
Programming Hybrid HPC Systems
 What is Old is New Again

Viktor K. Decyk
UCLA

Abstract
The next generation of supercomputers will likely consist of a hierarchy of parallel computers.
If we can define each node as a parameterized abstract machine, then it is possible to design
algorithms even if the actual hardware varies. Such an abstract machine can be defined to
consist of a collection of vector (SIMD) processors, each with a small shared memory,
communicating via a larger global memory. This abstraction fits a variety of hardware, such as
Graphical Processing Units (GPUs), and multi-core processors with vector extensions. To
program such an abstract machine, one can use ideas familiar from the past: vector algorithms
from vector supercomputers, blocking or tiling algorithms from cache-based machines, and
domain decomposition from distributed memory computers. Examples from our GPU Particle-
in-Cell code will be shown to illustrate this approach.

Wednesday, February 5, 2014

 PIC codes integrate the trajectories of many particles interacting
self-consistently via electromagnetic fields. They model plasmas at the most
fundamental, microscopic level of classical physics.

 PIC codes are used in almost all areas of plasma physics, such as fusion energy
research, plasma accelerators, space physics, ion propulsion, plasma processing, and
many other areas.

 Most complete, but most expensive models. Used when more simple models fail, or
to verify the realm of validity of more simple models.

Largest calculations:
• ~3 trillion interacting particles

Particle-in-Cell Codes

Wednesday, February 5, 2014

I have been using “Supercomputers” for
40 years, starting with the IBM 360/91 at
UCLA in 1973.

In 1975, the performance of my
2D Particle-in-Cell (PIC) code was:

99 microsec/particle/time-step

Cost: 30 cents/time step

A typical overnight run cost the same as my monthly salary as a TA!

The first machine I used at NERSC (then MFECC) was the A machine, a CDC 7600
The A machine had a memory hierarchy: small core and large core memories

On the A machine, my 2D PIC code gave a performance of:
118 microsec/particle/time-step

Wednesday, February 5, 2014

During this time, I have experienced 2 revolutions in Supercomputing

The first was the introduction of vector computing:
We had to learn how to “vectorize” our codes

In 1984, the performance of my
2D Particle-in-Cell code was:

Cray 1s
8.0 microsec/particle/time-step

Fujitsu VP-100:
5.3 microsec/particle/time-step

An improvement of more than 10!

Wednesday, February 5, 2014

Vector algorithms

In PIC codes, often appears in field solvers
• vectorizable means elements can be processed in any order
• Stride 1 memory access optimal (to avoid memory bank conflicts)

 complex qt(nyv,nxvh), fxyt(nyv,2,nxvh), ffct(nyhd,nxhd)

 do j = 2, nxh
 dkx = dnx*real(j - 1)
cdir$ ivdep
 do k = 2, nyh
 k1 = ny2 - k
 at1 = real(ffct(k,j))*aimag(ffct(k,j))
 at2 = dkx*at1
 at3 = dny*real(k - 1)*at1
 zt1 = cmplx(aimag(qt(k,j)),-real(qt(k,j)))
 zt2 = cmplx(aimag(qt(k1,j)),-real(qt(k1,j)))
 fxyt(k,1,j) = at2*zt1
 fxyt(k,2,j) = at3*zt1
 fxyt(k1,1,j) = at2*zt2
 fxyt(k1,2,j) = -at3*zt2
 enddo
 enddo

Here is a code fragment of a vectorized Poisson solver, k•E = 4πqn(k)
• Usually inner loops were vectorized

Wednesday, February 5, 2014

The second revolution was the introduction of distributed memory computing:
We had to learn how to “parallelize” our codes with message-passing

In 1997, the performance of my
2D Particle-in-Cell code was:

Cray T3E with 128 processors:
13 nanosec/particle/time-step

Mac G3/266: 2.4 microsec/particle/time-step

An improvement of over 500 in 13 years for supercomputers
A desktop machine becomes equal to a supercomputer in ~10 years.

