
Intel, the Intel logo, Intel® Xeon Phi™, Intel® Xeon® Processor are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others. See Trademarks on intel.com for full list of Intel trademarks.

OpenMP Advanced Overview
SIMD and Target Offload
Doug Jacobsen, Intel Corporation
John Pennycook, Intel Corporation
Tim Mattson, Intel Corporation
Alejandro Duran, Intel Corporation

http://www.intel.com/sites/corporate/tradmarx.htm

© 2018 Intel Corporation
2

Topics

• We Will Cover:
• Accelerated OpenMP* basics review
• Vectorization and OpenMP* SIMD
• OpenMP* Device Usage (target)

• We will NOT Cover:
• Detailed OpenMP* basics usage
• OpenMP* Tasking
• Affinity
• NUMA effects

• Reference material in backup:
• Interface descriptions for all described constructs
• Brief Introduction to OpenMP* 5.0 Changes

© 2018 Intel Corporation© 2018 Intel Corporation

OpenMP* Review

3

© 2018 Intel Corporation
4

OpenMP*:

 Application Program Interface (API) focused on the expression of parallelism within an application

 Provides methods for creating multi-threaded, heterogeneous device, and vectorized applications

 Contains standardized directives and library functions

 Supports C, C++, and Fortran

 Was established in 1997

OpenMP* Basics Review

© 2018 Intel Corporation
5

Threads are the original and most basic concept within OpenMP*.

A master thread spawns a team of threads when it encounters a parallel region

OpenMP* Threads

Threads can distribute work among themselves to accomplish the same task faster, or can work on
independent tasks in parallel.

© 2018 Intel Corporation
6

OpenMP* Directive Overview

Directive Description

#pragma omp parallel
!$omp parallel

Create threads in a parallel region

#pragma omp for
!$omp do

Distribute iterations of a loop
among threads

#pragma omp for reduction(+:sum)
!$omp do reduction(+:sum)

Distribute iterations of a loop
among threads, and reduce the
thread private ‘sum’ after the loop
is complete.

#pragma omp single
!$omp single

Execute code with a single thread

#pragma omp master
!$omp master

Execute code only on the master
thread

#pragma omp barrier
!$omp barrier

Wait for all threads in current team
before proceeding

© 2018 Intel Corporation
7

OpenMP* Data Sharing Attributes

Data Sharing Level Description

shared Variables are shared among all
members. If one thread updates
the value, all members see the new
value.

private Variables are private among
members. If one member updates
the value, no other member sees
that update.

firstprivate Same as private, but all members
are initialized with the value before
the scope changed.

lastprivate Same as private, but the logically
last iteration of a loop is used to set
the value of the variable after the
region ends.

© 2018 Intel Corporation
8

Modern computational architectures include everything from traditional CPUs, to Vector Processing
Units, to Graphics Processing Units, and beyond.

OpenMP* is constantly evolving to help developers properly utilize the features of their underlying
hardware.

The remainder of this talk will focus on more advanced topics from OpenMP*. These topics include:

 SIMD (Vectorization)

 Target Teams (Heterogeneous Devices)

OpenMP*: Beyond Threading

© 2018 Intel Corporation© 2018 Intel Corporation

Introduction to SIMD

9

© 2018 Intel Corporation

Introduction to SIMD

Scalar Code

 Executes code one element at a time.

 Not all scalar instructions have a vector
equivalent (e.g. cpuid)

Vector Code

 Executes code multiple elements at a time.

 Single Instruction Multiple Data.

 Not all vector instructions have a scalar
equivalent (e.g. shuffle)

[Scalar] 1 elem at a time
addss xmm1, xmm2

[SSE] 4 elems at a time
addps xmm1, xmm2

[AVX] 8 elems at a time
vaddps ymm1, ymm2, ymm3

[MIC / AVX-512] 16 elems at a time
vaddps zmm1, zmm2, zmm3

10

© 2018 Intel Corporation

Introduction to SIMD

11

Hardware (Colors represent SIMD lanes)

Software (Vectorization)

for (int i = 0; i < size; i++) {
C[i] = A[i] + B[i];

}

int i = 0;
for (; i < size; i += 4) {

for(int j = 0; j < 4; j++)
C[i+j] = A[i+j] + B[i+j];

