OpenMP Parallelization and Optimization of Graph-based Machine Learning Algorithms

Zhaoyi Meng, Alice Koniges, Yun (Helen) He, Samuel Williams, Thorsten Kurth, Brandon Cook, Jack Deslippe, and Andrea L. Bertozzi

University of California, Los Angeles

and National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory, USA

IWOMP Nara, Japan, October 5, 2016

UCLA

&

OUTLINE

- Introduction to data classification and the new methods
- Semisupervised and unsupervised algorithms studied
- Optimization process
- Architecture testing
- Results and conclusions

Abstract

-New class of data clustering methods for segmentation of large datasets with graph based structure. The method combines ideas from classical nonlinear PDE-based image segmentation with fast linear algebra methods for computing information about the spectrum of the graph Laplacian.

- -The goal of the algorithms is to solve semi-supervised and unsupervised graph cut optimization problems.
- -Applications are to image processing such as image labeling and hyperspectral video segmentation
- -We detail the OpenMP parallelization and algorithmic optimization in this presentation

Novel UCLA Data classification algorithms are used to find similarities with improved accuracy.

Classify data sets (sort data into different classes), so that the similarity between nodes in one class is much larger than the similarity between nodes of different classes.

- Semi-supervised algorithm: have a small portion of known class labels.
- Unsupervised algorithm: have no knowledge of class labels at all.

Example: Classification of regions in a hyperspectral image of the earth

Each pixel contains many data channels

Two sample data sets (face and plume) and UCLA results using unsupervised algorithms

Three classes

Four classes

Data is 1372 ×1183 with 148 spectral bands (https://scien.stanford.edu/index.php/faces)

Plume data is 128 × 320 with 129 infrared spectral bands and tracked using four classes (Chemical plumes released at the Dugway Proving Ground by J. B. Broadwater, et al.)

Method can be motivated by thinking about how to minimize curve around two objects (data classification)

Diffuse interface Equations and their sharp interface limit

Gradient descent of GL function:

$$u_t = \epsilon \Delta u - \frac{1}{\epsilon} W'(u)$$

First variation of the GL functional gives the Allen-Cahn equation. Famous in materials science. Now useful for data science.

The two step MBO Scheme (1992) improves solution method performance

Merriman, Bence, Osher

PDE Methods were extended by Bertozzi et al. for similarity graphs for big data problems

UCLA & NERSC

PDE Motivated: Euclidean Space Problem

- Minimal surface problem
- Laplace operator
- Pseudo-spectral methods
- Fast Fourier Transform
- Uses all the modes

Similarity Graphs for Large Data

- Graph mincut problem
- Graph Laplacian
- Projection to eigensubspace of graph Laplacian
- Nystrom extension/ Rayleigh-Chebyshev
- Often only needs a small percentage of spectral modes.

The basic UCLA algorithmic method is fast and accurate for a variety of data applications

I) Create a graph from the data, choose a weight function and then create the symmetric graph Laplacian.

II) Calculate the eigenvectors and eigenvalues of the symmetric graph Laplacian. *It is only necessary to calculate a portion of the eigenvectors**.

III) Initialize assignment matrix u.

IV) Iterate the two-step scheme (MBO) until a stopping criterion is satisfied.

*Fast linear algebra routines are necessary – either Raleigh-Chebyshev procedure or Nystrom extension. We focus on the Nystrom version for this OpenMP optimization study.

The workflow of the two algorithms we optimize is very similar.

- The major difference is that the semi-supervised algorithm requires fidelity (a small amount of "ground truth") while the unsupervised one does not. For very large data sets, we envision the unsupervised algorithm taking a dominant practical role.
- Step 1. Initialize parameters (total number of pixels, number of classes...) and read all frames of data file, fidelity(only for semi-supervised algorithm), initialize the labels of each pixel randomly.
- Step 2. Calculate eigenvectors and eigenvalues using a Nystrom scheme. Step 2a Parallelize time consuming parts of Nystrom via OpenMP.
- Step 3. Use Graph MBO or Graph Mumford-Shah algorithm to get labels of each pixel.
- Step 4. Output the labels of each pixel as classification result.

