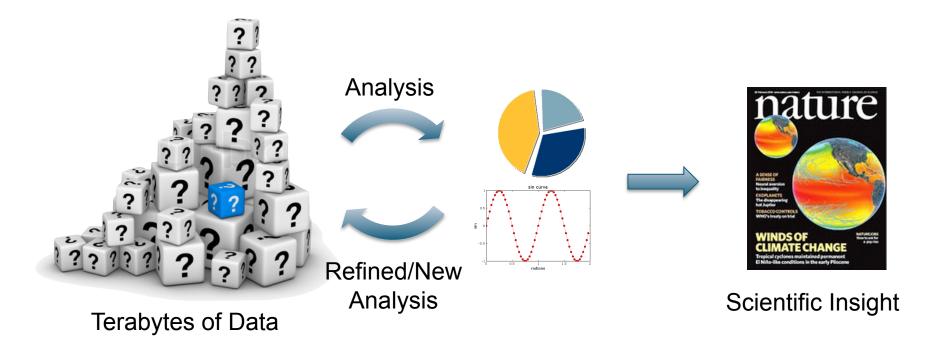
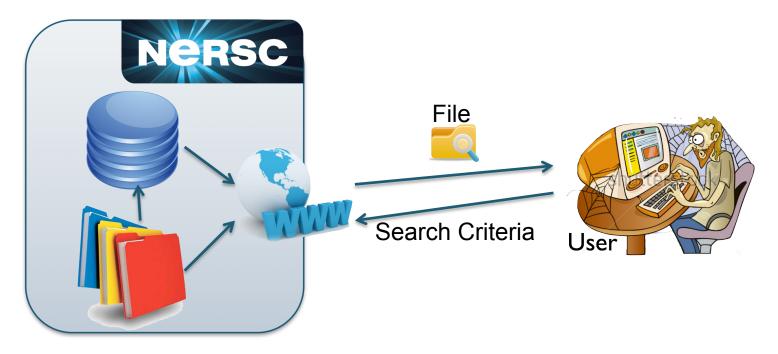
SciDB Testbed @ NERSC

- Analyze Terabytes of Data with Ease


Yushu Yao, NUG 2013

Quickly Converge on the right analysis and turn large dataset to scientific insight

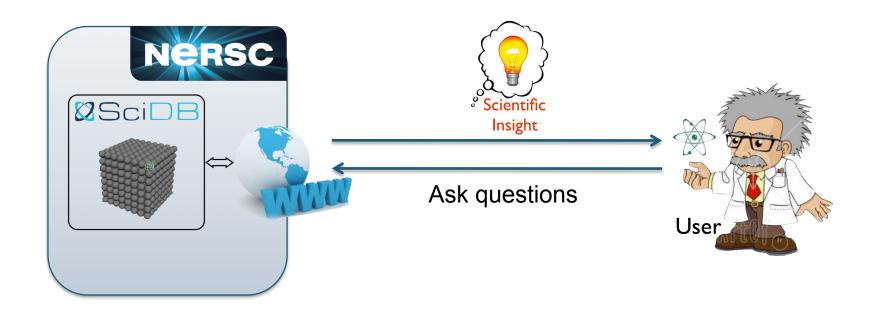
I have Terabytes of data, I need an easy, fast, interactive way to filter, aggregate, ...



Data is too big. Old way of sharing data over web is no longer efficient (if at all possible)

Old way:

- Data files are cataloged, catalogs are stored into a database;
- Web user search through catalog and locate the data file;
- Data file is downloaded for local analysis



In the future, data will be shared by opening up customizable operations

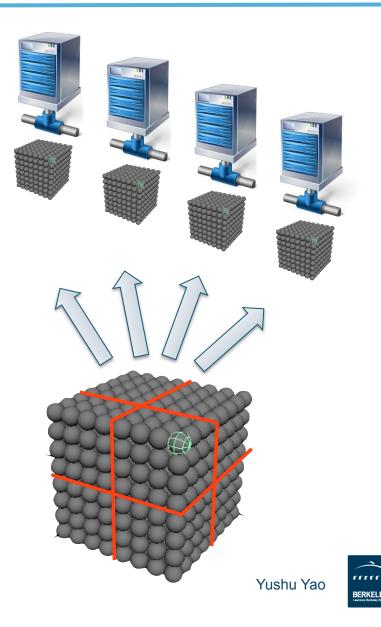
Recap, what are needed?