}
for (; i < size; i++) {

C[i] = A[i] + B[i];
}

3 1 2 4 + 2 3 5 5 = 5 4 7 9

© 2018 Intel Corporation© 2018 Intel Corporation

Utilizing SIMD Instructions

12

© 2018 Intel Corporation

Utilizing SIMD Instructions

13

SIMD Libraries

 Use a library that is already SIMD-optimized (e.g. Intel® Math Kernel Library)

Implicit (Auto) Vectorization

 Use a compiler that recognises vectorization opportunities (e.g. Intel® Composer XE)

 Possibly annotate with vendor specific pragmas (i.e. #pragma ivdep)

Explicit (Manual) Vectorization

 Express vectorization opportunities to a compiler (e.g. OpenMP* 4.0)

 Write intrinsics code (or inline assembly!)

© 2018 Intel Corporation

Utilizing SIMD Instructions – Auto-vectorization

14

Very powerful, but a compiler cannot make unsafe assumptions.

 Unsafe Assumptions:

 a, b and c point to different arrays.

 Value of global g_size is constant.

 ind[i] is a one-to-one mapping.

int* g_size;
void not_vectorizable
(float* a, float* b, float* c, int* ind)
{

for (int i = 0; i < *g_size; i++)
{

int j = ind[i];
c[j] += a[i] + b[i];

}
}

© 2018 Intel Corporation

Utilizing SIMD Instructions – Auto-vectorization

15

Very powerful, but a compiler cannot make unsafe assumptions.

 Safe Assumptions:

 a, b and c point to different arrays. (restrict)

 Value of global g_size is constant. (pointer dereference outside loop)

 ind[i] is a one-to-one mapping. (#pragma ivdep)

int* g_size;
void vectorizable
(float* restrict a, float* restrict b, float* restrict c, int* ind)
{

int size = *g_size;
#pragma ivdep
for (int i = 0; i < size; i++)
{

int j = ind[i];
c[j] += a[i] + b[i];

}
}

© 2018 Intel Corporation

Utilizing SIMD Instructions – Compiler Pragmas

16

float sum = 0.0f;
float *p = a;
int step = 4;

#pragma omp simd reduction(+:sum) linear(p:step)
for (int i = 0; i < N; ++i) {

sum += *p;
p += step;

}

 The same constructs can have different meaning from each other:

– The two += operators have a different purpose.

– The variables sum and p relate differently to the iteration space.

 The compiler has to generate different code.

 OpenMP* 4.0 pragmas allow programmers to express this.

© 2018 Intel Corporation

Implicit vs Explicit Vectorization

Implicit

 Automatic dependency analysis.
(e.g. recognises SIMD reductions)

 Recognizes idioms with data
dependencies.
(e.g. array[i++] = x; -> vcompress)

 Non-inline functions will be scalarized.

 Limited support for outer-loop
vectorization (only with –O3).

Explicit

 No dependency analysis.
(e.g. SIMD reductions must be declared)

 Recognizes idioms without data
dependencies.

 Non-inline functions can be vectorized.

 Outer loops can be vectorized.

17

© 2018 Intel Corporation

OpenMP* SIMD Example: STREAM Triad

18

Let’s say we want to measure achievable bandwidth.

In order to achieve the highest bandwidth we can, we need to move a maximum
number of bytes per cycle.

The STREAM Triad benchmark is typically used to measure this, it is a simple
vector multiply and add of the form:

for (int i = 0; i < N; i++) {
a[i] = b[i] * scalar + c[i];

}

© 2018 Intel Corporation

OpenMP* SIMD Example: STREAM Triad

19

#pragma omp parallel for private(j)
for (i = 0; i < N; i+=16) {

#pragma vector nontemporal(a)
#pragma omp simd aligned(a,b,c)
for(j = 0; j < 16; j++) {

a[i+j] = b[i+j] * scalar + c[i+j];
}

}

#pragma omp parallel for private(j)
for (i = 0; i < N; i+=16) {

#pragma omp simd aligned(a,b,c) nontemporal(a)
for(j = 0; j < 16; j++) {

a[i+j] = b[i+j] * scalar + c[i+j];
}

}

OpenMP 4.5 OpenMP 5.0

In this example, the 16 is tuned for single precision on AVX512

© 2018 Intel Corporation© 2018 Intel Corporation

OpenMP* Target

20

© 2018 Intel Corporation
21

OpenMP* Target

Introduced in OpenMP* 4.0

The target construct is used to create a target task that should be offloaded to a
device.