3D PIC now became practical:
my 3D Particle-in-Cell code performance was:

Cray T3E with 128 processors:
74 nanosec/particle/time-step

Wednesday, February 5, 2014

Distributed Memory Programming for PIC
Domain decomposition with MPI

Primary Decomposition has non-uniform partitions to load balance particles
• Sort particles according to spatial location
• Same number of particles in each non-uniform domain
• Scales to many thousands of processors

Particle Manager responsible for moving particles
• Particles can move across multiple nodes

2D Domain decomposition

Each partition has equal number of particles

1D Domain decomposition

•

• •

••

•
•
•

••

•
•

• •

•

•

• •

•
•

•

•
•

•

•
•• ••

•

• •
••

•
•

• •

• •

•

•

• •
••

••

•
•

• ••

•

• ••
•
••

• •

• •

•

•

••• •
••

• ••
•• •

• •
• •

••

• •
•

• •

•

• •

• ••
• •

Wednesday, February 5, 2014

Distributed Memory Programming for PIC

In our codes, we also keep the communication and computation procedures separate
• Bulk Synchronous Programming

There are only 4 main communication procedures in the PIC code:
• Particle manager (move particles to correct processor)
• Field Manager (add/copy guard cells)
• Partition manager (move field elements between uniform/non-uniform partitions)
• Transpose (used by FFT)

Wednesday, February 5, 2014

Domain decomposition algorithms
In PIC codes, often appears when processing edges of domains

Here is a code fragment from the particle manager, using MPI

Particles which leave a domain are buffered and sent to and received from
neighboring processors

c post receive
 call MPI_IRECV(rbufl,nbsize,mreal,kl-1,iter-1,lgrp,msid(1),ierr)
 call MPI_IRECV(rbufr,nbsize,mreal,kr-1,iter,lgrp,msid(2),ierr)
c send particles
 call MPI_ISEND(sbufr,idimp*jsr(1),mreal,kr-1,iter-1,lgrp,msid(3),
 1ierr)
 call MPI_ISEND(sbufl,idimp*jsl(1),mreal,kl-1,iter,lgrp,msid(4),
 1ierr)
c wait for particles to arrive
 call MPI_WAIT(msid(1),istatus,ierr)
 call MPI_GET_COUNT(istatus,mreal,nps,ierr)
 jsl(2) = nps/idimp
 call MPI_WAIT(msid(2),istatus,ierr)
 call MPI_GET_COUNT(istatus,mreal,nps,ierr)
 jsr(2) = nps/idimp
 ...
c make sure sbufr and sbufl have been sent
 call MPI_WAIT(msid(3),istatus,ierr)
 call MPI_WAIT(msid(4),istatus,ierr)

Wednesday, February 5, 2014

Blocking (tiling) algorithms useful due to presence of memory hierarchies
 • Process data is small chunks, which fit within fastest cache memory

 complex f(nxv,ny), g(nyv,nx)
 do k = 1, ny
 do j = 1, nx
 g(k,j) = f(j,k)
 enddo
 enddo

Here is a code fragment of a complex transpose, used by FFT

 complex f(nxv,ny), g(nyv,nx), buff(nblok+1,nblok)
! loop over tiles
 do kb = 1, ny/nblok
 koff = nblok*(kb - 1)
 do jb = 1, nx/nblok
 joff = nblok*(jb - 1)
! copy data into tile, with optimal stride
 do k = 1, nblok
 do j = 1, nblok
 buff(j,k) = f(j+joff,k+koff)
 enddo
 enddo
! copy data out of tile with optimal stride
 do j = 1, nblok
 do k = 1, nblok
 g(k+koff,j+joff) = buff(j,k)
 enddo
 enddo
 enddo
 enddo

Break up loops into small blocks, where block is typically size of smallest fast memory

f is read with optimal stride 1,
but g is written with large jumps in memory

f , g are accessed with optimal stride 1,
buff is accessed in fast memory with
smaller jumps in memory

Wednesday, February 5, 2014

I believe we are in the middle of a third revolution in hardware and software.

