
November 6, 2015

NUG Monthly
Telecon

Agenda

1. Cori Phase 1 Update

2. NERSC Move Outage Schedule and User Impact

3. Edison Update

4. Security Update

5. Shifter Update

6. NESAP Update - Tales from the Dungeon

7. Highlight Story - On-the-fly data post-processing in

simulations using “sidecars” in Nyx/BoxLib

8. SLURM Mini-Tutorial

Cori Phase 1 Update

- 3 -

Wahid Bhimji
NERSC Users Group
November 6th 2015

Cori Overview (reminder)

• Phase 2 (coming mid-2016) - over 9,300 ‘Knights Landing’ nodes
Phase 1 (installed now):
• 1630 Compute Nodes
• Two x 16-core (2.3 GHz) Haswell processors/node,

– 128 GB DDR4 2133 Mhz memory/ node(some 512 /768 GB)
– Cray Aries high-speed “dragonfly” topology interconnect
– 12+ login nodes for advanced workflows and analytics
– SLURM batch system

• Lustre File system (also installed now)

– 28 PB capacity, >700 GB/sec peak performance
– Ultimately will be mounted across other NERSC systems

• Burst Buffer (NVRAM based)
– 750 TB now. Striped / Private / Persistent use-cases

- 4 -

https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing?wapkw=knights+landing

Status

• Final configuration and acceptance testing

• Some user access now in intervals between acceptance tests

• All users should be enabled in the next 2 weeks by mid-Nov

• Cori Phase 1 should be in full production before Edison move
(end-Nov) and Hopper retirement (mid-Dec)

Burst Buffer:

• Not yet available for users
• Hardware and software installed. Undergoing configuration and

testing. Ready for ‘early users’ in coming weeks

Full configuration details and user guides (including SLURM
transition available at:

• https://www.nersc.gov/users/computational-systems/cori/

https://www.nersc.gov/users/computational-systems/cori/
https://www.nersc.gov/users/computational-systems/cori/

NERSC Move: Outage
Schedule and User
Impact

Helen He
NUG Meeting, 11/06/2015

Main Timeline

Event Date

Cori Phase 1 available to all users By mid Nov 2015 (estimate)

Edison offline to move to CRT
Nov 30, 2015 (estimate to last 6 weeks),
back online in Jan 2016 with SLURM batch
scheduler

Hopper retires Dec 15, 2015 (after Cori Phase 1 is stable)

Global project and global homes file
systems migration to CRT

Nov - Dec 2015

JGI and PDSF file systems move to CRT Jan - Feb 2016

Mendel moves to CRT
Feb 2016, affects JGI, PDSF, Materials
Project and Babbage.

More details: https://www.nersc.gov/users/move-to-crt/

Global File Systems Move to CRT

• Migrate various file systems in phases over high speed network
connection, expect NO file system downtime (not as previously
mentioned).

• During the migration, you may observe a reduction of file system
performance.

• After the migration completes, some compute systems located at OSF
will have decreased file system bandwidth.

File System Date

/global/projecta Nov 9 - 11, 2015

/global/project Nov 24 - Dec 2, 2015

/global/homes,
/global/common,
/global/syscom

Dec 14 - 16, 2015

JGI retired file systems Proposed start date Jan 11, 2016

Significantly Reduced System
Availabilities

• After Edison is powered off on Nov 30, and Hopper is
retired on Dec 15, Cori Phase 1 will be the only MPP
system for 4 to 6 weeks.

• Cori phase 1 has only 1,628 total nodes (32 cores per
node) as compared to 5,000+ nodes each (24
cores/node) on Hopper and Edison.
– Expect much longer queue wait time

• Some software may not be immediately available on
Cori phase 1.

Back up your data on Edison and
Hopper

• During the move, Edison's all 3 scratch file systems
(/scratch1, /scratch2, and /scratch3) will be reformatted

• Hopper’s scratch file systems (/scratch, /scratch2) will retire
when Hopper retires.

• Please save your important files to HPSS, your /project
directory, or elsewhere. Starting from NOW.

• Use “htar” utility to concatenate small files instead of saving
them individually with “hsi” to HPSS.

Edison Updates

Zhengji Zhao
November 6, 2015

Edison Move Plan

• Edison will be powered off on 11/30/2015 7:00 PST.
– Edison queues will be turned off at 00:01 PST (midnight)

on November 30, 2015.
– Login nodes will be still open to users until 7:00 PST on

11/30

• All files on the /scratch1, /scratch2, and /scratch3
on Edison will be deleted.
– Please back up your files to HPSS or other permanent file

systems.
– Please use the htar command (NOT hsi) to backup files to

HPSS for optimal file storage/retrieve.

• Edison will be down for up to 6 weeks.

