
&	

Zhaoyi Meng, Alice Koniges, Yun (Helen) He, !
Samuel Williams, Thorsten Kurth, Brandon Cook, Jack Deslippe, and

Andrea L. Bertozzi !
University of California, Los Angeles!

and!
National Energy Research Scientific Computing Center!

Lawrence Berkeley National Laboratory, USA!
!

IWOMP Nara, Japan, October 5, 2016

OpenMP
Parallelization and
Optimization of
Graph-based
Machine Learning
Algorithms

-	1	-	

&	
OUTLINE

•  Introduc)on	to	data	classifica)on	and	the	new	
methods	

•  Semisupervised	and	unsupervised	algorithms	
studied	

•  Op)miza)on	process		
•  Architecture	tes)ng	
•  Results	and	conclusions	

&	
Abstract

-New	class	of	data	clustering	methods	for	segmenta)on	of	
large	datasets	with	graph	based	structure.	The	method	
combines	ideas	from	classical	nonlinear	PDE-based	image	
segmenta)on	with	fast	linear	algebra	methods	for	
compu)ng	informa)on	about	the	spectrum	of	the	graph	
Laplacian.		
-The	goal	of	the	algorithms	is	to	solve	semi-supervised	and	
unsupervised	graph	cut	op)miza)on	problems.		
-Applica)ons	are	to	image	processing	such	as	image	
labeling	and	hyperspectral	video	segmenta)on	
-We	detail	the	OpenMP	paralleliza)on	and	algorithmic	
op)miza)on	in	this	presenta)on	

&	Novel UCLA Data classification algorithms are used to
find similarities with improved accuracy.

•  Semi-supervised	algorithm:	have	
a	small	por)on	of	known	class	
labels.		

•  Unsupervised	algorithm:	have	no	
knowledge	of	class	labels	at	all.		

Example:	Classifica)on	of	
regions	in	a	hyperspectral	
image	of	the	earth	

-	4	-	

Each	pixel	contains	many	data	channels	

Classify	data	sets	(sort	data	into	
different	classes),	so	that	the	
similarity	between	nodes	in	one	
class	is	much	larger	than	the	
similarity	between	nodes	of	
different	classes.		

&	Two sample data sets (face and plume) and
UCLA results using unsupervised algorithms

-	5	-	

Plume	data	is	128	×	320	with	129	infrared	spectral	bands	and	tracked	using	four	classes	
(Chemical	plumes	released	at	the	Dugway	Proving	Ground	by	J.	B.	Broadwater,	et	al.)	

Ground	truth	 Three	classes	 Four	classes	 Five	classes	

Data	is	1372	×1183	with	148	spectral	bands	(hPps://scien.stanford.edu/index.php/faces)	

Time	=	0	sec	 Time	=	15	sec	 Time	=	30	sec	

&	

�

u = �⌦

@⌦ = �

|�| =
Z

|ru| ⌘ |u|TV

⇠ ✏

2

Z
|ru|2 + 1

✏

Z
W (u)dx ⌘ GL✏(u)

Method	can	be	moVvated	by	thinking	about	how	to	
minimize	curve	around	two	objects	(data	classificaVon)	

Ginzburg-Landau	funcVonal	

⌦

Move	curve	to	where	there	
	is	lots	of	gradient	structure	
in	the	image.	Curve	length	
is	minimized.	This	process	is	
connected	to	the	total	
variaVon	(TV).	u	is	
characterisVc	funcVon	of	
domain	Ω

&	Diffuse interface Equations and their sharp
interface limit

ut = ��u� 1

�
W 0(u)

First variation of the GL functional gives the Allen-Cahn equation. Famous in
materials science. Now useful for data science.

✏ ! 0 Approximates	MoVon	by	Mean	
Curvature,	steep	secVons	move	more.	

