GPU programmln
mod »

B S s

NERSC Perlmufter traln g ;'_- e

—~
L U

Brandon Cook

CPU GPU

Optimized to reduce Optimized for
Core Core
latency throughput
L1 Cache L1 Cache
Serlal WOI'k Core Con Core Con Para”el WOI'k
trol trol
L1 Cache L1 Cache
Few threads with Tl L2 Cache Many threads
high frequency
S Cache L2 Cache smaller memory

large amount of
memory, but slow

capacity, but faster

CcPU GPU

U.S. DEPARTMENT OF ‘ offlce of

BERKELEY LAB @ ENERGY Science

Bringing Science Solutions to the World

General principles for CPU + GPU

Offload parallel work to GPU (device)
Keep latency sensitive serial work on the CPU (host)

Keep data where it used (on device or host)

gall] BERKELEY LAB

e Solutions to the World

ock (0,0) | Block (1,0) | Block (2.0)
(1,1) Block(2,1)

g’%@%&fww

Office of
Science

GPU programming models

Multiple options for compiled languages (i.e. C, C++, Fortran)

Python, ML/AI covered in after the break today

i BERKELEY LAB

portability

\

GPU Programming models landscape

Py
eC_)penMP -
>
NVIDIA.
- CUDA’>

ease of use / level of control

5

o Office of

‘;'_” U.S. DEPARTMENT OF
BERKELEY LAB @& ENERGY science
Bringing Science Solutions to the World

CUDA

Native model for NVIDIA GPUs

Reference point for other models

e Full control
e Maximum performance

possible
e Not portable (NVIDIA only)
e \erbose

< ‘v U.S. DEPARTMENT OF offlce Of

L J ENERGY Science

22| BERKELEY LAB

Bringing Science Solutions to the World

CUDA - kernels

CUDA C++ extends C++ by allowing the
programmer to define C++ functions, called
kernels, that, when called, are executed N

// Kernel definition times in parallel by N different CUDA
__global__ void VecAdd(float* A, float* B, threads, as opposed to only once like regular
float* C) C++ functions.

{

A kernel is defined using the global

int i = threadIdx.x; declaration specifier and the number of

C [i] = A[i] + B[i] , CUDA threads that execute that kernel for a
} given kernel call is specified using a
new<<<. ..>>>execution configuration
int main() syntax (see C++ Language Extensions). Each
{ thread that executes the kernel is given a

unique thread ID that is accessible within the

// Kernel invocation with N threads kernel through built-in variables.

VecAdd<<<1, N>>>(A, B, C); - CUDA C Programming Guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.htm

22| BERKELEY LAB

Bringing Science Solutions to the World

U.S. DEPARTMENT OF Ofﬁce of

EN ERGY Science

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-language-extensions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.htm

CUDA - thread hierarchy

Each kernel consists of a grid =

Block (Q 0) | Blodk(1, 0) | Block (2 0)

A grid consists of blocks and can be 1,2 or 3

dimensional W‘ Blodk (1, 1) ﬁmn

A block consists of threads and can be 1,2
or 3 dimensional

<<<blocks, threads per block>>>

blocks, threads_per_block is either int or
dim3

R, U.S. DEPARTMENT OF Ofﬂce of

gl BERKELEY LAB @& ENERGY science

Bringing Science Solutions to the World

:

CUDA - memory hierarchy

Thread

Thread Block
M —
W 44— Per-block shared

Gnd 0

Blodk (0, 0) || Block(1,0) || Black(2,0) |

Blodk (0, 1) || Block (1,1) || Black (2, 1)

Gt Global memory
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)
p—.
Block (0, 2) Block (1, 2)
NEeR 9 il BERKELEY LAB

Bringing Science Solutions to the World

U.S. DEPARTMENT OF Offlce of

EN ERGY Science

CUDA resources

CUDA C++ programming guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
Recommended reading no matter the programming language/ model you intend to use

NVIDIA blog and GTC talks/slides
https://developer.nvidia.com/blog
https://www.nvidia.com/en-us/on-demand/

Tip: There is a lot of CUDA content available, check the dates since
CUDA has evolved over the years with added features and relaxed
restrictions!

