; 1<N; ++1) x[1] += 1.0;

Explanation of variable in device data environment

X Explicitly mapped variable of length N

N Firstprivate scalar variable of value 16384
i Private scalar variable which is uninitialized

» U.S. DEPARTMENT OF Offlce of

: 4 ENERGY Science
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Keeping data on the GPU

* The family of target data directives may be used to keep data on the
GPU for multiple GPU kernels

#pragma omp target enter data map(to:x[:N])

#pragma omp target teams distribute parallel for @-..... No maps
for (int 1=0; 1i<N; ++1) x[i] += 1.0; // GPU kernel #1 .-*"| needed!

#pragma omp target teams distribute parallel for o’
for (int 1=0; 1<N; ++1i) x[1i] += 1.0; // GPU kernel #2

#pragma omp target exit data map (from:x[:N])

Office of
Science
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Be aware that a map clause does not always cause

data movement

* The OpenMP runtime reference counts mapped data
o This avoids expensive data movement

for (int i1=0; 1i<N;
#pragma omp target
for (int i1=0; 1i<N;

#pragma omp target

{
)

// Mistake: x[0]

++1) x[1] = 0.0;
enter data map(to:
++1) x[1] = 2.0;

map (to:x[:N]) )(

!= 2.0 on device

x[:N])
// update on host

m

34
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Ensuring consistent data environments: method 1

* The target update directive transfers data between host and device data
environments

{
)

for (int i=0;
#pragma omp target
for (int i=0;

// Success:

1<N;
1<N;

#pragma omp target
#pragma omp target

x[0]

++1) x[1] = 0.0;
enter data map (to:
++1) x[1] = 2.0; //

update to(x[:N]) y’

== 2.0 on device

x[:N])

update on host

35

gall] BERKELEY LAB

e Solutions to the World

Office of
Science



Ensuring consistent data environments: method 2

* The always modifier in the map clause transfers data irrespective of the

variable reference count

for (int 1=0; 1<N; ++1) x[i] = 0.

for (int 1i=0; 1<N; ++1) x[1i] = 2.

/

{
)

// Success: x[0] == 2.0 on device

0;
#pragma omp target enter data map(to:
0;

x[:N])
// update on host

#pragma omp target map (always, to:x[:N]) V/

22| BERKELEY LAB
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OpenMP GPU-offload on Perimutter

*We recommend the NVIDIA compiler for C, C++ and Fortran OpenMP
applications
o The Clang compiler will be available soon on Perimutter for C and
C++ applications
*Please see “Building and running GPU applications on Perlmutter”
slides on Day 1 (Jan 5 2022)
* Also see https://docs.nersc.gov/performance/readiness/#openmp

NERSC 37 B BERKELEY LAB
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https://docs.nersc.gov/performance/readiness/#openmp

OpenMP “loop” directive for performance

* The “loop” directive workshares loop iterations and also asserts that

loop iterations are independent

o Can provide a performance advantage with the NVIDIA compiler,
especially when there are multiple parallel loops

OpenMP-4.5:

OpenMP-5.0 loop:

#pragma omp teams distribute

for (int j=0; J<N;

{

#pragma omp parallel for
for (int 1i=0; 1<N;
{

X[j+N*i] += 1.0;

++7)

++1)

#pragma omp teams loop

for (int j=0; j<N;

{

#pragma omp loop bind(parallel)
for (int i=0; 1<N;

{

++7)

++1)

X[j+N*i] += 1.0;

38
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An OpenMP Case Study with SU3 benchmark

*We achieved 97% of CUDA performance on an A100 GPU using
OpenMP and the NVIDIA compiler

A i 1869 1869 OpenMP steps:
ol L6z 1.Convert CUDA to OpenMP-4.5
et a8 1500+ “ » . .
S| S 2.Use the “loop” directive
o | il 1018 3.Remove “num_teams” and
'% S “thread_limit” clauses
< £ soo| 4. Simplify by automatically
— 139 i
T 1 | | | | collapsing loops
CPU GPU GPU GPU GPU GPU
OpenMP-3.1 CUDA OpenMP-4.5 OpenMP-5.0 OpenMP-5.0 OpenMP-5.0
Step 1 Step 2 Step 3 Step 4

From “Accelerating Applications for NERSC’s Perlmutter Supercomputer using
OpenMP and NVIDIA HPC SDK. GPU Technology Conference (GTC)”, April 13 2021
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OpenMP has some advantages over CUDA

- Portable to the CPU and other vendor’'s GPUs

- Data management is simpler, especially when considering complicated
data structures

*Loop iterations can be trivially workshared between threads

*Loops can be trivially fused using the collapse clause

- Data can be reduced over threads trivially using the reduction clause

NERSC 40 B BERKELEY LAB
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A quick note about OpenACC

*OpenACC is an alternative directive-based approach
o Similar directives, occasionally with a different name
* More restrictive programming approach than OpenMP, e.g. no thread ID
and no thread synchronizations
o The OpenMP “loop” directive provides similar restrictions
- Easier to get high performance than OpenMP, however, NERSC/NVIDIA
have demonstrated that a suite of NERSC OpenMP applications
achieve >= 90% of OpenACC performance:
https://dl.acm.org/doi/10.1145/3458817.3476213
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https://dl.acm.org/doi/10.1145/3458817.3476213

Questions

Google doc for questions

Check NERSC User slack for relevant channels
#mpi #openmp #kokkos #sycl #fortran and more!

Get it touch with us via help.nersc.qov

Keep an eye out for events focused on specific models and
toolchains!
https://www.nersc.qov/users/training/events/

PR, U-S. DEPARTMENT OF Office of
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http://help.nersc.gov
https://www.nersc.gov/users/training/events/