Gradient	descent	of	GL	funcVon:	

&	The two step MBO Scheme (1992) improves
solution method performance
Merriman,	Bence,	Osher		

Heat	equaVon	

Threshold	

C1
C2C3

iterate	

Extended	to	Piecewise	Constant	Mumford-Shah	Model	by	Esedoglu-Tsai	2006	

&	PDE Methods were extended by Bertozzi et al.
for similarity graphs for big data problems

•  Minimal	surface	
problem	

•  Laplace	operator	
•  Pseudo-spectral	
methods	

•  Fast	Fourier	Transform	
•  Uses	all	the	modes	

•  Graph	mincut	problem	
•  Graph	Laplacian	
•  Projec)on	to	
eigensubspace	of	graph	
Laplacian	

•  Nystrom	extension/
Rayleigh-Chebyshev	

•  OVen	only	needs	a	small	
percentage	of	spectral	
modes.	

PDE	Mo)vated:	
Euclidean	Space	Problem	

Similarity	Graphs	for	Large	
Data	

&	

I)	Create	a	graph	from	the	data,	choose	a	weight	func)on	and	
then	create	the	symmetric	graph	Laplacian.		
II)	Calculate	the	eigenvectors	and	eigenvalues	of	the	symmetric	
graph	Laplacian.	It	is	only	necessary	to	calculate	a	por0on	of	the	
eigenvectors*.	
III)	Ini)alize	assignment	matrix	u.	
IV)	Iterate	the	two-step	scheme	(MBO)	un)l	a	stopping	criterion	
is	sa)sfied.	
*Fast	linear	algebra	rou)nes	are	necessary	–	either	Raleigh-
Chebyshev	procedure	or	Nystrom	extension.	We	focus	on	the	
Nystrom	version	for	this	OpenMP	op)miza)on	study.	

The basic UCLA algorithmic method is fast and
accurate for a variety of data applications

&	The workflow of the two algorithms we
optimize is very similar.

•  The	major	difference	is	that	the	semi-supervised	algorithm	
requires	fidelity	(a	small	amount	of	“ground	truth”)	while	the	
unsupervised	one	does	not.	For	very	large	data	sets,	we	envision	
the	unsupervised	algorithm	taking	a	dominant	prac)cal	role.	

•  Step	1.	Ini)alize	parameters	(total	number	of	pixels,	number	of	
classes...)	and	read	all	frames	of	data	file,	fidelity(only	for	semi-
supervised	algorithm),	ini)alize	the	labels	of	each	pixel	randomly.	

•  Step	2.	Calculate	eigenvectors	and	eigenvalues	using	a	Nystrom	
scheme.	Step	2a	Parallelize)me	consuming	parts	of	Nystrom	via	
OpenMP.	

•  Step	3.	Use	Graph	MBO	or	Graph	Mumford-Shah	algorithm	to	get	
labels	of	each	pixel.	

•  Step	4.	Output	the	labels	of	each	pixel	as	classifica)on	result.	

&	
Unsupervised Graph MBO Algorithm

-	12	-	

OpenMP - Machine Learning Algorithm 3

In the vanishing ✏ limit a variant of (3) has been proved to converge to the
graph TV functional [7]. Di↵erent fidelity items are added to GL functional
for semi-supervised and unsupervised learning respectively. The GL functional
is minimized using gradient descent [9]. An alternative is to directly minimize
the GL functional using the MBO scheme [11] or a direct compressed sensing
method [12]. We use the MBO scheme in this paper in which one alternates
solving the heat (di↵usion) equation for u and thresholding to maintain distinct
class structure. Computation of the entire graph Laplacian is prohibitive for
large data so we use the Nyström extension to randomly sample the graph and
compute a modest number of leading eigenvalues and eigenfunctions of the graph
Laplacian [10]. By projecting all vectors onto this sub-eigenspace, the iteration
step reduces to a simple coe�cient update.