Edison will migrate to Slurm in
January 2015

• Edison batch system will be Slurm when it is back to
production in mid January.
– https://www.nersc.gov/users/computational-

systems/edison/running-jobs-for-slurm/example-batch-
scripts/

– If you need help with your job scripts, please let us know
at consult@nersc.gov

https://www.nersc.gov/users/computational-systems/edison/running-jobs-for-slurm/example-batch-scripts/
https://www.nersc.gov/users/computational-systems/edison/running-jobs-for-slurm/example-batch-scripts/
https://www.nersc.gov/users/computational-systems/edison/running-jobs-for-slurm/example-batch-scripts/
https://www.nersc.gov/users/computational-systems/edison/running-jobs-for-slurm/example-batch-scripts/

CDT 15.09 is available as non-default
version

craype/2.4.2
cray-petsc/3.6.1.0
cray-petsc-64/3.6.1.0
cray-petsc-complex/3.6.1.0
cray-petsc-complex-64/3.6.1.0
craypkg-gen/1.3.2
cray-shmem/7.2.5
cray-tpsl/1.5.2
cray-tpsl-64/1.5.2
cray-trilinos/11.12.1.5
fftw/2.1.5.9
fftw/3.3.4.5

We will set this CDT version to default during next Edison maintenance. The CDT 15.09
release note can be found here,

http://docs.cray.com/books/S-9408-1509//S-9408-1509.pdf

atp/1.8.3
chapel/1.12.0
cray-ccdb/1.0.7
cray-ga/5.3.0.3
cray-hdf5/1.8.14
cray-hdf5-parallel/1.8.14
cray-lgdb/2.4.5
cray-libsci/13.2.0
cray-mpich/7.2.5
cray-netcdf/4.3.3.1
cray-netcdf-hdf5parallel/4.3.3.1
cray-parallel-netcdf/1.6.1

iobuf/2.0.6
papi/5.4.1.2
perftools/6.3.0
perftools-lite/6.3.0
stat/2.2.0.1

intel/2016.0.109
cce/8.4.0
gcc/5.1.0

Intel VTune 2016 is available on
Edison

• Intel Parallel Studio 2016 release is available on
Edison
– vtune/2016(default)

– advisor/2016(default)

– inspector/2016(default)

– impi/5.1.1.109(default)

Security Update With
Brent

NERSC Cybersecurity Update
• Philosophy

– Science first, security is a net enabler of science
– Have avoided OTP tokens so far
– Allow public/private key authentication

• Biggest risk
– Stolen login credentials

• Mostly from other scientific clusters

• Changes for next Allocation Year
– shost authentication within supercomputers
– Public keys moved from filesystem to NIM/ldap

• NERSC security tutorial web page
– http://www.nersc.gov/users/training/online-tutorials/cybersecurity-tutorial/

- 17 -

Shifter

User Defined Images/Containers
in HPC

- 19 -

• Data Intensive computing often require
complex software stacks

• Efficiently supporting “big software” in
HPC environments offers many challenges

• Shifter
– NERSC R&D effort, in collaboration with Cray, to

support User-defined, user-provided Application
images

– “Docker-like” functionality on the Cray and HPC
Linux clusters

– Efficient job-start & Native application
performance

ChOS

Why Users will like Shifter

• Develop an application on your desktop and run it
on Cori and Edison

• Enables you to solve your dependency problems
yourself

• Run the (Linux) OS of your choice and the software
versions you need

• Improves application performance in many cases

• Improve reproducibility

• Improve sharing (through sites like Dockerhub)

Use Cases
• Large high energy physics collaborations (e.g., ATLAS and STAR) requiring

validated software stacks
– Some collaborations will not accept results from non-validated stacks
– Simultaneously satisfying compatibility constraints for multiple

projects is difficult
– Solution: create images with certified stacks

• Bioinformatics and cosmology applications with many third-party
dependencies
– Installing and maintaining these dependencies is difficult
– Solution: create images with dependencies

• Seamless transition from desktop to supercomputer
– Users desire consistent environments
– Solution: create an image and transfer it among machines

Where are we now?
• An early version of Shifter is deployed on Edison. Early users

are already reporting successes!
• Shifter is fully integrated with batch system, users can load a

container on many nodes at job-start time. Full access to
parallel FS and High Speed Interconnect (MPI)

• Shifter and NERSC were recently featured in HPC Wire and
other media. Several other HPC sites have expressed
interest.

• Our early users:

LHC – Nuclear Physics
(testing)

Light Sources
Structural Biology
(early production)

Cosmology
(testing)

nucleotid.es
Genome Assembly
(proof of concept)

Where are we going?

• Cori phase 1 will debut with a new fully open-source
version of Shifter

– Goal: Publicly release the code (via bitbucket) prior
to SC15

– Users can run multiple containers in a single job (i.
e., dynamically select and run Shifter containers)

– Tighter integration and simple user interface

• NERSC is working with Cray who has indicated interest
in making a supported product out of Shifter

• Ways to enable users to create Cray-optimized images

NESAP Update - Tales
from the Dungeon

NESAP Timeline

Time

Jan
2014

May
2014

Jan
2015

Jan
2016

Jan
2017

Prototype Code Teams
(BerkeleyGW / Staff)

-Prototype good practices
for dungeon sessions and
use of on site staff.