U.S. DEPARTMENT OF Offlce of

. ® 4 ENERGY science

22| BERKELEY LAB

Bringing Science Solutions to the World

i 10

https://developer.nvidia.com/blog
https://www.nvidia.com/en-us/on-demand/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

C++ based “frameworks”

Cross platform abstraction layers
Modern C++

Target accelerators and CPUs from multiple vendors

Pro Con
Powerful abstractions Requires “buy in”
Integrated tools/ libraries learning curve
Portability Vendor support and ecosystem maturity

y U.S. DEPARTMENT OF Offlce of

; EN ERGY Science

Z2il BERKELEY LAB

Bringing Science Solutions to the World

k o) k k OS (pronounced ‘sickle)

a cross-platform abstraction layer
that enables code for
heterogeneous processors to be
written using C++ with the host
and kernel code for an application
contained in the same source file

n “Ecosystem” with
programming model,
memory abstractions, math
kernels, tools, etc

Office of
Science

v 4

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

The Kokkos C++
k O k k o S Performance Portability
EcoSystem

[GTC 19 S9662]

*billed as an “Ecosystem” with programming

model, memory abstractions, math kernels, tools,
etc

*ECP funded project, multiple DOE labs
contributing
o NERSC has staff members contributing
https://qithub.com/kokkos

o extensive tutorlals examgles etc available

3: Piogrammln Moddl Extensions for the Exascale Era

10.1109/TPDS.2021.3097283

R 13 0 BERKELEY LAB & ENERGY oreor

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

https://github.com/kokkos

Kokkos abstractions

* Views
o like a shared_ptr to multidimensional data in a “MemorySpace”
o with a “Layout” ie which index is fast

* Memory spaces — T
@) Where data |S Stored)ata ' Parallel Execution

- Execution spaces
o Where code is run

" Execution Spaces (“Where")

- CPU, GPU, Executor Mechanism

> Execution Patterns .

- parallel_for/reduce/scan, task-spawn

" Execution Policies (‘How")

- Range, Team, Task-Graph

Office of
Science

Bringing Science Solutions to the World

1 #include <cmath>
2 #include <iostream>
3 #include <vector>

4

5 #include <Kokkos_Core.hpp>

6

7 int main(int argc, char *argv[]) {

Kokkos::initialize(argc, argv);

int n = 100000;
Kokkos: :View<double *> a("a", n), b("b", n), c("c", n);

std::cout << "Kokkos execution space: "
<< Kokkos: :DefaultExecutionSpace: :name() << std::endl;

Kokkos: :parallel_for(
"{nitialize", n, KOKKOS_LAMBDA(size_t const i) {
auto x = static_cast<double>(1);
a(i) = sin(x) * sin(x);
b(1) = cos(x) * cos(x);

Rk

Kokkos: :parallel_for(
"xpy", n, KOKKOS_LAMBDA(size_t const i) { c(i) = a(i) + b(il); });

double sum = 0.0;
Kokkos: :parallel_reduce(

“sum", n, KOKKOS_LAMBDA(size_t const i, double &lsum) { lsum += c(i); },

sum);
std::cout << "sum =
}
Kokkos: :finalize();
return 0;

<< sum / n << std::endl;

NEF 15

Vector Addition Kokkos

e Accessing everything through views
e “Basic” usage of Kokkos
o default memory and execution
space selected at compile time
e While it doesn’t matter with a 1d case
the view abstraction hides the layout of
data in memory which allows
o good cache utilization on CPU
o coalescing on GPU

R U.S. DEPARTMENT OF Ofﬂce Of

EN ERGY Science

22| BERKELEY LAB

Bringing Science Solutions to the World

(pronounced ‘sickle’) e A100 support under active

development
e DPC++ is native model for
Aurora @ ALCF
o supported by Intel

a cross-platform abstraction layer e Support from NERSC and
Codeplay is available

that enables code for e Modern C++

heterogeneous processors to be A

written using C++ with the host
and kernel code for an application
contained in the same source file

0 BERKELEY LAB & ENERGY oreor

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

16

SYCL, OpenCL and SPIR-V, as open industry
standards, enable flexible integration and
deployment of multiple acceleration technologies

(codeplay’

ComputeCpp
Multiple
Backends

DPC++
Uses LLVM/Clang
Part of oneAPI

CUDA+PTX
NVIDIA GPUs

4 &
OpenCL

O’pen?:l; OpenCL +
CSPIR. SPIR(-V)

Intel CPUs Intel CPUs
Intel GPUs

Intel FPGAs

Intel GPUs
Intel FPGAs
AMD GPUs

(depends on driver stack)
Arm Mali
IMG PowerVR
Renesas R-Car
Reference: https://www.khronos.org/sycl/

R

C ComputeCpp

NG

OpenCL+PTX

NVIDIA GPUs

OpenMP

SYCL.

