
1

GPU programming
models

NERSC Perlmutter training Brandon Cook

2

CPU

Optimized to reduce
latency

Serial work

Few threads with
high frequency

large amount of
memory, but slow

GPU

Optimized for
throughput

Parallel work

Many threads

smaller memory
capacity, but faster

3

General principles for CPU + GPU

Offload parallel work to GPU (device)

Keep latency sensitive serial work on the CPU (host)

Keep data where it used (on device or host)

4

GPU programming models

Multiple options for compiled languages (i.e. C, C++, Fortran)

Python, ML/AI covered in after the break today

5

GPU Programming models landscape
po

rta
bi

lit
y

ease of use / level of control

6

CUDA
Native model for NVIDIA GPUs

Reference point for other models

● Full control
● Maximum performance

possible
● Not portable (NVIDIA only)
● Verbose

7

CUDA - kernels

// Kernel definition
__global__ void VecAdd(float* A, float* B,
float* C)
{
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}

int main()
{
 ...
 // Kernel invocation with N threads
 VecAdd<<<1, N>>>(A, B, C);
 ...
}

CUDA C++ extends C++ by allowing the
programmer to define C++ functions, called
kernels, that, when called, are executed N
times in parallel by N different CUDA
threads, as opposed to only once like regular
C++ functions.

A kernel is defined using the __global__
declaration specifier and the number of
CUDA threads that execute that kernel for a
given kernel call is specified using a
new<<<...>>>execution configuration
syntax (see C++ Language Extensions). Each
thread that executes the kernel is given a
unique thread ID that is accessible within the
kernel through built-in variables.

- CUDA C Programming Guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.htm

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-language-extensions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.htm

8

CUDA - thread hierarchy

Each kernel consists of a grid

A grid consists of blocks and can be 1,2 or 3
dimensional

A block consists of threads and can be 1,2
or 3 dimensional

<<<blocks, threads_per_block>>>

blocks, threads_per_block is either int or
dim3

9

CUDA - memory hierarchy

10

CUDA resources

NVIDIA blog and GTC talks/slides
https://developer.nvidia.com/blog
https://www.nvidia.com/en-us/on-demand/

CUDA C++ programming guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
Recommended reading no matter the programming language/ model you intend to use

Tip: There is a lot of CUDA content available, check the dates since
CUDA has evolved over the years with added features and relaxed
restrictions!

https://developer.nvidia.com/blog
https://www.nvidia.com/en-us/on-demand/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

11

C++ based “frameworks”
Cross platform abstraction layers

Modern C++

Target accelerators and CPUs from multiple vendors

Pro Con

Powerful abstractions Requires “buy in”

Integrated tools/ libraries learning curve

Portability Vendor support and ecosystem maturity

12

an “Ecosystem” with
programming model,
memory abstractions, math
kernels, tools, etc

a cross-platform abstraction layer
that enables code for
heterogeneous processors to be
written using C++ with the host
and kernel code for an application
contained in the same source file

(pronounced ‘sickle’)

13

•billed as an “Ecosystem” with programming
model, memory abstractions, math kernels, tools,
etc

•ECP funded project, multiple DOE labs
contributing

o NERSC has staff members contributing

•https://github.com/kokkos
o extensive tutorials, examples, etc available

The Kokkos C++
Performance Portability
EcoSystem
[GTC 19 S9662]

Kokkos 3: Programming Model Extensions for the Exascale Era

10.1109/TPDS.2021.3097283

https://github.com/kokkos

14

Kokkos abstractions
• Views

o like a shared_ptr to multidimensional data in a “MemorySpace”
o with a “Layout” ie which index is fast

• Memory spaces
o Where data is stored

• Execution spaces
o Where code is run

15

Vector Addition Kokkos

● Accessing everything through views
● “Basic” usage of Kokkos

○ default memory and execution
space selected at compile time

● While it doesn’t matter with a 1d case
the view abstraction hides the layout of
data in memory which allows

○ good cache utilization on CPU
○ coalescing on GPU

16

a cross-platform abstraction layer
that enables code for
heterogeneous processors to be
written using C++ with the host
and kernel code for an application
contained in the same source file