Requirements
Evaluation

Gather Experiences
and Optimization
Strategy

Vendor
General
Training

Vendor
General
Training

NERSC Led OpenMP and Vectorization Training (One Per Quarter)

Post-Doc Program

NERSC User and 3rd Party Developer Conferences

Code Team Activity

Chip Vendor On-Site Personnel / Dungeon Sessions

Center of Excellence

White Box Access Delivery

NESAP Postdoc Program Update

• Currently: 3 postdocs
– Brian Friesen: BoxLib (Almgren)
– Andrey Ovsyannikov: Chombo Crunch (Trebotich)
– Taylor Barnes (Hopper Fellow): Quantum Espresso (Kent)

• Three new postdocs starting in new year
– Tareq Malas: EMGeo (Newman)
– Tuomas Koskela: XGC1 (Chang)
– Mathieu Lobet: WARP/Synergia (Vay)

• Two open positions – please encourage qualified applicants
– NERSC Exascale Science Applications Postdoctoral Fellowship

(NESAP) https://lbl.taleo.net/careersection/jobdetail.ftl?
job=81356&lang=en

https://lbl.taleo.net/careersection/jobdetail.ftl?job=81356&lang=en
https://lbl.taleo.net/careersection/jobdetail.ftl?job=81356&lang=en
https://lbl.taleo.net/careersection/jobdetail.ftl?job=81356&lang=en

Preparing for a Dungeon
Session

- 28 -

MPI/OpenMP
Scaling Issue

IO
bottlenecks

Utilize High-Level
IO-Libraries.
Consult with

NERSC about use
of Burst Buffer.

Utilize
performant
/ portable
libraries

The Dungeon:
Simulate kernels on
KNL. Plan use of on
package memory,

vector instructions.

The Ant Farm!

Communicatio
n dominates
beyond 100
nodes

Code shows
no
improvemen
ts when
turning on
vectorization

OpenMP
scales
only to 4
Threads

large
cache
miss rate

50%
Walltime
is IO

Compute intensive
doesn’t vectorize

Can you
use a

library?

Create micro-kernels
or examples to

examine thread level
performance,

vectorization, cache
use, locality.

Increase
Memory
Locality

Memory
bandwidth
bound kernel

Use Edison to
Test/Add OpenMP

Improve
Scalability. Help

from NERSC/Cray
COE Available.

Optimization Flow Chart

Is
Performance
affected by
Half-Clock

Speed?

Run Example at
“Half Clock”

Speed

Run Example
in “Half

Packed” Mode

Is
Performance
affected by

Half-Packing?

Your Code is at
least Partially

Memory
Bandwidth

Bound

You are
at least
Partially

CPU
Bound

Likely Partially
Memory Latency

Bound
(assuming not IO or

Communication
Bound)

YesYes

No No

https://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/getting-
started-and-optimization-strategy/

Are you memory or compute bound? Or both?

Run Example
in “Half
Packed”

Mode

 aprun -n 24 -N 12 - S 6 ... VS aprun -n 24 -N 24 -S 12 ...

If you run on only half of the cores on a node, each
core you do run has access to more bandwidth

If your performance changes, you are at least partially memory
bandwidth bound

Or! Measure your actual bandwidth
usage with
VTune!

Are you memory or compute bound? Or both?

Run Example
in “Half

Packed” Mode

 aprun -n 24 -N 12 - S 6 ... V
S

 aprun -n 24 -N 24 -
S 12 ...

If you run on only half of the cores on a node, each
core you do run has access to more bandwidth

Are you memory or compute bound? Or both?

aprun --p-state=2400000 ... VS aprun --p-state=1900000 ...

Reducing the CPU speed slows down computation,
but doesn’t reduce memory bandwidth available.

If your performance changes, you are at least partially compute
bound

Run Example
at “Half Clock”

Speed

What to do?

Memory Bound?
1. Try to improve memory locality,

 cache reuse

2. Identify the key arrays leading to
 high memory bandwidth usage and
 make sure they are/will-be allocated in HBM on Cori.

Compute Bound?
Make sure you have low CPI and high VPU utilization. Good thread
scaling, well load balanced.

Code Example 1
VASP

Identify Memory Bandwidth Bound
Regions of Code

Memory Bandwidth Bound Regions of
Code

do (all Ions/projectors, k)

 dgemm to create Wk
n(i)

 do n = 1, num_bands_per_block

 do i = 1, num_grid_points_in_sphere

 Result(index(i)) = ᶪn(Index(i)) * Wk
n(i)

 enddo

 enddo

enddo • ᶪ
n
 - 4MB per n, 64 MB for

whole block (too big for L3). It
is streamed in.

• Wk
n
(i) - 1 MB

.

.

.

.

.

.