This revolution is driven by
• Increasing shared memory parallelism, because increasing frequency is not practical
• A requirement for low power computing
• Goal is Exaflops computing (1018 Floating Point operations per second)

NVIDIA GPU Intel Phi

Wednesday, February 5, 2014

GPUs are graphical processing units originally developed for graphics and games
• Programmable in 2007

GPU Technology has two special features:
• High bandwidth access to global memory (>100 GBytes/sec), but for ordered access
• Ability to handle thousands of threads simultaneously, greatly reducing memory “stalls”

GPUs consist of:
• 12-30 SIMD multiprocessors, each with small (16-48KB), fast (4 clocks) shared memory
• Each multi-processor contains 8-32 processor cores
• Large (0.5-6.0 GB), slow (400-600 clocks) global shared memory, readable by all units
• No cache on some units
• Very fast (1 clock) hardware thread switching

Wednesday, February 5, 2014

Intel MIC Architecture has Xeon Phi coprocessor
• Introduced in 2012

Intel Phi Technology has two special features:
• High bandwidth access to global memory (up to 320 GBytes/sec)
• Four hardware threads per core, reducing memory latency

Phi consists of:
• 50-60 512-bit SIMD processors, each with L2 cache (512 KB)
• Large (up to 8.0 GB) global shared memory

Wednesday, February 5, 2014

Simple Hardware Abstraction for Next Generation Supercomputer

A distributed memory node consists of
• SIMD (vector) unit works in lockstep with fast shared memory and synchronization
• Multiple SIMD units coupled via global shared memory and synchronization

Distributed Memory nodes coupled via MPI

Each MPI node is a powerful computer by itself
A supercomputer is a hierarchy of such powerful computers

OpenCL programming model uses such an abstraction for a single node

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

Slow Shared Memory

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

Slow Shared Memory

MPI node MPI node

Wednesday, February 5, 2014

This hardware model matches a variety of processors

On NVIDIA GPU:
• Vector length = block size (typically 32-128)
• Number of vector processors =12-30
• Fast shared memory = 16-64 KB, plus L2 cache

On Intel MIC (PHI):
• Vector length for single precision = 16
• Number of vector processors = 50-60
• Fast shared memory = L1 Cache (32 KB), L2 Cache (512 KB)

On Dual Intel Xeon multicore:
• Vector length for single precision with SSE2 = 4
• Number of vector processors = 4-16
• Fast shared memory = L1, L2 Cache

On Cray X-MP:
• Vector length for double precision = 64
• Number of vector processors = 2-4
• Fast shared memory = none

Wednesday, February 5, 2014

Designing new algorithms for next generation computers

This abstract machine contains a number of familiar hardware elements
• SIMD (vector) processors
• Small working memory (caches)
• Distributed memories

Scientific programmers have experience with each of these elements

Vector algorithms
• Calculation on a data set whose elements are independent (can be done in any order)
• Long history on Crays, Fijitsu, NEC supercomputers

Blocking (tiling) algorithms
• When data will be read repeatedly, load into faster memory and calculate in chunks
• Long history on RISC processors

Domain decomposition algorithms
• Partition memory so different threads work on different data
• Long history on distributed memory computers

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

Slow Shared Memory

Wednesday, February 5, 2014

Designing new algorithms for next generation computers

Programming these new machines uses many familiar elements,
but put together in a new way.

Two levels of parallelism, vector/shared memory parallelism

Data parallel programming also useful, but little history at NERSC

But some features are unfamiliar:

Languages (CUDA, OpenCL, OpenACC, OpenMP) have new features

GPUs require many more threads than physical processors
• Hides memory latency
• Hardware can use master-slave model for automatic load balancing among blocks