We’ll carry the STREAM triad example with us to show device execution.

© 2018 Intel Corporation
22

OpenMP* Target Example: STREAM Triad

#pragma omp target map(tofrom:a[0:N], b[0:N], c[0:N], scalar)
for (i = 0, i < N, i++){

a[i] = b[i] * scalar + c[i];
}

#pragma omp target map(to:b[0:N], c[0:N], scalar) map(tofrom:a[0:N])
for (i = 0, i < N, i++){

a[i] = b[i] * scalar + c[i];
}

Always Move Everything

Only Move What’s Needed

© 2018 Intel Corporation
23

OpenMP* Target Example: STREAM Triad

#pragma omp target data map(to:b[0:N],c[0:N],scalar) \
map(from:a[0:N])

{
#pragma omp target
for (i = 0, i < N, i++){
a[i] = b[i] * scalar + c[i];

}
}

#pragma omp target enter data map(to:a[0:N], b[0:N], \
c[0:N],scalar)

#pragma omp target
for (i = 0, i < N, i++){

a[i] = b[i] * scalar + c[i];
}

#pragma omp target exit data map(from:a[0:N])

Structured Data Management Unstructured Data Management

© 2018 Intel Corporation
24

OpenMP* Target Example: STREAM Triad

At the beginning of the target region, b, c, and scalar will be copied onto the
device and after the target region is complete, a will be copied back to the
host. The target region will be executed on the device.

However….

All of the examples so far have a serial execution!

The target construct only creates a target task which is executed by a single
thread!

#pragma omp target enter data \
map(to:a[0:N],b[0:N],c[0:N])

#pragma omp target
for (i = 0, i < N, i++){

a[i] = b[i] * scalar + c[i];
}

#pragma omp target exit data map(from:a[0:N])

© 2018 Intel Corporation© 2018 Intel Corporation

OpenMP* Teams and Distribute

25

© 2018 Intel Corporation
26

OpenMP* Teams

To utilize multiple threads on a device, we need to first use the teams construct.

A teams construct creates a league of teams. Each team consists of some
number of threads, and to begin with the master thread of each team executes
the code in the teams region.

© 2018 Intel Corporation
27

OpenMP* Teams Example: STREAM Triad

#pragma target teams

for (i = 0, i < N, i++){
a[i] = b[i] * scalar + c[i];

}

Now we have multiple threads executing on the device, however they are all
performing the same work.

Additionally, only the master thread of each team is doing anything.

© 2018 Intel Corporation
28

OpenMP* Distribute
Right now we have:

 Multiple thread teams working on a device

 All thread teams performing the same work

 Only the master thread of each team executing anything

When we encounter a loop, we can spread the iterations among teams using the
distribute construct.

© 2018 Intel Corporation
29

OpenMP* Distribute Example: STREAM Triad

#pragma target teams distribute

for (i = 0, i < N, i++){
a[i] = b[i] * scalar + c[i];

}

At this point, we have teams performing independent iterations of this loop,
however each team is only executing serially.

In order to work in parallel within a team we thread as we normally would
with the basic OpenMP usage.

However, there are composite constructs that can help.

© 2018 Intel Corporation
30

OpenMP* Distribute Full Example: STREAM Triad

#pragma target teams distribute parallel for

for (i = 0, i < N, i++){
a[i] = b[i] * scalar + c[i];

}

Now, we have teams splitting the work into large chunks on the device, while
threads within the team will further split the work into smaller chunks and
execute in parallel.

© 2018 Intel Corporation

Legal Disclaimers

31

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. § For more information go to www.intel.com/benchmarks.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on
system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com.

Intel, the Intel logo, Look Inside, Xeon, Xeon Phi, VTune, are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

http://www.intel.com/benchmarks
http://www.intel.com/

© 2018 Intel Corporation© 2018 Intel Corporation

OpenMP* References

33

© 2018 Intel Corporation

Explicit Vectorization – OpenMP* SIMD Loops

34

#pragma omp simd / !$omp simd => for/do loop is a SIMD loop.