Source Code

triSYCL

Open source
test bed

|ejuawpiadx3

Any CPU

7 @
OpenCL

Gr

17

OpenCL +

SPIR/LLVM

XILINX FPGAs
POCL

(open-source OpenCL

supporting CPUs and NVIDIA
GPUs and more)

il

SYCL enables Khronos to
influence ISO C++ to (eventually)
support heterogeneous compute

£ XILINX.

%
neoSYCL

SX-AURORA
TSUBASA

UNIVERSITAT

hipSYCL HEIDELBERG

e

> |
NVIDIA

OpenMP

Any CPU NVIDIA GPUs
&
m
AMD GPUs Intel CPUs
NEC VEs

Multiple Backends in Development
SYCL beginning to be supported on multiple
low-level APIs in addition to OpenCL
e.g., ROCm and CUDA
For more information: http://sycl.tech

wilive vl

BERKELEY LAB @& ENERGY science

Bringing Science Solutions to the World

SYCL, OpenCL and SPIR-V, as open industry SYCL enables Khronos to P
standards, enable flexible integration and ‘SYCL : influence ISO C++ to (eventually) ISO
deployment of multiple acceleration technologies Source Code support heterogeneous compute &

| O codeplay’y” ¢ computeCpp £ XILINX. DMV
E DPC++ ComputeCpp hipSYCL

L\ad Uses LLVM/Clang CUDA and
Part of oneAPI HIP/ROCm

|
NVIDIA
CuDA

OpenMP

OpenMP

|ejuawpiadx3

\

1UDIA GPUs
4 @
OpenCL

& NERSC and ALCF are iy

working with Codeplay + Development
to enable this on A100 entoosenct

Intel CPUs
Intel GPUs
Intel FPGAs

(depends on driver stack)

Arm Mali

IMG PowerVR d CUDA
Renesas R-Car http://sycl.tech
Reference: https://www.khronos.org/sycl/
NER 18 Z BERKELEY LAB JENERGY | scionce

Bringing Science Solutions to the World

Argonne‘) C codeplay”

NATIONAL LABORATORY

*project targeting open-source LLVM based support for A100
o Perlmutter and ThetaGPU
o other platforms with A100 ie DGX

LLVM CUDA backend support for SYCL2020

o Unified Shared Memory, unnamed lambdas, reductions,
subgroups, and more

*Extensions for A100 performance in development
o Tensor Core APls/ Types
o Asynchronous copy and barriers

1 #include <CL/sycl.hpp>

s o Vector Addition

4

5 namespace sycl = cl::sycl; .

: SYCL with

7 int main() {

8 const int n = 100000;

9 const sycl::range<l> m{n}; BUffe rS

10 sycl::buffer<double, 1> b_a{n}, b_b{n}, b_c{n};

11 { -

12 auto a = b_a.get_access<sycl::access: :mode: :discard_write>(); [Familiar to OpenCL devs

13 auto b = b_b.get_access<sycl::access::mode::discard_write>();

R e o Buffers + Accessors allow
15 a[l] = sin(i)*sin(1); compiler to infer dependencies
16 b[1] = cos(i)*cos(1);

17} and data movement

LR Nice idea, but similar amount
19 sycl::queue qg{sycl::gpu_selector{}}; . “ iy ”

20 qg.submit([&](sycl::handler& h) { of tedium as “traditional

21 auto a = b_a.get_access<sycl::access::mode: :read>(h);

22 auto b = b_b.get_access<sycl::access::mode::read>(h); CUDA for Complex data

23 auto ¢ = b_c.get_access<sycl::access::mode: :write>(h); structures

24

25 h.parallel_for<class xpy>(m, [=](sycl::id<1l> 1) { c[i] = a[i] + b[i]; });