Optimizing data movement is very critical

Wednesday, February 5, 2014

Vector algorithms

Here is a code fragment of a Poisson solver written for CUDA Fortran
• The changes were minimal: loop index replaced by thread ids
• If test to check loop bounds
• Both loops are running in parallel

 k = threadIdx%x + blockDim%x*(blockIdx%x - 1)
 j = blockIdx%y

 dkx = dnx*real(j - 1)
 if ((k > 1) .and. (k < nyh1) .and. (j > 1)) then
 k1 = ny2 - k
 at1 = real(ffct(k,j))*aimag(ffct(k,j))
 at2 = dkx*at1
 at3 = dny*real(k - 1)*at1
 zt1 = cmplx(aimag(qt(k,j)),-real(qt(k,j)))
 zt2 = cmplx(aimag(qt(k1,j)),-real(qt(k1,j)))
 fxyt(k,1,j) = at2*zt1
 fxyt(k,2,j) = at3*zt1
 fxyt(k1,1,j) = at2*zt2
 fxyt(k1,2,j) = -at3*zt2
 endif

Wednesday, February 5, 2014

Blocking (tiling) algorithms

Here is a code fragment of a complex transpose written for CUDA Fortran
• Changes were minimal: loop index replaced by thread ids
• If test to check loop bounds
• Synchronization needed

 complex f(nxv,ny), g(nyv,nx)
 complex buff(nblok+1,nblok)

! loop over tiles
 do kb = 1, ny/nblok
 koff = nblok*(kb - 1)
 do jb = 1, nx/nblok
 joff = nblok*(jb - 1)
! copy data into tile, with optimal stride
 do k = 1, nblok
 do j = 1, nblok
 buff(j,k) = f(j+joff,k+koff)
 enddo
 enddo
! copy data out of tile with optimal stride
 do j = 1, nblok
 do k = 1, nblok
 g(k+koff,j+joff) = buff(j,k)
 enddo
 enddo
 enddo
 enddo

 complex, shared, &
 &dimension(nblok+1,nblok) :: buff

 koff = nblok*(blockIdx%y - 1)
 joff = nblok*(blockIdx%x - 1)
! copy data into tile, with optimal stride
 j = threadIdx%x
 k = threadIdx%y
 jx = j + joff
 ky = k + koff
 if ((jx <= nx) .and. (ky <= ny)) then
 buff(j,k) = f(jx,ky)
 endif
! make sure all threads are done
 call syncthreads()
! copy data out of tile with optimal stride
 j = threadIdx%y
 k = threadIdx%x
 jx = j + joff
 ky = k + koff
 if ((jx <= nx) .and. (ky <= ny)) then
 g(ky,jx) = buff(j,k)
 endif

Original Fortran
CUDA Fortran

Wednesday, February 5, 2014

Simplest plasma model is electrostatic:

1. Calculate charge density on a mesh from particles:

2. Solve Poisson’s equation:

3. Advance particle’s co-ordinates using Newton’s Law:

() ()q Sx x xi i

i

t = -/

4E:d rt=

() ()m
dt
d

q S d
v

E x x x xi
i

i i= -# dt
dx

vi
i=

Particle-in-Cell Codes

Inverse interpolation (scatter operation) is used in step 1 to
distribute a particle’s charge onto nearby locations on a grid.

Interpolation (gather operation) is used in step 3 to approximate
the electric field from grids near a particle’s location.

When running in parallel, data collisions might occur

X

Wednesday, February 5, 2014

GPU Programming for PIC: One GPU

Most important bottleneck is memory access
• PIC codes have low computational intensity (few flops/memory access)
• Memory access is irregular (gather/scatter)

Memory access can be optimized with a streaming algorithm (global data read only once)

PIC codes can implement a streaming algorithm by keeping particles ordered by tiles.
• Minimizes global memory access since field elements need to be read only once.
• global gather/scatter can be avoided.
• Deposit and particles update can have optimal memory access.

Challenge: optimizing particle reordering

Wednesday, February 5, 2014

Designing New Particle-in-Cell (PIC) Algorithms:
Particles ordered by tiles, varying from 2 x 2 to 16 x 16 grid points

We created a new data structure for particles, partitioned among threads blocks:

 dimension ppart(idimp,npmax,num_tiles)

This is domain decomposition, but on a microscopic scale!

Wednesday, February 5, 2014

Designing New Particle-in-Cell (PIC) Algorithms: Push/Deposit Procedures:

Within a tile, all particles read or write the same block of fields.
• Before pushing particles, copy fields to fast memory
• After depositing charge to fast memory, write to global memory
• Different tiles can be done in parallel.