Clause Description

private(list) Listed variables are scoped as private

lastprivate(list) Listed variables are scoped as lastprivate

reduction(reduction-identifier:list) Reduce listed variables according to reduction-
identifier

collapse(n) Associate loop construct with n following nested
loops

safelen(n) Maximum allowed ‘distance’ between SIMD lanes
in a single execution

simdlen(n) Preferred SIMD width

aligned(list) Hint to the run-time to use aligned loads and
stores on listed variables

linear(list) Described later

© 2018 Intel Corporation

Explicit Vectorization – OpenMP* 5.0 SIMD Loops

35

#pragma omp simd / !$omp simd => for/do loop is a SIMD loop.

Clause Description

nontemporal(list) Hint to the runtime to use accesses with
no temporal locality, i.e. there is no need
to cache the data

order(concurrent) Hint to the run-time that iterations of the
loop can be executed in any order,
including concurrently

© 2018 Intel Corporation

Explicit Vectorization – OpenMP* SIMD Functions

36

#pragma omp declare simd / !$omp declare simd => function called from a SIMD loop.

Clause Description

simdlen(n) Preferred SIMD width is n

aligned(list) Listed variables should use aligned accesses

uniform(list) Listed variables have an invariant value for all
concurrent calls to the SIMD function

inbranch Function is always called from within a
branch

notinbranch Function is never called from within a branch

linear(list) Described later

© 2018 Intel Corporation

OpenMP* Linear Clause

37

The linear clause provides the compiler additional information about variables.
linear(linear-list:step)

Linear List Options Description

variable
val(variable)

Variable listed have linear values with a
distance between consecutive SIMD lanes of
step.

ref(variable) Variable listed have linear memory addresses
with a distance between consecutive SIMD
lanes of step.

uval(variable) Variable listed have linear values with a
distance between consecutive SIMD lanes of
step.
Variable uses the same storage location
across all SIMD lanes, and the logically last
iteration is stored out.

© 2018 Intel Corporation
38

OpenMP* Target Construct
#pragma omp target / !$omp target

!$omp end target

Clause Description

if(scalar-expression) If scalar-expression is false, device used is host

device(integer-expression) Controls the device used, as described in data management
constructs

private(list) Listed variables are scoped as private

firstprivate(list) Listed variables are scoped as firstprivate

map([[map-type-modifier[,]]map-type:]list) Described later

is_device_ptr(list) Listed variables are already device pointers (allocated
before the target construct)

defaultmap(tofrom:scalar) If specified, scalars are by default mapped using tofrom. If
not specified, nothing is mapped by default.

depend(dependence-type:list) Follows task dependencies, as previously described.

nowait If present, execution of the target task may be deferred. If
not, the task is an undeferred task.

=> Create a target task task, and execute on a device

© 2018 Intel Corporation
39

OpenMP* 5.0 Target Construct
#pragma omp target / !$omp target

!$omp end target

Clause Description

in_reduction(reduction-identifier:list) The generated target task will participate in a previously
defined task_reduction

defaultmap(implicit-behavior:[variable-category]) Implicit behavior can be one of alloc, to, from, tofrom,
firstprivate, none, or default and variable category can be
one of scalar, aggregate, pointer, or allocatable (in fortran)

allocate([allocator:]list) Allocates listed variables using the specified allocator (or a
default device allocator)

uses_allocators(allocator[(allocator-traits-arrays)], …) Each allocator listed will be made available in the target
region.

device([device-modifier:]integer-expression) Modifier can be ancestor, or device_num. Used to determine
which device will be selected. ancestor:1 executes on the
parent device of the target region.

=> Create a target task task, and execute on a device

© 2018 Intel Corporation
40

OpenMP* Target Data Mapping
map([[map-type-modifier[,]]map-type:]list)

Clause Valid for construct Description

to target enter data, target data, target Copies data from listed variables into
device data region

from target exit data, target data, target Copies data from listed variables out of
the device data region

tofrom target data, target Copies data into and out of the device
data region for listed variables

alloc target enter data, target data, target Allocates memory for listed variables
in the device data region

release target exit data Releases device pointers for listed
variables in the device data region

delete target exit data Frees memory for listed variables in
the device data region

Structured data regions trigger events upon entry and exit.