2.2 Semi-supervised and Unsupervised Algorithms

We outline the semi-supervised and the unsupervised algorithms. For the semi-
supervised algorithm, the fidelity (a small amount of “ground truth”) is known
and the rest needs to be classified according to the categories of the fidelity.
For the unsupervised algorithm, there is no prior knowledge of the labels of the
data. We use the Nyström extension algorithm beforehand for both algorithms
to calculate the eigenvalues and eigenvectors as the inputs. In practice, these
two algorithms converge very fast and give accurate classification results.

Semi-supervised Graph MBO Algorithm [11]

1. Input eigenvectors matrix �, eigenvalues {�k}Mk=1 and fidelity.
2. Initialize u0, d0 = 0, a0 = �T · u0.

3. While ||un+1�un||22
||un+1||22

< ↵ = 0.0000001 do
a. Heat equation

1). an+1
k = ank · (1� dt · �k)� dt · dnk

2). y = � · an+1

3). dn+1 = �T · µ(y � u0),
b. Thresholding

un+1
i = er, r = argmaxj yi

c. Updating a

an+1 = �T · un+1

Unsupervised Graph MBO Algorithm [13]

1. Input data matrix f , eigenvector matrix �, eigenvalues {�k}Nk=1.
2. Initialize u0, a0 = �T · u0

3. While ||un+1�un||22
||un+1||22

< ↵ = 0.0000001 do
a. Updating c

cn+1
k =

<f,un+1
k >PN

i=1 uki

b. Heat equation
4 Meng, Z., Koniges, A., et al

1. an+
1
2

k = ank · (1� dt · �k)
2. Calculating matrix P , where Pi,j = ||fi � cj ||22
3. y = � · an+

1
2

k � dt · µP
c. Thresholding

un+1
i = er, r = argmaxj yi

d. Updating a

an+1 = �T · un+1

2.3 Nyström Extension Method

In both the semi-supervised and unsupervised algorithms, we calculate the lead-
ing eigenvalues and eigenvectors of the graph Laplacian using the Nyström
method [10] to accelerate the computation. This is achieved by calculating an
eigendecomposition on a smaller system of size M << N and then expanding
the results back up to N dimensions. The computational complexity is almost
O(N). We can set M << N without any significant decrease in the accuracy of
the solution.

Suppose Z = {Zk}Nk=1 is the whole set of nodes on the graph. By randomly
selecting a small subset X, we can partition Z as Z = X

S
Y , where X and Y

are two disjoint set, X = {Zi}Mi=1 and Y = {Zj}N�M
j=1 and M << N . The weight

matrix W can be written as

W =

WXX WXY

WY X WY Y

�
,

where WXX denotes the weights of nodes in set X, WXY denotes the weights
between set X and set Y , WY X = WT

XY and WY Y denotes the weights of nodes
in set Y . It can be shown that the large matrix WY Y can be approximated by
WY Y ⇡ WY XW�1

XXWXY , and the error is determined by how many of the rows
of WXY span the rows of WY Y . We only need to compute WXX , WXY = WT

Y X ,
and it requires only (|X| · (|X| + |Y |)) computations versus (|X| + |Y |)2 when
the whole matrix is used. For the data set we use in this paper, M = 100 and
N = 13, 475, 840.

Nyström Extension Algorithm

1. Input a set of features Z = {Zi}Ni=1.
2. Partition the set Z into Z = X [Y , where X consists of M randomly selected elements.
3. Calculate WXX and WXY using formula (1).
4. Calculate dX = WXX1L +WXY 1N�L and dY = WY X1L + (WY XW�1

XXWXY)1N�L.
5. Calculate sX =

p
dX and sY =

p
dY .

6. Calculate WXX = WXX ./(sXsTX) and WXY = WXY ./(sXsTY).
7. Calculate eigendecomposition WXX = BX�BT

X (using the SVD).
8. Calculate S = BX��1/2BT

X and Q = WXX + S(WXY WY X)S.
9. Calculate eigendecomposition Q = A⇥AT (using the SVD).