Each tile contains data for the grids in the tile, plus guard cells: an extra column of grids on
the right, and an extra row of grids on the bottom for linear interpolation.

For push, parallelization is easy, each particle is independent of others, no data hazards
• Similar to MPI code, but with tiny partitions

For deposit, parallelization is also easy if each tile is controlled by one thread
• This avoids data collisions where two threads try to update the same memory

However, if each tile is controlled by a vector of threads, data collisions are possible.
• Atomic updates (which treat an update as an uninterruptible operation) are one approach

Wednesday, February 5, 2014

Designing New Particle-in-Cell (PIC) Algorithms: Maintaining Particle Order

Three steps:
1. Create a list of particles which are leaving a tile, and where they are going
2. Using list, each thread places outgoing particles into an ordered buffer it controls
3. Using lists, each tile copies incoming particles from buffers into particle array

• Less than a full sort, low overhead if particles already in correct tile
• Can be done in parallel
• Essentially message-passing, except particle buffer contains multiple destinations

In the end, the particle array belonging to a tile has no gaps
• Incoming particles are moved to any existing holes created by departing particles
• If holes still remain, they are filled with particles from the end of the array

Straightforward to implement with one thread per tile
• Much more complex with multiple threads per tile

Wednesday, February 5, 2014

GPU Particle Reordering

GPU Buffer

GPU Tiles

GPU Tiles

Particles buffered
in Direction Order

21

5
3

6

4

7 8

1 234 5678

5

2

8

4

1

7

3

6

Wednesday, February 5, 2014

Evaluating New Particle-in-Cell (PIC) Algorithms on GPU: Electrostatic Case
2D ES Benchmark with 2048x2048 grid, 150,994,944 particles, 36 particles/cell
optimal block size = 128, optimal tile size = 16x16. Single precision

GPU algorithm also implemented in OpenMP

Hot Plasma results with dt = 0.1
 CPU:Intel i7 GPU:Fermi M2090 OpenMP(12 CPUs)
Push 22.1 ns. 532 ps. 1.678 ns.
Deposit 8.5 ns. 227 ps. 0.818 ns.
Reorder 0.4 ns. 115 ps. 0.113 ns.
Total Particle 31.0 ns. 874 ps. 2.608 ns.

The time reported is per particle/time step.
The total particle speedup on the Fermi M2090 was 35x compared to 1 CPU
Field solver takes an additional 6% on GPU, 11% on CPU.

In 16 years, one GPU card is about 15 times the speed of a 128 processor T3E
Cost: ~7 x 10-8 cents per step

A GPU is a card which can fit in your desktop

Wednesday, February 5, 2014

Evaluating New Particle-in-Cell (PIC) Algorithms on GPU: Electromagnetic Case
2-1/2D EM Benchmark with 2048x2048 grid, 150,994,944 particles, 36 particles/cell
optimal block size = 128, optimal tile size = 16x16. Single precision

GPU algorithm also implemented in OpenMP
Hot Plasma results with dt = 0.04, c/vth = 10, relativistic
 CPU:Intel i7 GPU:Fermi M2090 OpenMP(12 cores)
Push 66.5 ns. 0.426 ns. 5.645 ns.
Deposit 36.7 ns. 0.918 ns. 3.362 ns.
Reorder 0.4 ns. 0.698 ns. 0.056 ns.
Total Particle 103.6 ns. 2.042 ns. 9.062 ns.

The time reported is per particle/time step.
The total particle speedup on the Fermi M2090 was 51x compared to 1 CPU.
Field solver takes an additional 10% on GPU, 11% on CPU.