Memory Bandwidth Bound Regions of
Code

do (all Ions/projectors, k)

 dgemm to create Wk
n(i)

 do n = 1, num_bands_per_block

 do i = 1, num_grid_points_in_sphere

 Result(index(i)) = ᶪn(Index(i)) +/* Wk
n(i)

 enddo

 enddo

enddo

1. Make sure W and ᶪ
n

a are in HBM

Memory Bandwidth Bound Regions of
Code

• Identify the candidate (key arrays) for HBM
– Using NUMA affinity to simulate HBM on a dual socket

system

– Use FASTMEM directives and link with
jemalloc/memkind librariesOn Edison (NERSC Cray XC30):

real, allocatable :: a(:,:), b(:,:), c(:)
!DIR$ ATTRIBUTE FASTMEM :: a, b, c
% module load memkind jemalloc
% ftn -dynamic -g -O3 -openmp mycode.f90
% export MEMKIND_HBW_NODES=0
% aprun -n 1 -cc numa_node numactl --membind=1 --
cpunodebind=0 ./myexecutable

On Haswell:

Link with ‘-ljemalloc -lmemkind -lpthread –lnuma “

% numactl --membind=1 --cpunodebind=0 .
/myexecutable

Memory Bandwidth Bound Regions of
Code

do (all Ions/projectors, k)

 dgemm to create Wk
n(i)

 do n = 1, num_bands_per_block

 do i = 1, num_grid_points_in_sphere

 Result(index(i)) = ᶪn(Index(i)) +/* Wk
n(i)

 enddo

 enddo

enddo

1. Make sure W and

ᶪ
n
 a are in HBM

2. Reorder loops to
allow ᶪ

n
to be

reused.

Memory Bandwidth Bound Regions of
Code

do (all Ions/projectors, k)

 dgemm to create Wk
n(i)

 do n = 1, num_bands_per_block

 do i = 1, num_grid_points_in_sphere

 Result(index(i)) = ᶪn(Index(i)) +/* Wk
n(i)

 enddo

 enddo

enddo

1. Make sure W and

ᶪ
n
 a are in HBM

2. Reorder loops to
allow ᶪ

n
to be

reused.
3. Sort loop over

ions ᶪ
n
 such that

we use a fraction
that can broken
down and stored
in real-space tiles..

.

.

.

.

.

Memory Bandwidth Bound Regions of
Code

do (all Ions/projectors, k)

 dgemm to create Wk
n(i)

 do n = 1, num_bands_per_block

 do i = 1, num_grid_points_in_sphere

 Result(index(i)) = ᶪn(Index(i)) +/* Wk
n(i)

 enddo

 enddo

enddo

1. Make sure W and

ᶪ
n
 a are in HBM

2. Reorder loops to
allow ᶪ

n
to be

reused.
3. Sort loop over

ions ᶪ
n
 such that

we use a fraction
of that can
broken down and
stored in real-
space tiles.

4. Vectorize inner
loop by taking
advantage of
stride 1 block in
Index array. Pad
sphere into cube.

Code Example 2
EMGEO

Stencil SPMV

• Observation: Have to stream through the matrix
data in SpMV (reuse not an option)
– Can we still reduce the bytes / flop somehow?

• Idea: This is a stencil computation... If we
compute the sparsity pattern on the fly, then no
need to stream through the indirect indexing
– It turns out this should be easy away from portions of

the matrix where B.C.s are enforced

– Still use indirect indexing array in these regions

Stencil SPMV

subroutine ell_spmv(mat, ind, x, z,
m, n, ndiag)
 implicit none
 ! --
 integer :: m, n, ndiag
 integer, dimension(ndiag, m) ::
ind
 complex*16, dimension(n) :: x
 complex*16, dimension(m) :: z
 complex*16, dimension(ndiag, m)
:: mat
 ! --
 integer :: i, j
 complex*16 :: ztmp
!$omp parallel do private(ztmp)
 do i = 1, m
 ztmp = (0.0d0, 0.0d0)
 do j = 1, ndiag
 ztmp = ztmp + mat(j,i) * x
(ind(j,i))
 end do
 z(i) = ztmp
 end do
end subroutine ell_spmv

!$omp parallel do private(ztmp)
 do i = 1, 2 * nx * ny
 ztmp = (0.0d0, 0.0d0)
 do j = 1, ndiag
 ztmp = ztmp + mat(i,j) * x
(ind(i,j))
 end do
 z(i) = ztmp
 end do
!$omp parallel do private(ztmp)
 do i = 2 * nx * ny + 1, m - nx *
ny
 ztmp = (0.0d0, 0.0d0)
 ! stride 1
 ztmp = ztmp + mat(i,1) * x(i -
2)
 ztmp = ztmp + mat(i,2) * x(i -
1)
 ztmp = ztmp + mat(i,3) * x(i)
 ztmp = ztmp + mat(i,4) * x(i +
1)
 ! stride nx
 ztmp = ztmp + mat(i,5) * x(i -
2 * nx)
 ztmp = ztmp + mat(i,6) * x(i -
nx)
 ztmp = ztmp + mat(i,7) * x(i)
 ztmp = ztmp + mat(i,8) * x(i +
nx)
 ! stride nx * ny
 ztmp = ztmp + mat(i,9) * x(i -
2 * nx * ny)
 ztmp = ztmp + mat(i,10) * x(i -
nx * ny)
 ztmp = ztmp + mat(i,11) * x(i)
 ztmp = ztmp + mat(i,12) * x(i +
nx * ny)
 z(i) = ztmp
 end do
!$omp parallel do private(ztmp)
 do i = m - nx * ny + 1, m
 ztmp = (0.0d0, 0.0d0)
 do j = 1, ndiag
 ztmp = ztmp + mat(i,j) * x
(ind(i,j))
 end do
 z(i) = ztmp
 end do