&	
Nystrom Extension Algorithm
•  In	both	the	semi-supervised	and	unsupervised	algorithms,	we	calculate	the	leading	

eigenvalues	and	eigenvectors	of	the	graph	Laplacian	using	the	Nystrom	method	to	
accelerate	the	computa)on		

•  This	is	achieved	by	calcula)ng	an	eigendecomposi)on	on	a	smaller	system	of	size	M	
<<	N	and	then	expanding	the	results	back	up	to	N	dimensions.	The	computa)onal	
complexity	is	almost	O(N).		

-	13	-	

Computing WXX , WXY = WT
Y X requires only (|X|·(|X|+|Y |) computations

versus (|X| + |Y |)2 for the whole similarity matrix. The method approximates

WY Y by WY XW�1
XXWXY and the error is determined by how much the rows of

WXY span the rows of WY Y .

&	To start the optimization procedure we find
hot spots and use libraries where possible

•  Data	are	in	matrix	form	and	require	intensive	linear	
algebra	calcula)ons.	

•  Use	LAPACK	(Linear	Algebra	PACKage)	and	BLAS	(Basic	
Linear	Algebra	Subprograms).	
–  Use	of	BLAS	3	(matrix	-	matrix)	instead	of	BLAS	1	(vector	–	vector)	

yields	beder	performance	

•  VTune	analysis	–	calcula)ng	Wxy	takes	90%	of	the	
run)me	of	the	Nystrom	extension	–	a	good	candidate	for	
OpenMP	paralleliza)on.	

-	14	-	

&	The matrix formed by calculating Wxy in the
Nystrom extension takes 90% of the runtime

-	15	-	

&	
Optimization of the Nystrom Loop

-	16	-	

Analysis	with	VTune	shows	that	the	construc)on	of	WXY	is	the	most)me	consuming	phase	
	
We	inves)gate	four	steps	to	evaluate	performance/op)miza)on	
	
	
Step	A:	parallelizing	the	inner	j-loop	and	BLAS3	op)miza)on	on	Graph	MBO.		
Step	B:	parallelizing	the	outer	j-loop.		
Step	C:	normalizing	and	forming	all	Zis	to	Xmat.		
Step	D:	using	uniform	sampling	and	chunked	Y	matrices.		

&	An additional speed up comes from
reordering loops

-	17	-	

Reordering Loops

Step A: Parallelizing the inner j-loop

f o r i = 0; i < M; i ++
n1 =< Zi ,Zi >
#pragma omp p a r a l l e l f o r

f o r j = 1 : N �M
n12 =< Zi ,Zj >
n2 =< Zj ,Zj >
d = 1� n12/

p
n1 · n2

WXY (i , j) = exp(�d/�)
end

end

Step B: Parallelizing the outer j-loop

#pragma omp p a r a l l e l f o r

f o r j = 1 : N �M
n2 =< Zj ,Zj >
f o r i = 1 : M

n12 =< Zi ,Zj >
n1 =< Zi ,Zi >
d = 1� n12/

p
n1 · n2

WXY (i , j) = exp(�d/�)
end

end

Zhaoyi Meng, Alice Koniges, et al (LBNL) OpenMP Parallelization and Optimization of Graph-based Machine Learning AlgorithmsOct, 6th, 2016 7 / 17

&	
Use Matrix Form and BLAS 2

-	18	-	

Use Matrix Form and BLAS 2

Step C: Calculating WXY , normalize and form all Zi s to Xmat

#pragma omp for

for j = 1 : N �M
n2 =< Zj ,Zj >

nvec = 1� < Xmat ,Zj > /
p
n2

#pragma omp simd aligned

for i = 1 : M
WXY (i , j) = exp(�nvec/�)

end

end

Zhaoyi Meng, Alice Koniges, et al (LBNL) OpenMP Parallelization and Optimization of Graph-based Machine Learning AlgorithmsOct, 6th, 2016 8 / 17