In 5.0 requires(unified_shared_memory) can make map() optional

© 2018 Intel Corporation
41

OpenMP* Target Structured Data Management
#pragma omp target data / !$omp target data

!$omp end target data

Clause Description

if(scalar-expression) If scalar-expression is false, device used is host

device(integer-expression) Integer expression for the device to use. Must be a
non-negative integer less than the value of
omp_get_num_devices()

map([[map-type-modifier[,]]map-type:]list) Described previously

use_device_ptr(list) Listed items are converted to device pointers in
the device data environment

use_device_addr(list)
(in 5.0)

Listed items have the address of the
corresponding object in the device data
environment.

=> Create a data region for a device

© 2018 Intel Corporation
42

OpenMP* Target Unstructured Data Management
#pragma omp enter target data / !$omp enter target data

#pragma omp exit target data / !$omp exit target data

Clause Description

if(scalar-expression) If scalar-expression is false, device used is host

device(integer-expression) Integer expression for the device to use. Must be a
non-negative integer less than the value of
omp_get_num_devices()
If not specified, device is determined from the
default-device-var icv.

map([[map-type-modifier[,]]map-type:]list) Described previously

depend(dependence-type:list) Follows task dependencies, as previously
described.

nowait If present, execution of the target task may be
deferred. If not, the task is an undeferred task.

=> Manage data associated with a device

© 2018 Intel Corporation
43

OpenMP* Teams Construct
#pragma omp teams/ !$omp teams

!$omp end teams

Clause Description

num_teams(integer-expression) Sets the maximum number of teams to create within a
target task

thread_limit(integer_expression) Sets the maximum number of threads to create within each
team

default(shared | firstprivate | private | none) Sets the default data sharing level

private(list) Listed variables are scoped as private

firstprivate(list) Listed variables are scoped as firstprivate

shared(list) Listed variables are scoped as shared

reduction(reduction-identifier:list) Perform a reduction on listed variables across teams using
reduction-identifier.

=>
Create a league of thread teams. The master
thread of each team executes the region.

© 2018 Intel Corporation
44

OpenMP* Distribute Construct
#pragma omp distribute / !$omp distribute

!$omp end distribute

Clause Description

private(list) Listed variables are scoped as private

firstprivate(list) Listed variables are scoped as firstprivate

lastprivate(list) Listed variables are scoped as lastprivate

collapse(n) Specifies how many loops are associated with a particular
distribute construct

dist_schedule(kind[, chunk_size]) Kind must be static, chunk_size specifies the division of
iterations. Chunks are assigned to teams in a round-robin
fashion

=>
Distribute the iterations of one or more loops
across the master threads of a league of teams

© 2018 Intel Corporation
45

OpenMP* Distribute Composite Constructs

Construct Description

#pragma omp distribute simd
!$omp [end] distribute simd

Distribute loop chunks among teams, and execute
those iterations using SIMD instructions

#pragma omp distribute parallel for
!$omp [end] distribute parallel do

Distribute loop chunks among teams, then
distribute iterations within each chunk among
threads within the team and execute in parallel

#pragma omp distribute parallel for simd
!$omp [end] distribute parallel for simd

Distribute loop chunks among teams, then
distribute iterations within each chunk among
threads within the team and execute in parallel
using SIMD instructions

In addition to using a vanilla distribute construct, there are also composite constructs
that allow more parallelism.

© 2018 Intel Corporation
46

OpenMP* 5.0

OpenMP* 5.0 adds several new features which can be useful in achieving a performance portable
application. We won’t go over these in detail, but some items to look into are:

OpenMP* 5.0 Specification is at: https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

Construct Description

#pragma omp metadirective
!$omp metadirective

Conditionally apply a directive from a set to a
location.

#pragma omp declare variant
!$omp declare variant

Define variants of a function to use on different
architectures or devices.

#pragma omp requires
!$omp requires

Specify that an implementation requires a
specific hardware feature

#pragma omp teams loop
!$omp teams loop

Specify a teams construct that contains a loop
and nothing else
Equivalent to
#pragma omp teams distribute parallel for
!$omp teams distribute parallel for

#pragma omp scan
!$omp scan

Tells the compiler that the following statement
is a scan that can be performed in parallel

Memory Management
#pragma omp allocate
!$omp allocate

More explicit control over memory spaces for
host and device, and the ability to define and
use custom memory allocators