Vector loads when
vectorized in i

Stencil SPMV

• Speedup ~ 20-25% over original SpMV on HSW EP
– Additional gains (few %) when matrix data is transposed (vec)

– Benefit comes from saved bandwidth due to index array and
improved prefetching success

• Process
– Comparing multiple versions of same routine to test on

Haswell and Emulator

– Using vtune to count L3 Misses from demand load vs prefetch

Brian Friesen
2015 Nov 6

On-the-fly data
post-processing
in simulations
using “sidecars”
in Nyx/BoxLib

- 46 -

Problem: we’re running out of
disk space

• The problem:
• Disk capacity is a bigger

problem for us than
bandwidth

• Nyx cosmology simulation
on a 40963 grid generates
4.4 TB plot files per time
step

• takes O(103) time steps
to evolve from early
universe (z=150) to the
present (z=0)

• Recent “Q Continuum”
simulation with HACC
generated 101 plot files at
20 TB each (2 PB total)

- 47 -

Almgren, Bell,+(2013)

Opportunity: be smart about data
selection

• In cosmological simulations,
there are only a few observables
most people care about, e.g.,

• size and distribution of dark
matter “halos”

• radiative properties of
Lyman-alpha “forest”

• Historically, halo-finding has
been relegated to a post-
processing step

• save the raw plot files, then
apply halo finder algorithm
later to generate a much
reduced data set

• In Nyx, reduction of plot file
to list of halos is O(103)

- 48 -

In situ vs. in-transit
• Dmitriy Morozov and Gunther Weber wrote halo finding tool for Nyx (“Reeber”)

• Calculates level sets of a scalar field (density) to identify local extrema
(halos)

• Originally operated on Nyx plot files; Gunther ported it to run in situ
• All simulation processes stop and find halos every N time steps

• We then ported it run “in-transit” on the BoxLib “sidecars”
• Dedicated partition of processes which receive grid data and perform

halo find while remaining partition continues on with simulation

• Whether in situ or in-transit is faster depends on many things:
• Scaling behavior of analysis algorithm vs. simulation algorithm
• Frequency of analysis (how often do you have to move data?)
• Speed/latency of interconnect (or burst buffer!)
• Is there a sweet spot for the simulation partition?

• Does your problem divide nicely onto a particular # of tasks?
• Is there a sweet spot for the total partition?

• Do you want your job to fit into a particular queue?

- 49 -

SLURM Resource
Manager is Coming to
NERSC

- 50 -

Helen He
NUG Meeting, 11/06/2015

What is SLURM

• In simple word, SLURM is a workload manager, or a batch
scheduler.

• SLURM stands for Simple Linux Utility for Resource
Management.

• SLURM unites the cluster resource management (such as
Torque) and job scheduling (such as Moab) into one system.
Avoids inter-tool complexity.

• As of June 2015, SLURM is used in 6 of the top 10 computers,
including the #1 system, Tianhe-2, with over 3M cores.

NERSC’s Plan to Adopt SLURM

• SLURM has been in production on Babbage (Intel Xeon Phi
KNC test bed) as of August 14.

• SLURM is the batch scheduler for Cori Phase 1.

• Hopper stays with Torque/Moab until retire.

• Edison stays with Torque/Moab before moving to CRT.
Edison will come back online at CRT with SLURM.

• We use the “native” SLURM (as compared to the “hybrid”
SLURM).

Advantages of Using SLURM

• Fully open source.
• SLURM is extensible (plugin architecture)
• Low latency scheduling. Highly scalable.
• Integrated “serial” or “shared” queue
• Integrated Burst Buffer support
• Good memory management
• Built-in accounting and database support
• “Native” SLURM runs without Cray ALPS (Application Level

Placement Scheduler)
– Batch script runs on the head compute node directly
– Easier to use. Less chance for contention compared to shared MOM

node.

Native SLURM Architecture

Running with SLURM
• Use “sbatch” (as “qsub” in Torque) to submit batch script or “salloc” (as “qsub -I” in

Torque) to request interactive batch session.
• Use “srun” to launch parallel jobs (as with “aprun” with Torque/Moab or with hybrid

SLURM)
• Most SLURM command options have two formats (long and short)
• Need to specify which shell to use for batch script.
• Environment is automatically imported (as “#PBS -V” in Torque)
• Lands on the submit directory (“cd $PBS_O_WORKDIR” not needed as in Torque)
• Batch script runs on the head compute node
• No need to repeat flags in the srun command if already defined in SBATCH keywords.
• srun flags overwrite SBATCH keywords
• srun does most of optimal process and thread binding automatically. Only flags such

as “-n” “-c”, along with OMP_NUM_THREADS are needed for most applications.
Advanced users can experiment more options such as –num_tasks_per_socket, –
cpu_bind, --mem, etc.

• Hyperthreading is enabled by default. Jobs requesting more than 32 cores (MPI tasks *
OpenMP threads) per node will use hyperthreads automatically.