Wednesday, February 5, 2014

Designing New Particle-in-Cell (PIC) Algorithms: Multiple GPUs

Multiple GPUs can be controlled with MPI
• Merge MPI and GPU algorithms
• We now have 3 levels of parallelism in the code, 3 levels of memory to manage

We started with existing 2D MPI codes from UPIC Framework
• Replacing MPI push/deposit with GPU version was no major challenge

With multiple GPUs, we need to integrate two different particle partitions
• MPI and GPU each have their own particle managers to maintain particle order

Only the first/last row or column of tiles on GPU interacts with neighboring MPI node
• Particles in row/column of tiles collected in MPI send buffer
• Table of outgoing particles are also sent
• Table is used to determine where incoming particles must be placed

Wednesday, February 5, 2014

MPI Send Buffer

GPU-MPI Particle Reordering

GPU Buffer

GPU Tiles

MPI Recv Buffer

GPU 1

GPU 2
GPU Tiles

Wednesday, February 5, 2014

Evaluating New Particle-in-Cell (PIC) Algorithms on GPU: Electromagnetic Case
2-1/2D EM Benchmark with 2048x2048 grid, 150,994,944 particles, 36 particles/cell
optimal block size = 128, optimal tile size = 16x16. Single precision. Fermi M2090 GPU

Hot Plasma results with dt = 0.04, c/vth = 10, relativistic
 CPU:Intel i7 1 GPU 2 GPUs 3 GPUs
Push 66.5 ns. 0.422 ns. 0.211 ns. 0.141 ns.
Deposit 36.7 ns. 1.284 ns. 0.645 ns. 0.432 ns.
Reorder 0.4 ns. 0.690 ns. 0.346 ns. 0.232 ns.
Total Particle 103.6 ns. 2.398 ns. 1.205 ns. 0.806 ns.

The time reported is per particle/time step.
The total speedup on the 3 Fermi M2090s compared to 1 core was 129x,
Speedup on 3 M2090s compared to 1 M2090 was 2.98x

FFT has not yet been optimized on multiple GPUs

Wednesday, February 5, 2014

1: OSIRIS
 Sample Osiris CUDA Performance Measurements

 Thermal Plasma with given temperature

Cold Plasma T=1Kev  T=5Kev T=10Kev

Fermi M2090

Kepler K20c

1.706  ns 1.727 ns 1.847 ns 1.934 ns

1.381 ns 1.344 ns 1.457 ns 1.529 ns

 Multi-Node MPI Performance (Weak Scaling)
Below we show the nanoseconds per particle per time step per node as we vary the number
of MPI nodes from 1 to 225. Each MPI has one M2090 GPU. We are simulating a 1Kev
thermal plasma..

1 2 3 12 30 45 72 96 150 192 225

1.72 1.72 1.76 1.82 1.83 1.82 1.85 1.84 1.84 1.82 1.84

 Each node has 1536x1536 spatial cells (cell size ~ 1 Debye Length) containing 42 particles per cell (so there are ~99
million particles on each node). Times are quoted in nanoseconds per particle per time step per node. Calculation uses
single precision floating point numbers with linearly interpolated grid quantities.

 Simulation performed on a single GPU of indicated type. Each simulation has 1536x1536 spatial cells (cell size ~ 1
Debye Length) with 36 particles per cell (~89 million particles total). Times are quoted in nanoseconds per particle
per time step. Calculation uses single precision floating point numbers with linearly interpolated grid quantities.

Wednesday, February 5, 2014

UCLA Particle-in-Cell and Kinetic Simulation Software Center (PICKSC), NSF funded
Goal is to provide and document parallel Particle-in-Cell (PIC) and kinetic codes.

Planned activities
• Provide parallel skeleton codes for various PIC codes on traditional and new parallel
 hardware and software systems.
• Provide MPI-based production PIC codes that will run on desktop computers, mid-size
 clusters, and the largest parallel computers in the world.
• Provide key components for constructing new parallel production PIC codes for
 electrostatic, electromagnetic, and other codes.
• Provide interactive codes for teaching of important and difficult plasma physics concepts
• Facilitate benchmarking of kinetic codes by the physics community, not only for
 performance, but also to compare the physics approximations used
• Documentation of best and worst practices, which are often unpublished and get
 repeatedly rediscovered.
• Provide some services for customizing software for specific purposes

Key components and codes will be made available through standard open source licenses
and as an open-source community resource, contributions from others are welcome.