&	
We can form chunks to further optimize

-	19	-	

Chunk

Step D: Calculating WXY using uniform sampling and chunked Y matrices

#pragma omp for collapse(2)

for ychunk = 0; ychunk < m; ychunk ++
for j = chunkstart; j < chunkstop; j+ = subchunksize

#pragma omp simd aligned

for k = 0; k < subchunksize; k ++
n2vec [k] =< Zj+k ,Zj+k >

n2vec [k] = 1/
p
n2vec [k]

end

n12mat =< Xmat ,Ysubmatj >

#pragma omp simd aligned

for i = 0; i < m; i ++
for k = 0; k < subchunksize; k ++
d = 1� n12mat [i , k] · n2vec [k]
WXY (i , j + k) = exp(�d/�)

end

end

end

Zhaoyi Meng, Alice Koniges, et al (LBNL) OpenMP Parallelization and Optimization of Graph-based Machine Learning AlgorithmsOct, 6th, 2016 10 / 17

Choosing	the	sub-chunk	size.	Too	small,	wastes	potenVal	of	combining	expensive	operaVons.	If	it	is	too	
large,	the	sub-chunk	may	run	out	of	lower	level	cache	and	needs	to	be	put	into	the	higher	cache	levels,	up	
to	the	point	where	they	spill	over	into	DRAM	which	may	cause	a	substanVal	performance	hit.	The	opVmal	
value	depends	on	the	cache	hierarchy,	their	respecVve	sizes,	their	latency	and	so	on.		

&	Thread affinity settings also affect
performance

•  We	choose	the	thread	affinity	selng	as	“OMP_PROC_BIND	
=	spread”	and	
“OMP_PLACES	=	cores/threads”,	
because	it	uses	one	hardware	thread	per	core.		

•  While	if	we	use	
“OMP_PROC_BIND	=	close”	and	“OMP_PLACES	=	threads”,	
it	puts	more	threads	on	each	physical	core	and	leaves	other	
cores	idle,	which	affects	scaling	performance.		

-	20	-	

&	Testing of algorithms is done on Cori Phase I
and KNL White Boxes

-	21	-	

3

In 2015, the NERSC Program supported 6,000 active users

from universities, national laboratories and industry who used

approximately 3 billion supercomputing hours. Our users came

from across the United States, with 48 states represented, as

well as from around the globe, with 47 countries represented.

Cray	XC40	with	Knights	Landing	

Cori	Phase	I:	
Cray	XC	based	on	the	Intel	Haswell	mulV-core	processor.	Each	
node	has	128GB	of	memory	and	two	2.3	GHz	16-core	Haswell	
processors.	Each	core	has	its	own	L1	and	L2	caches,	with	64	KB	
and	256	KB,	respecVvely.	
	
Knight’s	Landing	(KNL)	Many	Integrated	Core	(MIC)	Architecture:	
The	system	has	64	cores	with	1.3	GHz	clock	frequency.	Each	core	
has	two	512	bit-wide	vector	processing	units.	16GB	on	package	
memory	are	shared	between	all	cores.	The	512	KB	L2	cache	is	
shared	between	two	cores	and	16	KB	L1	cache	is	private	to	the	
core.	

	
TheoreVcal	Peak	performance:	Phase	I	Haswell:	1.92	PFlops/sec;	Phase	II	KNL:	27.9	PFlops/sec.	
•  Total	compute	nodes:	Phase	I	Haswell:	1,630	computes	nodes,	52,160	cores	total	(32	cores	per	node);	
	
	Phase	II	KNL:	9,304	compute	nodes,	632,672	cores	in	total	(68	cores	per	node).	
•  Cray	Aries	high-speed	interconnect	with	Dragonfly	topology	(0.25	μs	to	3.7	μs	MPI	latency,	~8GB/sec	
MPI	bandwidth)		

•  Aggregate	memory:	Phase	I	Haswell	parVVon:	203	TB;	Phase	II	KNL	parVVon:	1	PB.		
•  Scratch	storage	capacity:	30	PB	
(Open	for	first	tesVng	this	morning	!!)	
	

