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Protein similarity search & clustering
▷ Comparative genomics

○ Functional or taxonomic contents of collected samples

▷ Similarity search between two sets of protein sequences
○ Functional annotation

○ Gene localization

○ Studying protein evolution

▷ Common use case
○ Protein similarity networks

○ Detection of protein families 2



Motivation and Goals
▷ Distributed many-against-many protein similarity search

○ Parallel protein similarity search

○ Clustering

○ Metagenomics
■ Days, weeks, or even months

▷ Existing software: MMseqs2, LAST, DIAMOND, BLASTP
○ Optimized for shared-memory

▷ PASTIS: Protein Alignment via Sparse Matrices for SEARCH

▷ HipMCL: High Performance Markov Clustering for CLUSTERING 3



PASTIS Workflow
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▷ Fixed size k-mers to discover overlapping sequences
○ Exact, substitute variants

▷ Large-scale parallelism via CombBLAS (distributed sparse matrix library)

▷ Alignment via external libraries (on-node)

▷ Optimizations for load balancing, memory management, overlapping, etc.

Memory-bound

Compute-bound

Memory-bound



Sparse matrices in PASTIS
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PASTIS: Parallelism
▷ Scalable distributed-memory 

implementation of the components
○ Hybrid MPI-OpenMP

▷ Libraries used in PASTIS
○ CombBLAS
○ SeqAn/ADEPT

▷ PASTIS itself also makes use of 
MPI-OpenMP

6



Challenges of similarity search on huge datasets
▷ Computational patterns

○ Search operations on sequences

○ Pairwise alignments
■ Edit distance computations

▷ Memory requirements
○ Many-against-many search

○ Example: 100 million sequences
■ Candidate pairs ~ trillions (1012)
■ Alignments ~ hundreds of billions (1011) 
■ Similar pairs ~ billions (109) 7



Techniques

▷ Blocked (incremental) formation of the similarity graph
○ Blocked 2D Sparse SUMMA

▷ Load balancing
○ Index-based
○ Triangularity-based
○ Interleaved with blocked formation

▷ Pre-blocking
○ GPU accelerators
○ Utilize all resources on nodes simultaneously
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Blocked 2D Sparse SUMMA
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Advantages
• Bounds the maximum memory utilization
• Enables in-memory search for huge datasets
• Opens up the path for several further optimizations

Disadvantages
• Increases time compared to doing all at once
• Increased communication



Load balancing
▷ Symmetricity of the overlap matrix

○ Can avoid alignments + perhaps sparse 
matrix computations

○ Important → Alignments are expensive

▷ How to achieve load balancing in 
blocked overlap detection?

▷ Approach #1: Symmetricity based on 
triangularity

▷ Approach #2: Symmetricity based on 
indices

10

half of the processes 
would stay idle if 
used in blocked 
multiplication



Load balancing comparison
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Index-based scheme has better load balance

Triangularity-based method can save from computations



Pre-blocking
▷ Incremental formation of the similarity 

graph
○ Alignments  on GPUs

○ Sparse computations & other  on CPUs

▷ CPUs stay idle
○ Can go ahead and prepare the next batch(es)

▷ Hide the overhead of sparse computations
○ Distributed sparse computations

○ Avoid collective communication + memory-
bound low-intensity computations
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#blocks Plain Pre-blocking Total%

10 1555 1090 70

20 1606 1123 70

30 1659 1163 70

40 1724 1203 70

50 1774 1245 70

Overlap efficiency: >95%

Runtime (sec)



Strong scaling & weak scaling
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Perlmutter porting
▷ PASTIS was already running on 

Summit
○ Smooth porting 

▷ Remarks
○ PASTIS needs and uses both CPU 

and GPU resources

○ PASTIS benefited from a faster CPU 
as well as faster GPUs on a node on 
Perlmutter

14

Small-scale performance
64 nodes



Protein similarity search at scale
▷ Summit

○ 4600+ nodes
○ 42 CPU cores (512 GB)
○ 6 GPUs (V100) (16 GB)

▷ Dataset size
○ 313 million (April)
○ 405 million (July)

▷ Test scale
○ 2025 nodes
○ 3364 nodes
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▷ Perlmutter
○ 1500+ nodes
○ 64 CPU cores (256 GB)
○ 4 GPUs (A100) (40 GB)

▷ Dataset size
○ 157 million
○ 200 million (July)

▷ Test scale
○ 1024 nodes



Summit runs
▷ 2025 nodes
▷ 313 million sequences
▷ Parameters

○ Blocking factor: 14 x 14
○ Load balancing: triangularity
○ Pre-blocking

▷ Results
○ Discovered candidates: 53T
○ Performed alignments: 4.5T
○ Similar pairs: 215B
○ Output size: 5.4 TB
○ 3.89 hours 16

▷ 3364 nodes
▷ 405 million sequences
▷ Parameters

○ Blocking factor: 20 x 20
○ Load balancing: triangularity
○ Pre-blocking

▷ Results
○ Discovered candidates: 96T
○ Performed alignments: 8.6T
○ Similar pairs: 1.1T
○ Output size: 27 TB
○ 3.44 hours

Alignments per second: 320 million → 691 million
Cell updates per second: 143.9 TCUPs → 176.3 TCUPs

Problem size: ~1.67x
Run size: ~1.66x
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Perlmutter runs
▷ 1024 nodes
▷ 200 million sequences
▷ Parameters

○ Blocking factor: 20 x 20
○ Load balancing: triangularity
○ Pre-blocking

▷ Results
○ Discovered candidates: 18T
○ Performed alignments: 1.6T
○ Similar pairs: 76B
○ Output size: 1.5 - 2TB
○ 2.48 hours
○ Excluding IO: 2.01 hours 17

  Alignments per sec (per node)

  Summit Perlmutter

Overall 205294 173325

Excluding IO 218809 213844

  Summit Perlmutter

Sparse (candidate disc.) 7427 5539

Alignment 10168 6402

IO% 5% 19%

1.37x 1.16x



Problem size comparison
▷ Tools with distributed memory search option

○ MMSeqs2, DIAMOND

▷ DIAMOND (reported in 2021)
○ 281 million sequences vs. 39 million sequences
○ 520 nodes (Cobra at Max Planck Society)

■ ~23 billion alignments
■ 5.42 hours (very sensitive) - 17.77 hours (ultra sensitive)

▷ Alignment rate
○ 1.2 million alignments per sec vs. 690.6 million alignments per sec
○ Per node: 2.3k vs. 205k 

▷ Search space
○ 281 x 39 x 1012 vs. 405 x 405 x 1012

18

575.5x

15.0x



Conclusions
▷ Compute-intensive and huge memory footprint

○ Accelerators for alignments

○ Algorithmic techniques for staying in-memory
■ No intermediate IO

○ Optimizations to take advantage of heterogeneous node 
architecture
■ Use all resources on the node

▷ HPC for bioinformatics
○ Cutting time-to-solution from days/weeks to hours
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Thank you
QUESTIONS
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Attend our talk at SC22!
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