Sample SLURM Batch Script

#!/bin/bash -l

#SBATCH --partition=regular
#SBATCH --job-name=test
#SBATCH --account=mpccc
#SBATCH --nodes=2
#SBATCH --time=00:30:00

srun -n 16 ./mpi-hello
export OMP_NUM_THREADS=8
srun -n 8 -c 8 ./xthi

#!/bin/bash -l

#SBATCH -p regular
#SBATCH -J test
#SBATCH -A mpccc
#SBATCH -N 2
#SBATCH -t 00:30:00

srun -n 16 ./mpi-hello
export OMP_NUM_THREADS=8
srun -n 8 -c 8 ./xthi

Long command options Short command options

To submit a batch job:
% sbatch mytest.sl
Submitted batch job 15400

salloc and srun Example (interactive
batch)

yunhe/> salloc -N 2 -p debug -t 30:00
salloc: Granted job allocation 16180
salloc: Waiting for resource configuration
salloc: Nodes nid00[408-409] are ready for job

yunhe@nid00408> export OMP_NUM_THREADS=8
yunhe@nid00408> srun –n 8 –c 8 ./xthi | sort -k4n -k6n
Hello from rank 0, thread 0, on nid00408. (core affinity = 0-7,32-39)
Hello from rank 0, thread 1, on nid00408. (core affinity = 0-7,32-39)
Hello from rank 0, thread 2, on nid00408. (core affinity = 0-7,32-39)
Hello from rank 0, thread 3, on nid00408. (core affinity = 0-7,32-39)
Hello from rank 0, thread 4, on nid00408. (core affinity = 0-7,32-39)
Hello from rank 0, thread 5, on nid00408. (core affinity = 0-7,32-39)
Hello from rank 0, thread 6, on nid00408. (core affinity = 0-7,32-39)
Hello from rank 0, thread 7, on nid00408. (core affinity = 0-7,32-39)
Hello from rank 1, thread 0, on nid00408. (core affinity = 16-23,48-55)
Hello from rank 1, thread 1, on nid00408. (core affinity = 16-23,48-55)
…
Hello from rank 1, thread 6, on nid00408. (core affinity = 16-23,48-55)
Hello from rank 1, thread 7, on nid00408. (core affinity = 16-23,48-55)
…
Hello from rank 4, thread 0, on nid00409. (core affinity = 0-7,32-39)
Hello from rank 4, thread 1, on nid00409. (core affinity = 0-7,32-39)
…
Hello from rank 4, thread 6, on nid00409. (core affinity = 0-7,32-39)
Hello from rank 4, thread 7, on nid00409. (core affinity = 0-7,32-39)
…

SLURM vs. Torque/Moab
Keywords

Description #PBS #SBATCH

Queue -q [queue] --partition=[queue] or -p [queue]

Number of tasks -n [count] --ntasks=[count] or -n [count]

Node count -l mppwidth=[count]*24 --nodes=[count] or -N [count]

Tasks per node -l mppnppn=[count] --ntasks-per-node=[count]

CPUs per task (-d option in aprun) --cpus-per-task=[count] or -c [count]

Wall clock limit -l walltime=[hh:mm:ss] --time=[days-hh:mm:ss] or -t [hh:mm:ss]

Standard output -o [file] --output=[file] or -o [file]

Standard error -e [file] --error=[file] or -e [file]

Combine stdout/stderr -j oe (both to stdout) default behavior if no --error or -e

Event notification -m abe --mail-type=[events]

Email address -M [address] --mail-user=[address]

Job name -N [name] --job-name=[name] or -J [name]

Account to charge -A [account] --account=[account] or -A [account]

Job restart -r[y/n] (NERSC default is n) --requeue or –no-requeue (NERSC default)

Job dependency -W depend=[state:jobid] --depend=[state:jobid] or -d [state:jobid]

Job arrays -t [array_spec] --array=array_spec or -a[array_spec]

SLURM vs. Torque/Moab Environment
Variables

Description Torque/Moab SLURM

Job id $PBS_JOBID $SLURM_JOB_ID

Job name $PBS_NODENAME $SLURM_JOB_NAME

Submit directory $PBS_O_WORKDIR $SLURM_SUBMIT_DIR

Node list $PBS_NODEFILE $SLURM_NODELIST

Host submitted from $PBS_O_HOST $SLURM_SUBMIT_HOST

Nodes allocated $PBS_NUM_NODES $SLURM_JOB_NUM_NODES

Number cores/nodes $PBS_NUM_PPN $SLURM_CPUS_ON_NODE

SLURM User Commands

• sbatch: submit a batch script

• salloc: request nodes for an interactive batch session

• srun: launch parallel jobs

• scancel: delete a batch job

• squeue: display info about jobs in the queue

• sinfo: view SLURM configuration about nodes and partitions

• scontrol: view and modify SLURM configuration and job state

• sacct: display accounting data for jobs and job steps

• sqs: NERSC custom queue display (subject to change)

squeue and sinfo Examples
yunhe> squeue
JOBID USER ACCOUNT NAME PARTITION QOS NODES TIME_LIMIT TIME ST