&	
Optimization Results

-	22	-	

Step	A:	parallelizing	the	inner	j-loop	and	BLAS3	opVmizaVon	on	Graph	MBO.		
Step	B:	parallelizing	the	outer	j-loop.		
Step	C:	normalizing	and	forming	all	Zis	to	Xmat.		
Step	D:	using	uniform	sampling	and	chunked	Y	matrices.		

Ru
n	
Ti
m
e	
(s
)	

&	
Nystrom Loop Scaling: Cori Phase 1 Results

-	23	-	

&	KNL (our white boxes) are latest from Intel
with lots of cores with in package memory

24	Source:	Avinash	Sodani,	Hot	Chips	2015	KNL	talk	

&	

Connecting tiles

25	Source:	Avinash	Sodani,	Hot	Chips	2015	KNL	talk	

&	

Network interface Chip in the package …

26	Source:	Avinash	Sodani,	Hot	Chips	2015	KNL	talk	

&	

Cache		
Model	

Let	the	hardware	automaVcally	
manage	the	integrated	on-package	
memory	as	an	“L3”	cache	between	
KNL	CPU	and	external	DDR	

Flat		
Model	

Manually	manage	how	your	
applicaVon	uses	the	integrated	on-
package	memory	and	external	DDR	
for	peak	performance	

Hybrid	
Model	

Harness	the	benefits	of	both	cache	
and	flat	models	by	segmenVng	the	
integrated	on-package	memory	

Maximum	performance	through	higher	memory	bandwidth	and	
flexibility	

Knights Landing Integrated On-Package Memory!

Near
Memory

HBW
In-Package
Memory

KNL CPU

HBW
In-Package
Memory

HBW
In-Package
Memory

HBW
In-Package
Memory

HBW
In-Package
Memory

HBW
In-Package
Memory

. . .

. . .

CPU Package

DDR

DDR

DDR

. . .

Cache	

PCB

Near
Memory

Far
 Memory

Side
View

Top
View

Slide	from	Intel	-	27	-	

&	
Nystrom Loop Scaling: KNL Results

-	28	-	

&	Arithmetic Intensity & Roofline Model: where
we lie in terms of absolute performance

-	29	-	

•  ArithmeVc	intensity	is	the	raVo	of	computaVonal	speed	(FLOP’s)	to	data	movement	(Bytes)	
•  Nystrom	loop	runs	at	300	GFLOP’s	and	23	GB/s	of	DRAM	bandwidth	giving	13	FLOPs/Byte	
•  Use	Roofline	Toolkit	(hPps://bitbucket.org/berkeleylab/cs-roofline-toolkit)	to	generate	

bounding	“ceilings”	on	performance	

Use	Intel’s	Sosware	Development	
Emulator	Toolkit	(SDE)	to	record	
FLOP’s	and	Intel’s	VTune	Amplifier	
to	collect	data	movement	when	
running	on	32	cores	of	a	Cori	
Phase	I	node	

&	
Conclusions

•  New	class	of	data	clustering	methods	for	segmenta)on	
of	large	datasets	with	graph	based	structure			

•  Fast	and	accurate	method	combines	ideas	from	classical	
nonlinear	PDE-based	image	segmenta)on	with	linear	
algebra	methods		

•  The	algorithms	can	solve	semi-supervised	and	
unsupervised	graph	cut	op)miza)on	problems	

•  We	give	results	for	hyperspectral	video	segmenta)on	

•  OpenMP	paralleliza)on	with	algorithmic	op)miza)on	
yields	nearly	ideal	scaling	on	Haswell	and	KNL	