(pronounced ‘sickle’) ● A100 support under active
development

● DPC++ is native model for
Aurora @ ALCF

○ supported by Intel
● Support from NERSC and

Codeplay is available
● Modern C++
● Familiar to OpenCL

developers

17

Reference: https://www.khronos.org/sycl/

18

NERSC and ALCF are
working with Codeplay
to enable this on A100

Reference: https://www.khronos.org/sycl/

19

•project targeting open-source LLVM based support for A100
o Perlmutter and ThetaGPU
o other platforms with A100 ie DGX

•LLVM CUDA backend support for SYCL2020
o Unified Shared Memory, unnamed lambdas, reductions,

subgroups, and more

•Extensions for A100 performance in development
o Tensor Core APIs/ Types
o Asynchronous copy and barriers

20

Vector Addition
SYCL with
Buffers

● Familiar to OpenCL devs
● Buffers + Accessors allow

compiler to infer dependencies
and data movement

● Nice idea, but similar amount
of tedium as “traditional”
CUDA for complex data
structures

21

Vector Addition
SYCL with USM

● New in SYCL 2020
● Analogous to CUDA with

managed memory

22

SYCL @ NERSC

A100 via LLVM available now!
(Perlmutter modulefile coming soon)

We want to hear from you!
• #sycl in NERSC User slack
• help.nersc.gov

23

Parallel Fortran

do concurrent (i=1:n)
 y(i) = a*x(i) + y(i)
end do

A = matmul(B,C)

24

With C++17 comes with several parallel algorithms:
• transform, reduce, for_each_n, …

See:
• <numeric>
• <algorithm>
• <execution>

Parallel STL

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar
/

Compiler support for this is
emerging, nvc++ in particular can
generate GPU accelerated code

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

25

Adding two vectors with stdpar

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar
/

Currently a simple case like
adding two vectors in parallel
does not require anything more
than C++ and a compiler that
supports parallel STL:

nvc++ -stdpar vecadd.cpp

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

26

Useful things for Science
(and to watch for in the future)

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar
/

<atomic>, std::atomic_ref
std::barrier
<ranges>
zip_iterator - today in thrust, boost
counting_iterator - for now write your own, soon iota
mdspan - C++23 (maybe) - https://github.com/kokkos/mdspan

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

OpenMP programming model
Presented by Chris Daley

28

OpenMP for CPUs and GPUs

•OpenMP is a set of directives and APIs to parallelize C, C++ and
Fortran applications

•Many NERSC codes use OpenMP on the CPU:

•This presentation will show you how to use OpenMP on the GPU

#pragma omp parallel for
for (int i=0; i<N; ++i) x[i] += 1.0;

29

OpenMP thread hierarchy for GPUs

Team 0
M threads

League of N teams

#pragma omp parallel

#pragma omp teams

Team 2
M threads

Team 1
M threads

#pragma omp target Execute code on device

Create coarse-grained
parallelism appropriate
for GPUs

30

Comparison to CUDA thread hierarchy

1 CUDA thread block = 1 OpenMP team
Workshare with “distribute”

1 CUDA thread = 1 OpenMP thread
Workshare with “for/do”

#pragma omp teams distribute
for (int j=0; j<N; ++j)

#pragma omp parallel for
for (int i=0; i<N; ++i)

CUDA grid of thread blocks

Image from CUDA C++ Programming Guide

31

Getting data to/from the GPU

•The CPU and GPU have distinct memory spaces
•OpenMP manages the device data environment using a combination of
implicit and explicit data management

printf("%p\n", &x[0]); // CPU: e.g. prints 0x612710
#pragma omp target map(tofrom:x[:N])
{
 printf("%p\n", &x[0]); // GPU: e.g. prints 0x2aaae5afa000
}

Explicitly map the data buffer “x” to/from the GPU using the map clause:

32

Executing our simple example on the GPU

Variable Explanation of variable in device data environment
x Explicitly mapped variable of length N
N Firstprivate scalar variable of value 16384
i Private scalar variable which is uninitialized

int N = 16384;
double *x = malloc(N * sizeof(double));
for (int i=0; i<N; ++i) x[i] = 0.0;

#pragma omp target teams distribute parallel for map(tofrom:x[:N])
for (int i=0; i<N; ++i) x[i] += 1.0;

33

Keeping data on the GPU

•The family of target data directives may be used to keep data on the
GPU for multiple GPU kernels

#pragma omp target enter data map(to:x[:N])

#pragma omp target teams distribute parallel for
for (int i=0; i<N; ++i) x[i] += 1.0; // GPU kernel #1

#pragma omp target teams distribute parallel for
for (int i=0; i<N; ++i) x[i] += 1.0; // GPU kernel #2

#pragma omp target exit data map(from:x[:N])

No maps
needed!