26 1)

270t

28 double sum = 0.0;

29 auto ¢ = b_c.get_access<sycl::access::mode: :read>();

£{0) for (size_t 1=0; i<n; i++) sum += c[1];

siil std::cout << "sum = " << sum/n << std::endl;

32 }

33N tUER= 0

34 } < .S. DEPARTMENT OF Ofﬁce Of

il BERKELEY LAB ENERGY Science

Bringing Science Solutions to the World

1 #include <CL/sycl.hpp> o
includ h

? #include <cnath> Vector Addition

4

2 namespace sycl = cl::sycl; SYCL With USM

int main() {
const int n = 100000;
9 const sycl::range<l> m{n};
10 sycl::queue g{sycl::gpu_selector{}};
11 double *a = sycl::malloc_shared<double>(n, q);
12 double *b = sycl::malloc_shared<double>(n, q);
13 double *c = sycl' malloc_shared<double>(n, q);

e Newin SYCL 2020
e Analogous to CUDA with

14 for (S'LZG t L= @, . = n; i++) { managed memory
15 a[i] = sin(i)*sin(1);

16 b[1] = cos(i)*cos(1);

17 }

18

19 g.submit([&](sycl::handler& h) {

pA0) h.parallel_for<class xpy>(m, [=](sycl::id<1> i) { c[i1] = a[l] + b[il]; });

21 i)

22 q.wailt();

23

24 double sum = 0.0;

25 for (size_t 1=0; i<n; i++) sum += c[i];

26 std::cout << "sum = " << sum/n << std::endl;
return 0;

U.S. DEPARTMENT OF Ofﬂce Of

&Rl BERKELEY LAB @@ ENERGY scionce

Bringing Science Solutions to the World

SYCL @ NERSC

A100 via LLVM available now!
(Perlmutter modulefile coming soon)

We want to hear from you!

* #sycl in NERSC User slack
* help.nersc.gov

 NERSC. 22

%l BERKELEY LAB
Bringing Science Solutions to the World

Parallel Fortran

do concurrent (i=1:n)

y(i) = a*x(i) + y(i)
end do

A = matmul(B,C)

Office of
Science

il BERKELEY LAB

e Solutions to the World

Parallel STL

With C++17 comes with several parallel algorithms:
- transform, reduce, for_each_n,

See:
* <numeric> Compiler support for this is
- <algorithm> -emerging, nve++ in particular can
. <exgcution> _generate GPU accelerated code

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar

.L = \»‘f\‘«‘ EEEEEEEEEEEEEE i
 NERSC 24 B serkeLey Lae @ ENERGY ke

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

Adding two vectors with stdpar

ATl e Currently a simple case like
e e el adding two vectors in parallel

#include <vector>

#include <iostream> does not require anything more

#include <execution>

#include <algorithm> than C++ and a compiler that
int main() { supports parallel STL.:

int n = 100000;
std: :vector<double> a(n), b(n), c(n);

nvc++ -stdpar vecadd.cpp

for (size_t 1 = 0; 1 < n; 1++) {

ali] sin(i)*sin(i);
b[1] cos(i)*cos(i);

}

std::transform(std: :execution::par_unseq, a.begin(), a.end(), b.begin(), c.begin(),
[I(double x, double y){return x + y;});

auto sum = std::reduce(std::execution::par_unseq, c.begin(), c.end());
std::cout << "sum = " << sum << std::endl;

return 0;

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar

22| BERKELEY LAB

Bringing Science Solutions to the World

U.S. DEPARTMENT OF Ofﬂce Of

EN ERGY Science

NEF 25

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

Useful things for Science
(and to watch for in the future)

<atomic>, std::atomic_ref

std: :barrier

<ranges>

zip_iterator -today in thrust, boost
counting_iterator - for now write your own, soon iota
mdspan - C++23 (maybe) - https://github.com/kokkos/mdspan

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar

L =
NEeR 26 ol BERKELEY LAB

e Solutions to the World

Office of
Science

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

OpenMP programming model
Presented by Chris Daley

~>1| BERKELEY LAB ENERGY | scence

OpenMP for CPUs and GPUs

*OpenMP is a set of directives and APls to parallelize C, C++ and
Fortran applications