Unsupervised Graph MBO Algorithm

1. Input data matrix f, eigenvector matrix Φ , eigenvalues $\{\lambda_k\}_{k=1}^N$. 2. Initialize u^0 , $a^0 = \Phi^T \cdot u^0$ 3. While $\frac{||u^{n+1}-u^n||_2^2}{||u^{n+1}||_2^2} < \alpha = 0.0000001$ do a. Updating c $c_k^{n+1} = \frac{\langle f, u_k^{n+1} \rangle}{\sum_{i=1}^N u_{ki}}$ b. Heat equation 1. $a_{k}^{n+\frac{1}{2}} = a_{k}^{n} \cdot (1 - dt \cdot \lambda_{k})$ 2. Calculating matrix P, where $P_{i,j} = ||f_i - c_j||_2^2$ 3. $y = \Phi \cdot a_{\mu}^{n+\frac{1}{2}} - dt \cdot \mu P$ c. Thresholding $m \mid 1$

$$u_i^{n+1} = e_r, r = \arg\max_j y_i$$

d. Updating a

$$a^{n+1} = \Phi^T \cdot u^{n+1}$$

- In both the semi-supervised and unsupervised algorithms, we calculate the leading eigenvalues and eigenvectors of the graph Laplacian using the Nystrom method to accelerate the computation
- This is achieved by calculating an eigendecomposition on a smaller system of size M << N and then expanding the results back up to N dimensions. The computational complexity is almost O(N).

$$W = \begin{pmatrix} W_{XX} & W_{XY} \\ W_{YX} & W_{YY} \end{pmatrix}, \quad W \sim \begin{pmatrix} W_{XX} \\ W_{YX} \end{pmatrix} W_{XX}^{-1} \begin{pmatrix} W_{XX} & W_{XY} \end{pmatrix}.$$

Computing W_{XX} , $W_{XY} = W_{YX}^T$ requires only $(|X| \cdot (|X| + |Y|))$ computations versus $(|X| + |Y|)^2$ for the whole similarity matrix. The method approximates W_{YY} by $W_{YX}W_{XX}^{-1}W_{XY}$ and the error is determined by how much the rows of W_{XY} span the rows of W_{YY} .

To start the optimization procedure we find hot spots and use libraries where possible

- Data are in matrix form and require intensive linear algebra calculations.
- Use LAPACK (Linear Algebra PACKage) and BLAS (Basic Linear Algebra Subprograms).
 - Use of BLAS 3 (matrix matrix) instead of BLAS 1 (vector vector) yields better performance
- VTune analysis calculating Wxy takes 90% of the runtime of the Nystrom extension – a good candidate for OpenMP parallelization.

The matrix formed by calculating Wxy in the Nystrom extension takes 90% of the runtime

Analysis with VTune shows that the construction of W_{XY} is the most time consuming phase

We investigate four steps to evaluate performance/optimization

Step A: parallelizing the inner j-loop and BLAS3 optimization on Graph MBO.

- Step B: parallelizing the outer j-loop.
- Step C: normalizing and forming all Z_is to X_{mat}.
- Step D: using uniform sampling and chunked Y matrices.

An additional speed up comes from reordering loops

Step A: Parallelizing the inner j-loop for i = 0: i < M: i + + $n_1 = \langle Z_i, Z_i \rangle$ #pragma omp parallel for $n_2 = \langle Z_i, Z_i \rangle$ for j = 1: N - M $n_{12} = \langle Z_i, Z_j \rangle$ $n_2 = \langle Z_i, Z_i \rangle$ $d = 1 - n_{12} / \sqrt{n_1 \cdot n_2}$ $W_{XY}(i,j) = exp(-d/\sigma)$ end

Step B: Parallelizing the outer j-loop #pragma omp parallel for for i = 1 : N - Mfor $i = 1 \cdot M$ $n_{12} = \langle Z_i, Z_j \rangle$ $n_1 = < Z_i, Z_i >$ $d = 1 - n_{12} / \sqrt{n_1 \cdot n_2}$ $W_{XY}(i,j) = exp(-d/\sigma)$ end

end

end

Step C: Calculating W_{XY} , normalize and form all Z_is to X_{mat}

#pragma omp for
for
$$j = 1 : N - M$$

 $n_2 = \langle Z_j, Z_j \rangle$
 $n_{vec} = 1 - \langle X_{mat}, Z_j \rangle / \sqrt{n2}$
#pragma omp simd aligned
for $i = 1 : M$
 $W_{XY}(i,j) = exp(-n_{vec}/\sigma)$
end

end

Choosing the sub-chunk size. Too small, wastes potential of combining expensive operations. If it is too large, the sub-chunk may run out of lower level cache and needs to be put into the higher cache levels, up to the point where they spill over into DRAM which may cause a substantial performance hit. The optimal value depends on the cache hierarchy, their respective sizes, their latency and so on.

Thread affinity settings also affect performance

 We choose the thread affinity setting as "OMP_PROC_BIND = spread" and "OMP_PLACES = cores/threads",

because it uses one hardware thread per core.

• While if we use

"OMP_PROC_BIND = close" and "OMP_PLACES = threads", it puts more threads on each physical core and leaves other cores idle, which affects scaling performance.