34

Be aware that a map clause does not always cause
data movement
•The OpenMP runtime reference counts mapped data

o This avoids expensive data movement

for (int i=0; i<N; ++i) x[i] = 0.0;
#pragma omp target enter data map(to:x[:N])
for (int i=0; i<N; ++i) x[i] = 2.0; // update on host

#pragma omp target map(to:x[:N])
{
 // Mistake: x[0] != 2.0 on device
}

✗

35

Ensuring consistent data environments: method 1

•The target update directive transfers data between host and device data
environments

for (int i=0; i<N; ++i) x[i] = 0.0;
#pragma omp target enter data map(to:x[:N])
for (int i=0; i<N; ++i) x[i] = 2.0; // update on host

#pragma omp target update to(x[:N])
#pragma omp target
{
 // Success: x[0] == 2.0 on device
}

✓

36

Ensuring consistent data environments: method 2

•The always modifier in the map clause transfers data irrespective of the
variable reference count

for (int i=0; i<N; ++i) x[i] = 0.0;
#pragma omp target enter data map(to:x[:N])
for (int i=0; i<N; ++i) x[i] = 2.0; // update on host

#pragma omp target map(always, to:x[:N])
{
 // Success: x[0] == 2.0 on device
}

✓

37

OpenMP GPU-offload on Perlmutter

•We recommend the NVIDIA compiler for C, C++ and Fortran OpenMP
applications

o The Clang compiler will be available soon on Perlmutter for C and
C++ applications

•Please see “Building and running GPU applications on Perlmutter”
slides on Day 1 (Jan 5 2022)

•Also see https://docs.nersc.gov/performance/readiness/#openmp

https://docs.nersc.gov/performance/readiness/#openmp

38

OpenMP “loop” directive for performance

•The “loop” directive workshares loop iterations and also asserts that
loop iterations are independent

o Can provide a performance advantage with the NVIDIA compiler,
especially when there are multiple parallel loops

#pragma omp teams distribute
for (int j=0; j<N; ++j)
{
#pragma omp parallel for
 for (int i=0; i<N; ++i)
 {
 x[j+N*i] += 1.0;

#pragma omp teams loop
for (int j=0; j<N; ++j)
{
#pragma omp loop bind(parallel)
 for (int i=0; i<N; ++i)
 {
 x[j+N*i] += 1.0;

OpenMP-4.5: OpenMP-5.0 loop:

39

An OpenMP Case Study with SU3 benchmark

•We achieved 97% of CUDA performance on an A100 GPU using
OpenMP and the NVIDIA compiler

H
ig

he
r i

s
be

tte
r

OpenMP steps:
1. Convert CUDA to OpenMP-4.5
2. Use the “loop” directive
3. Remove “num_teams” and

“thread_limit” clauses
4. Simplify by automatically

collapsing loops

From “Accelerating Applications for NERSC’s Perlmutter Supercomputer using
OpenMP and NVIDIA HPC SDK. GPU Technology Conference (GTC)”, April 13 2021

40

OpenMP has some advantages over CUDA

•Portable to the CPU and other vendor’s GPUs
•Data management is simpler, especially when considering complicated
data structures

•Loop iterations can be trivially workshared between threads
•Loops can be trivially fused using the collapse clause
•Data can be reduced over threads trivially using the reduction clause

41

A quick note about OpenACC

•OpenACC is an alternative directive-based approach
o Similar directives, occasionally with a different name

•More restrictive programming approach than OpenMP, e.g. no thread ID
and no thread synchronizations

o The OpenMP “loop” directive provides similar restrictions
•Easier to get high performance than OpenMP, however, NERSC/NVIDIA
have demonstrated that a suite of NERSC OpenMP applications
achieve >= 90% of OpenACC performance:
https://dl.acm.org/doi/10.1145/3458817.3476213

https://dl.acm.org/doi/10.1145/3458817.3476213

42

Questions

Google doc for questions

Check NERSC User slack for relevant channels
#mpi #openmp #kokkos #sycl #fortran and more!

Get it touch with us via help.nersc.gov

Keep an eye out for events focused on specific models and
toolchains!
https://www.nersc.gov/users/training/events/

http://help.nersc.gov
https://www.nersc.gov/users/training/events/