*Many NERSC codes use OpenMP on the CPU:

#pragma omp parallel for
for (int i=0; 1i<N; ++1)

x[1]

+= 1.0;

* This presentation will show you how to use OpenMP on the GPU

m

28

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Office of

a“ EN ERGY Science

OpenMP thread hierarchy for GPUs

#pragma omp target < Execute code on device
I
#pragma omp teams < Create coarse-grained
% parallelism appropriate
| | for GPUs

League of N teams

|
#pragma omp parallel

Y
Team O Team 1 Team 2
M threads M threads M threads
YYYY YYYY YYYY

Office of

3‘“ EN ERGY Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

 NERSC. 29

Comparison to CUDA thread hierarchy

CUDA grid of thread blocks

1 CUDA thread block = 1 OpenMP team
Workshare with “distribute”

#pragma omp teams distribute
for (int j=0; j<N; ++7)

waay 1 CUDA thread = 1 OpenMP thread
Workshare with “for/do”

#pragma omp parallel for
for (int i=0; 1i<N; ++1)

Image from CUDA C++ Programming Guide

.

o8, U.S. DEPARTMENT OF Ofﬂce of

(@) ENERGY science

BERKELEY LAB

Bringing Science Solutions to the World

Getting data to/from the GPU

*The CPU and GPU have distinct memory spaces

- OpenMP manages the device data environment using a combination of
implicit and explicit data management

Explicitly map the data buffer “x” to/from the GPU using the map clause:

printf ("$p\n", &x[0]); // CPU: e.g. prints 0x612710
#pragma omp target map (tofrom:x[:N])

{

printf ("$p\n", &x[0]); // GPU: e.g. prints 0x2aaae5afal00

Office of
Science

31 2 BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Executing our simple example on the GPU

int N = 16384;
double *x = malloc (N * sizeof (double)) ;
for (int 1i=0; 1<N; ++1) x[1] = 0.0;

#pragma omp target teams distribute parallel for map(tofrom:x[:N])
for (int 1=0; 1<N; ++1) x[1] += 1.0;

Explanation of variable in device data environment

X Explicitly mapped variable of length N

N Firstprivate scalar variable of value 16384
i Private scalar variable which is uninitialized

» U.S. DEPARTMENT OF Offlce of

: 4 ENERGY Science

22| BERKELEY LAB

Bringing Science Solutions to the World

Keeping data on the GPU

* The family of target data directives may be used to keep data on the
GPU for multiple GPU kernels

#pragma omp target enter data map(to:x[:N])

#pragma omp target teams distribute parallel for @-..... No maps
for (int 1=0; 1i<N; ++1) x[i] += 1.0; // GPU kernel #1 .-*"| needed!

#pragma omp target teams distribute parallel for o’
for (int 1=0; 1<N; ++1i) x[1i] += 1.0; // GPU kernel #2

#pragma omp target exit data map (from:x[:N])

Office of
Science

22| BERKELEY LAB

Bringing Science Solutions to the World

Be aware that a map clause does not always cause

data movement

* The OpenMP runtime reference counts mapped data
o This avoids expensive data movement

for (int i1=0; 1i<N;
#pragma omp target
for (int i1=0; 1i<N;

#pragma omp target

{
)

// Mistake: x[0]

++1) x[1] = 0.0;
enter data map(to:
++1) x[1] = 2.0;

map (to:x[:N]))(

!= 2.0 on device

x[:N])
// update on host

m

34

%l BERKELEY LAB
Bringing Science Solutions to the World

Office of
Science

Ensuring consistent data environments: method 1

* The target update directive transfers data between host and device data
environments

{
)

for (int i=0;
#pragma omp target
for (int i=0;

// Success:

1<N;
1<N;

#pragma omp target
#pragma omp target

x[0]

++1) x[1] = 0.0;
enter data map (to:
++1) x[1] = 2.0; //

update to(x[:N]) y’

== 2.0 on device

x[:N])

update on host

35

gall] BERKELEY LAB

e Solutions to the World

Office of
Science

Ensuring consistent data environments: method 2

* The always modifier in the map clause transfers data irrespective of the

variable reference count

for (int 1=0; 1<N; ++1) x[i] = 0.

for (int 1i=0; 1<N; ++1) x[1i] = 2.