Testing of algorithms is done on Cori Phase I and KNL White Boxes

Cray XC40 with Knights Landing

Cori Phase I:

Cray XC based on the Intel Haswell multi-core processor. Each node has 128GB of memory and two 2.3 GHz 16-core Haswell processors. Each core has its own L1 and L2 caches, with 64 KB and 256 KB, respectively.

Knight's Landing (KNL) Many Integrated Core (MIC) Architecture: The system has 64 cores with 1.3 GHz clock frequency. Each core has two 512 bit-wide vector processing units. 16GB on package memory are shared between all cores. The 512 KB L2 cache is shared between two cores and 16 KB L1 cache is private to the core.

Theoretical Peak performance: Phase I Haswell: 1.92 PFlops/sec; Phase II KNL: 27.9 PFlops/sec.

• Total compute nodes: Phase I Haswell: 1,630 computes nodes, 52,160 cores total (32 cores per node);

Phase II KNL: 9,304 compute nodes, 632,672 cores in total (68 cores per node).

- Cray Aries high-speed interconnect with Dragonfly topology (0.25 μs to 3.7 μs MPI latency, ~8GB/sec MPI bandwidth)
- Aggregate memory: Phase I Haswell partition: 203 TB; Phase II KNL partition: 1 PB.
- Scratch storage capacity: 30 PB

(Open for first testing this morning !!)

Optimization Results

Step A: parallelizing the inner j-loop and BLAS3 optimization on Graph MBO. Step B: parallelizing the outer j-loop.

Step C: normalizing and forming all Z_is to X_{mat}.

Step D: using uniform sampling and chunked Y matrices.

Office of ENERGY Office of Science

- 22 -

KNL (our white boxes) are latest from Intel with lots of cores with in package memory

Knights Landing Overview

Omni-path not shown Source: Avinash Sodani, Hot Chips 2015 KNL talk

<u>TILE</u>	2 VPU	СНА	2 VPU
		1MB L2	
	Core		Core

Chip: 36 Tiles interconnected by 2D Mesh Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW **DDR4**: 6 channels @ 2400 up to 384GB IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset Node: 1-Socket only Fabric: Omni-Path on-package (not shown)

Vector Peak Perf: 3+TF DP and 6+TF SP Flops Scalar Perf: ~3x over Knights Corner Streams Triad (GB/s): MCDRAM : 400+: DDR: 90+

Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expe are subject to change without notice. KNL data are preliminary based on current expectations and are s without notice. 1Binary Compatible with Intel Xeon processors using Haswell Loeir numbers are based on STREAM-like memory access pattern when estimated based on internal Intel analysis and clacidal performance.

Connecting tiles

KNL Mesh Interconnect

Mesh of Rings

- Every row and column is a (half) ring
- YX routing: Go in Y \rightarrow Turn \rightarrow Go in X
- Messages arbitrate at injection and on turn

Cache Coherent Interconnect

- MESIF protocol (F = Forward)
- Distributed directory to filter snoops

Three Cluster Modes

(1) All-to-All (2) Quadrant (3) Sub-NUMA Clustering

Network interface Chip in the package ...

KNL w/ Intel[®] Omni-Path

Omni-Path Fabric integrated on package

First product with integrated fabric

Connected to KNL die via 2 x16 PCIe* ports Output: 2 Omni-Path ports

25 GB/s/port (bi-dir)

Benefits

- Lower cost, latency and power
- Higher density and bandwidth
- Higher scalability

*On package connect with PCIe semantics, with MCP optimizations for physical layer

Knights Landing Integrated On-Package Memory

Modeland flat models by segmenting the
integrated on-package memory

Maximum performance through higher memory bandwidth and flexibility

Slide from Intel

Arithmetic Intensity & Roofline Model: where we lie in terms of absolute performance

- Arithmetic intensity is the ratio of computational speed (FLOP's) to data movement (Bytes)
- Nystrom loop runs at 300 GFLOP's and 23 GB/s of DRAM bandwidth giving 13 FLOPs/Byte
- Use Roofline Toolkit (https://bitbucket.org/berkeleylab/cs-roofline-toolkit) to generate bounding "ceilings" on performance

Use Intel's Software Development Emulator Toolkit (SDE) to record FLOP's and Intel's VTune Amplifier to collect data movement when running on 32 cores of a Cori Phase I node

- New class of data clustering methods for segmentation of large datasets with graph based structure
- Fast and accurate method combines ideas from classical nonlinear PDE-based image segmentation with linear algebra methods
- The algorithms can solve semi-supervised and unsupervised graph cut optimization problems
- We give results for hyperspectral video segmentation
- OpenMP parallelization with algorithmic optimization yields nearly ideal scaling on Haswell and KNL