16179 keskital planck reproc debug low 128 30:00 10:51 R
14645 psteinbr m2078 l328f21b64 regular normal 32 2:30:00 1:47:53 R
...
15974 heikki m1820 ipnonsa_1e shared normal 1 6:00:00 22:48 R
15975 heikki m1820 ipnonsa_1e shared normal 1 6:00:00 22:29 R
...
14734 psteinbr m2078 l328f21b64 regular normal 32 2:30:00 0:00 PD
14735 psteinbr m2078 l328f21b64 regular normal 32 2:30:00 0:00 PD
...
15944 zuntz des spteg_disc regular normal 32 6:00:00 0:00 PD
15945 zuntz des spteg_bulg regular normal 32 6:00:00 0:00 PD
15952 zuntz des spteg_bulg regular normal 32 6:00:00 0:00 PD
14651 psteinbr m2078 l328f21b64 regular normal 1 2:30:00 1:47:44 CG

yunhe> sinfo
PARTITION AVAIL JOB_SIZE TIMELIMIT CPUS S:C:T NODES STATE NODELIST
debug* up 1-infini 30:00 64 2:16:2 1478 allocated nid[00024-00063,…]
debug* up 1-infini 30:00 64 2:16:2 150 idle nid[00408-00409,…]
regular up 1-infini 12:00:00 64 2:16:2 1478 allocated nid[00024-00063,…]
regular up 1-infini 12:00:00 64 2:16:2 150 idle nid[00408-00409,…]
realtime down 1-infini 6:00:00 64 2:16:2 1478 allocated nid[00024-00063,…]
realtime down 1-infini 6:00:00 64 2:16:2 150 idle nid[00408-00409,…]
shared up 1 12:00:00 64 2:16:2 40 allocated nid[00188-00191,…]

There are many other options. See man page.

scontrol Example

- 62 -

yunhe> scontrol show partition debug
PartitionName=debug
 AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL
 AllocNodes=ALL Default=YES QoS=part_debug
 DefaultTime=00:10:00 DisableRootJobs=YES ExclusiveUser=NO GraceTime=0 Hidden=NO
 MaxNodes=UNLIMITED MaxTime=00:30:00 MinNodes=1 LLN=NO MaxCPUsPerNode=UNLIMITED
 Nodes=nid0[0024-0063,0080-0083,….2128-2175,2192-2239,2256-2303]
 Priority=2000 RootOnly=NO ReqResv=NO Shared=EXCLUSIVE PreemptMode=REQUEUE
 State=UP TotalCPUs=104192 TotalNodes=1628 SelectTypeParameters=N/A
 DefMemPerNode=UNLIMITED MaxMemPerNode=124928

yunhe> scontrol show job 16178
JobId=16178 JobName=mpi-hello.sl
 UserId=yunhe(18456) GroupId=yunhe(1018456)
 Priority=834180 Nice=0 Account=mpccc QOS=normal_regular_4
 ...
 RunTime=00:00:00 TimeLimit=00:30:00 TimeMin=N/A
 SubmitTime=2015-11-06T05:48:11 EligibleTime=2015-11-06T05:48:11
 StartTime=2015-11-06T05:48:37 EndTime=2015-11-06T06:18:37
 …
 NodeList=nid00[408-409]
 BatchHost=nid00408
 NumNodes=2 NumCPUs=128 CPUs/Task=1 ReqB:S:C:T=0:0:*:*
 TRES=cpu=128,mem=249856,node=2
 Socks/Node=* NtasksPerN:B:S:C=2:0:*:* CoreSpec=*
 Command=/global/u1/y/yunhe/shared/mpi-hello.sl
 WorkDir=/global/u1/y/yunhe/shared
 StdErr=/global/u1/y/yunhe/shared/slurm-16178.out
 StdOut=/global/u1/y/yunhe/shared/slurm-16178.out

sacct Example

yunhe> sacct -u yunhe –start=11/3/15T9:00 –end=1/3/15T15:00 -o JobID,elapsed

JobID Elapsed
------------ ----------
13230 00:17:41
13230.0 00:18:08
13230.1 00:00:15
13230.2 00:08:17
13234 00:05:43
13234.0 00:06:13
13234.1 00:04:44
13237 00:30:23
13237.0 00:30:50
13237.1 00:00:14
13237.2 00:00:35
13237.3 00:00:03

There are many other options. See man page.

SLURM Features on Cori
• The Cluster Compatibility Mode (CCM) capability is implemented as an SBATCH

command line option (--ccm), which enables SSH to compute nodes. No separate
CCM partition is needed. CCM jobs can run in any partition now.

• Since sbatch or salloc lands on a compute node, applications such as “matlab”
can be launched directly without CCM support.

• The native “shared” partition on Cori is not implemented as the Edison “serial”
queue via CCM. It allows multiple users to share one node. Users can request
more than 1 slot (either by tasks or memory) and be charged accordingly.

• Potential to expand or shrink job size at run time.
• Another batch server will be implemented to run “xfer”, “bigmem”, “workflow”

jobs on one or more login nodes. Users can submit to either batch server in a
single batch script.

• We will experiment batch job priority with combination of job size, queue wait
time and fare share initially.