/

{
)

// Success: x[0] == 2.0 on device

0;
#pragma omp target enter data map(to:
0;

x[:N])
// update on host

#pragma omp target map (always, to:x[:N]) V/

22| BERKELEY LAB

Bringing Science Solutions to the World

Office of
Science

OpenMP GPU-offload on Perimutter

*We recommend the NVIDIA compiler for C, C++ and Fortran OpenMP
applications
o The Clang compiler will be available soon on Perimutter for C and
C++ applications
*Please see “Building and running GPU applications on Perlmutter”
slides on Day 1 (Jan 5 2022)
* Also see https://docs.nersc.gov/performance/readiness/#openmp

NERSC 37 B BERKELEY LAB
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

https://docs.nersc.gov/performance/readiness/#openmp

OpenMP “loop” directive for performance

* The “loop” directive workshares loop iterations and also asserts that

loop iterations are independent

o Can provide a performance advantage with the NVIDIA compiler,
especially when there are multiple parallel loops

OpenMP-4.5:

OpenMP-5.0 loop:

#pragma omp teams distribute

for (int j=0; J<N;

{

#pragma omp parallel for
for (int 1i=0; 1<N;
{

X[j+N*i] += 1.0;

++7)

++1)

#pragma omp teams loop

for (int j=0; j<N;

{

#pragma omp loop bind(parallel)
for (int i=0; 1<N;

{

++7)

++1)

X[j+N*i] += 1.0;

38

Office of
Science

@il BERKELEY LAB

Bringing Science Solutions to the World

An OpenMP Case Study with SU3 benchmark

*We achieved 97% of CUDA performance on an A100 GPU using
OpenMP and the NVIDIA compiler

A i 1869 1869 OpenMP steps:
ol L6z 1.Convert CUDA to OpenMP-4.5
et a8 1500+ “ » . .
S| S 2.Use the “loop” directive
o | il 1018 3.Remove “num_teams” and
'% S “thread_limit” clauses
< £ soo| 4. Simplify by automatically
— 139 i
T 1 | | | | collapsing loops
CPU GPU GPU GPU GPU GPU
OpenMP-3.1 CUDA OpenMP-4.5 OpenMP-5.0 OpenMP-5.0 OpenMP-5.0
Step 1 Step 2 Step 3 Step 4

From “Accelerating Applications for NERSC’s Perlmutter Supercomputer using
OpenMP and NVIDIA HPC SDK. GPU Technology Conference (GTC)”, April 13 2021

22| BERKELEY LAB

Bringing Science Solutions to the World

3“‘\«‘ EEEEEEEEEEEEEE offlce Of

i / ENERGY Science

NEeR 39

OpenMP has some advantages over CUDA

- Portable to the CPU and other vendor’'s GPUs

- Data management is simpler, especially when considering complicated
data structures

*Loop iterations can be trivially workshared between threads

*Loops can be trivially fused using the collapse clause

- Data can be reduced over threads trivially using the reduction clause

NERSC 40 B BERKELEY LAB
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

A quick note about OpenACC

*OpenACC is an alternative directive-based approach
o Similar directives, occasionally with a different name
* More restrictive programming approach than OpenMP, e.g. no thread ID
and no thread synchronizations
o The OpenMP “loop” directive provides similar restrictions
- Easier to get high performance than OpenMP, however, NERSC/NVIDIA
have demonstrated that a suite of NERSC OpenMP applications
achieve >= 90% of OpenACC performance:
https://dl.acm.org/doi/10.1145/3458817.3476213

Office of

g“‘/‘% U.S. DEPARTMENT OF
@@ ENERGY scionce

%] BERKELEY LAB
Bringing Science Solutions to the World

https://dl.acm.org/doi/10.1145/3458817.3476213

Questions

Google doc for questions

Check NERSC User slack for relevant channels
#mpi #openmp #kokkos #sycl #fortran and more!

Get it touch with us via help.nersc.qov

Keep an eye out for events focused on specific models and
toolchains!
https://www.nersc.qov/users/training/events/

PR, U-S. DEPARTMENT OF Office of

NEeR 42 ;"‘}I\';‘| BERKELEY LAB i‘/ ENERGY Science

http://help.nersc.gov
https://www.nersc.gov/users/training/events/