Interactive Analysis on TB of data that:

- No need to write complicated parallel IO code
- No need to wait in the batch queue
- Gives decent performance

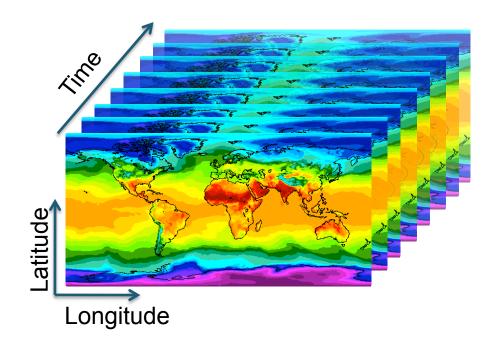
Powerful Backend to a Web Gateway that:

- Gives near real time response to queries that scan through TB of data
- Return an "answer", not a file



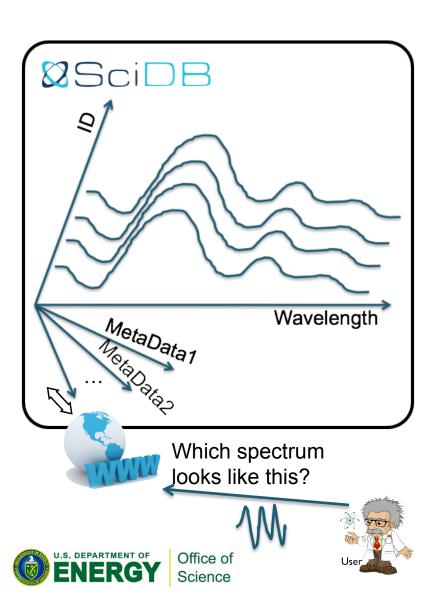
SciDB, parallel processing without parallel programming

- Michael Stonebreaker
- Everything in Arrays
 - Multi-dim indexing: locate an element at O(constant)
 - Best for machine/ simulation generated structure data
 - Good for metadata too
- Query-like language, auto-parallelization

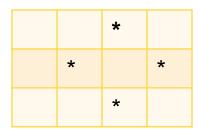


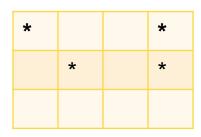
Quick Turnaround Interactive Analysis of Climate Simulation Results

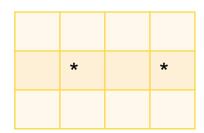
- Each simulation run can generate Terabytes of data
- Operations such as:
 - Average Temperature
 - Sort/Percentile (e.g. get top 3% hottest days)
 - Temperature change in one area



Case Study: Web-based Spectra Matching


- Millions of Spectra stored in SciDB
- Web users can search with metadata criteria, like any other gateway
- NEW: web user can upload a custom spectrum, and SciDB will find the most "similar" spectrum in the database
 - Very compute/IO intensive
 - Scan 1Million spectra and return the most "similar" one in 2 min.


Case Study: Cross Matching Catalogs of Stars in the Sky


- Given 2 sets of observed objects, return the objects observed in both sets (~300GB for 1billion stars)
- Spatial query not efficient in SQL
- In SciDB, you can lay out the stars in a 2D table, and overlay the them. In parallel.
- 50 times faster to match 1 billion stars in SciDB (5min) than PostgreSQL (5hr)

Match

Ш

Existing Projects in Several Science Areas

- Climate
- Cosmology
- Astronomy
- Bioinformatics
- Bio-imaging

Recap, what can SciDB give us?

Interactive Analysis on TB of data that:

- No need to write complicated parallel IO code
- No need to wait in the batch queue
- Gives very fast response

Powerful Backend to a Web Gateway that:

- Gives near real time response to queries that scan through TB of data
- Return an "answer", not a file

You are welcome to try it out

What we need from you:

- Data (10+GB to start with, projected data > TB)
- Key Operations
- (Even better) a PostDoc/Student who doesn't want to write MPI parallel IO code.

What we provide:

- Hardware/Software, ready to use
- Help port-in, and help to implement the key operations
- Contact: consult@nersc.gov

National Energy Research Scientific Computing Center