Current Batch Configuration

Partiton Nodes Physical Cores Max
Walltime

Relative
Priority

Charge
Factor

debug 1-64 1-2,048 30 min 2 Free

65-128 2,049-4,096 30 min 3 Free

regular 1-2 1-64 12 hrs 4 Free

3-256 65-8,192 6 hrs 4 Free

257-512 8,193-16,384 6 hrs 4 Free

513-1,024 16,385-32,768 4 hrs 4 Free

1,025-1,428 32,769-45,696 2 hrs 4 Free

1,429-1,628 45,697-52,096 2 hrs 4 Free

shared 1 1-32 12 hrs 4 Free

realtime 1-32 1-1,024 6 hrs 1 Free

Current Batch Policies
• Users can request modification to job priority by adding "#SBATCH --qos=premium"

(disabled during free charging time) or "#SBATCH --qos=low" or "$SBATCH --
qos=scavenger" in the batch script.

• Overall job priorities are a combination of partition, QOS, queue wait time, job size, wall
time request, and fair share.

• There are no specific run limits or idle limits per job type/size category per user (except the
debug run limit of 1 per user). Instead, we are experimenting with a RunMins limit (total
remaining CPU minutes of all running jobs) on the per user/repo base.

• Debug jobs requesting more than 64 nodes have lower priority to discourage using the
entire system for small number of jobs. No more than 128 nodes can be used for all debug
jobs in the system at any time.

• Relative priorities for different sizes of the “regular” jobs will be adjusted in the future.

• Jobs from different users can share a node to run parallel or serial jobs in the "shared"
partition. The maximum number of nodes a single job can use is 1. There are a total of 40
nodes in the system can be used for "shared" jobs.

• The "realtime" partition usage is by special permission only. There are a total of 32 nodes
in the system can be used for "realtime" jobs. "realtime" jobs can choose to share a node
by adding "#SBATCH --shared" in the batch script.

Summary

• SLURM provides equivalent or similar functionality with
Torque/Moab.

• srun provides equivalent or similar process and thread
affinity with aprun.

• Please let us know if you have an advanced or complicated
workflow, and anticipate potential porting issues. We can
work with you to migrate your scripts.

• Batch configurations are still subject to tunings and
modifications before the system is in full production.

Documentations
• SchedMD web page:

– http://www.schedmd.com/

• Running Jobs on Cori
– https://www.nersc.gov/users/computational-systems/cori/running-jobs/

• Man pages for slurm, sbatch, salloc, squeue, sinfo, sacct, scontrol,
scancel, etc.

• Torque/Moab vs. SLURM Comparisons
– https://www.nersc.gov/users/computational-systems/cori/running-

jobs/for-edison-users/torque-moab-to-slurm-transition-guide/

• Running jobs on Babbage using SLURM:
– https://www.nersc.gov/users/computational-

systems/testbeds/babbage/running-jobs-under-slurm-on-babbage/

• Running iobs on Edison’s test system (Alva) with native SLURM
– https://www.nersc.gov/users/computational-systems/edison/alva-test-

and-development-system-for-edison/#toc-anchor-7

http://www.schedmd.com/
http://www.schedmd.com/
https://www.nersc.gov/users/computational-systems/cori/running-jobs/
https://www.nersc.gov/users/computational-systems/cori/running-jobs/
https://www.nersc.gov/users/computational-systems/cori/running-jobs/for-edison-users/torque-moab-to-slurm-transition-guide/
https://www.nersc.gov/users/computational-systems/cori/running-jobs/for-edison-users/torque-moab-to-slurm-transition-guide/
https://www.nersc.gov/users/computational-systems/cori/running-jobs/for-edison-users/torque-moab-to-slurm-transition-guide/
https://www.nersc.gov/users/computational-systems/testbeds/babbage/running-jobs-under-slurm-on-babbage/
https://www.nersc.gov/users/computational-systems/testbeds/babbage/running-jobs-under-slurm-on-babbage/
https://www.nersc.gov/users/computational-systems/testbeds/babbage/running-jobs-under-slurm-on-babbage/
https://www.nersc.gov/users/computational-systems/edison/alva-test-and-development-system-for-edison/%23toc-anchor-7
https://www.nersc.gov/users/computational-systems/edison/alva-test-and-development-system-for-edison/%23toc-anchor-7
https://www.nersc.gov/users/computational-systems/edison/alva-test-and-development-system-for-edison/%23toc-anchor-7

Thank you!

Popular features of a data intensive
system and supporting them on Cori

- 70 -

Data Intensive Workload Need Cori Solution

Local Disk NVRAM ‘burst buffer’

Large memory nodes 128 GB/node on Haswell;
Option to purchase fat (1TB) login node

Massive serial jobs Shared-Node/Serial queue on cori via SLURM

Complex workflows User Defined Images
CCM mode
Large Capacity of interactive resources

Communicate with databases from
compute nodes

Advanced Compute Gateway Node

Stream Data from observational facilities Advanced Compute Gateway Node

Easy to customize environment User Defined Images

Policy Flexibility Improvements coming with Cori:
Rolling upgrades, CCM, MAMU, above COEs
would also contribute

Shifter Delivers Performance –
Pynamic

- 71 -

?

Balanced memory vs.
network Consumption

Benchmark local in-
memory, some support
libraries over network