Wednesday, February 5, 2014

Parallel Plasma PIC Codes Available
Skeleton Particle-in-Cell (PIC) Codes: These skeleton codes contain the critical algorithms used in various PIC codes, but do not
contain the wide range of inputs, diagnostics, and outputs normally found in such codes. Their main purpose is to teach students how
such codes are structured. They can also be used for benchmarking purposes and as a starting point in evaluating new computer
architetures and languages. Most of the examples are in Fortran and C.

Basic Serial Codes:
1. 2D Serial Electrostatic Spectral code (pic2): Download the source gzipped tarball- pic2.tar.gz
2 2-1/2D Serial Electromagnetic Spectral code (bpic2): Download the source gzipped tarball- bpic2.tar.gz

Basic Parallel Codes -Level 1: These families of codes illustrate how to implement PIC codes with one level of parallelism.

The first family uses a tiling technique designed for shared memory processors with OpenMP:

1. 2D Parallel Electrostatic Spectral code (mpic2): Download the source gzipped tarball- mpic2.tar.gz
2. 2-1/2D Parallel Electromagnetic Spectral code (mbpic2): Download the source gzipped tarball- mbpic2.tar.gz

The second family uses domain decomposition designed for distributed memory processors with MPI:

1. 2D Parallel Electrostatic Spectral code(ppic2): Download the source gzipped tarball- ppic2.tar.gz
2. 2-1/2D Parallel Electromagnetic Spectral code(pbpic2): Download the source gzipped tarball- pbpic2.tar.gz

Basic Parallel Codes -Level 2: These families of codes illustrate how to implement PIC codes with two levels of parallelism.

The first family uses CUDA C on the NVIDIA GPU, with a tiling technique for each thread block, and with SIMD vectorization
within a block.

1. 2D Parallel Electrostatic Spectral code(gpupic2): Download the source gzipped tarball- gpupic2.tar.gz
2. 2-1/2D Parallel Electromagnetic Spectral code(gpubpic2): Download the source gzipped tarball- gpubpic2.tar.gz

The second family uses a hybrid MPI/OpenMP scheme, with a tiling technique on each shared memory multi-core node using
OpenMP, and domain decomposition connecting such nodes.

1. 2D Parallel Electrostatic Spectral code(mppic2): Download the source gzipped tarball- mppic2.tar.gz
2. 2-1/2D Parallel Electromagnetic Spectral code(mpbpic2): Download the gzipped tarball- mpbpic2.tar.gz

Want to contact developer?

Send mail to Viktor Decyk - decyk@physics.ucla.edu

https://idre.ucla.edu/hpc/parallel-plasma-pic-codes

Wednesday, February 5, 2014

http://hpc.ucla.edu/downloads/viktor-pic-codes/pic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/pic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/bpic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/bpic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/mpic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/mpic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/mbpic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/mbpic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/ppic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/ppic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/pbpic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/pbpic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/gpupic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/gpupic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/gpubpic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/gpubpic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/mppic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/mppic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/mpbpic2.tar.gz
http://hpc.ucla.edu/downloads/viktor-pic-codes/mpbpic2.tar.gz
https://idre.ucla.edu/hpc/parallel-plasma-pic-codes
https://idre.ucla.edu/hpc/parallel-plasma-pic-codes

Conclusions

PIC Algorithms on emerging architectures are largely a combination of previous techniques
• Vector techniques from Cray
• Blocking techniques from cache-based architectures
• Message-passing techniques from distributed memory architectures
• Data parallel techniques (vectorization with array syntax)

• Programming to Hardware Abstraction leads to common algorithms
• Streaming algorithms optimal for memory-intensive applications

Scheme should be portable to architectures with similar hardware abstractions

Further information available at:

V. K. Decyk, and T. V. Singh, “Particle-in-Cell Algorithms for Emerging Computer
Architectures,” Computer Physics Communications, 185, 708 (2014).

http://www.idre.ucla.edu/hpc/research/

Wednesday, February 5, 2014

http://www.idre.ucla.edu/hpc/research/
http://www.idre.ucla.edu/hpc/research/

