
Getting Started at NERSC

Richard Gerber
NERSC User Services

June 7, 2011
Berkeley Lab Oakland Scientific Facility

•  This presentation will help you use
NERSC and its facilities

–  Practical information
–  Introduction to terms and acronyms
–  Help you get things done efficiently

•  This is not a programming tutorial
–  But you will learn how to get help and what
kind of help is available
–  We can give presentations on programming
languages and parallel libraries – just ask

Purpose

3

•  What is NERSC?
•  Computing Resources
•  Storage Resources
•  How to Get Help
•  Accounts and Allocations
•  Connecting to NERSC
•  Computing Environment
•  Compiling Code
•  Running Jobs

Outline

What is NERSC?

National Energy Research Scientific
Computing Center

4

NERSC Facility Leads DOE in Scientific
Computing Productivity

NERSC computing for science
• 4000 users, 500 projects
• From 48 states; 65% from universities
• Hundreds of users each day
• 1500 publications per year
Systems designed for science
• 1.3PF Petaflop Cray system, Hopper

- 2nd Fastest computer in US
- Fastest open Cray XE6 system
- Additional .5 PF in Franklin system and

smaller clusters

5!

6

Location

NERSC is a
DOE Office
of Science
National
Center

located at
Berkley Lab

7

Location

9

DOE Office of Advanced Scientific
Computing Facilities

“Leadership Facilities” at
Oak Ridge & Argonne

•  100s users 10s projects
•  Allocations:

–  60% ANL/ORNL managed
INCITE process

–  30% ACSR Leadership
Computing Challenge*

–  10% LCF reserve

•  Science limited to largest scale;
no commitment to DOE/SC
offices

•  Machines procured through
partnerships

NERSC at LBNL
•  1000s users,100s projects
•  Allocations:

–  80% DOE program managers

–  10% ASCR Leadership
Computing Challenge

–  10% NERSC reserve

•  Science includes all of DOE
Office of Science

•  Machines procured
competitively

10

NERSC Workload

NERSC 2011 Allocations
By Science Area

Computing Resources

12

13

NERSC Systems
Large-Scale Computing Systems
Hopper (NERSC-6): Cray XE6
 6,384 compute nodes, 153,216 cores
 110 Tflop/s on applications; 1.27 Pflop/s peak

Franklin (NERSC-5): Cray XT4
9,532 compute nodes; 38,128 cores
~25 Tflop/s on applications; 356 Tflop/s peak

HPSS Archival Storage
 40 PB capacity
 4 Tape libraries
 150 TB disk cache

NERSC Global
 File system (NGF)
Uses IBM’s GPFS
 1.5 PB capacity
 5.5 GB/s of bandwidth

Clusters
 140 Tflops total
Carver
 IBM iDataplex cluster
PDSF (HEP/NP)
 ~1K core cluster
Magellan Cloud testbed
 IBM iDataplex cluster
GenePool (JGI)

~5K core cluster

Analytics

Euclid
512 GB shared mem
Dirac
 GPU testbed
 48 nodes

1.2 GB memory / core (2.5 GB /
core on "fat" nodes) for
applications

/scratch disk quota of 5 TB
2 PB of /scratch disk
Choice of full Linux operating

system or optimized Linux
OS (Cray Linux)

PGI, Cray, Pathscale, GNU
compilers

153,408 cores, 6,392 nodes
"Gemini” interconnect
2 12-core AMD 'MagnyCours'

2.1 GHz processors per
node

24 processor cores per node
32 GB of memory per node

(384 "fat" nodes with 64 GB)
216 TB of aggregate memory

15

Hopper - Cray XE6

Use Hopper for your biggest, most computationally challenging problems.

38,288 compute cores
9,572 compute nodes
One quad-core AMD 2.3 GHz

Opteron processors
(Budapest) per node

4 processor cores per node
8 GB of memory per node
78 TB of aggregate memory
1.8 GB memory / core for

applications
/scratch disk default quota of

750 GB

Light-weight Cray Linux
operating system

No runtime dynamic, shared-
object libs

PGI, Cray, Pathscale, GNU
compilers

16

Franklin - Cray XT4

Use Franklin for all your computing jobs, except those
that need a full Linux operating system.

3,200 compute cores
400 compute nodes
2 quad-core Intel Nehalem

2.67 GHz processors per
node

8 processor cores per node
24 GB of memory per node (48

GB on 80 "fat" nodes)
2.5 GB / core for applications

(5.5 GB / core on "fat"
nodes)

InfiniBand 4X QDR

NERSC global /scratch
directory quota of 20 TB

Full Linux operating system
PGI, GNU, Intel compilers

17

Carver - IBM iDataPlex

Use Carver for jobs that use up to 512 cores, need a fast
CPU, need a standard Linux configuration, or need up to
48 GB of memory on a node.

Dedicated to HPC Cloud
Computing research

4,480 compute cores

560 compute nodes

Two quad-core Intel Nehalem
2.67 GHz processors per
node

8 processor cores per node

24 GB of memory per node
(48 GB on 160 "fat" nodes)

2.5 GB / core for applications
(5.5 GB / core on "fat"
nodes)

NERSC global /scratch
directory quota of 20 TB

Full Linux operating system
PGI, GNU, Intel compilers

18

Magellan - IBM IDataPlex

Data Storage Resources

19

20

•  “Spinning Disk”
–  Interactive access
–  I/O from compute jobs
–  “Home”, “Project”, “Scratch”
–  Note: No on-node direct-attach disk at
NERSC

•  Archival Storage
–  Permanent, Long-Term Storage
–  Tapes, fronted by disk cache
–  “HPSS” (High Performance Storage System)

Data Storage Types

21

•  When you log in you are in your "Home" directory.

•  Permanent storage

–  No automatic backups

•  The full UNIX pathname is stored in the environment variable
$HOME

–  hopper04% echo $HOME

–  /global/homes/r/ragerber

•  $HOME is a global file system

–  You see all the same directories and files when you log in to any NERSC
computer.

•  Your quota in $HOME is 40 GB and 1M inodes (files and directories).

–  Use “myquota” command to check your usage and quota

Home Directory

hopper04% echo $HOME
/global/homes/r/ragerber

22

•  Each system has a large, high-performance ”scratch” file
system.

•  Significant I/O from your compute jobs should be directed to
$SCRATCH

•  Each user has a personal directory referenced by
$SCRATCH (and maybe $SCRATCH2).

•  Data in $SCRATCH is purged (12 weeks from last access)

•  Always save data you want to keep to HPSS (see below)

•  $SCRATCH is local on Franklin and Hopper, but Carver
and future systems use a global scratch file system.

•  Data in $SCRATCH is not backed up and could be lost if a
file system fails.

Scratch Directories

23

•  All NERSC systems mount the NERSC global
"Project" file system.
•  "Project directories” are created upon request for
projects (groups of researchers) to store and
share data.
•  The default quota in /project is 4 TB.
•  While data can be written and read from a
parallel job on all system, performance will may
not be as good as on $SCRATCH.
•  Data in /project is not purged, but there are no
automatic user backups either.

Project Directories

•  Use $SCRATCH for good IO performance
from a production compute job
•  Write large chunks of data (MBs or more) at
a time from your code
•  Use a parallel IO library (e.g. HDF5)
•  Read/write to as few files as practical from
your code (try to avoid 1 file per MPI task)
•  Use $HOME to compile unless you have too
many source files or intermediate (*.o) files
•  Do not put more than a few 1,000s of files in
a single directory
•  Save any and everything important to HPSS

IO Tips

Navigating NERSC File Systems

A NERSC Training Event
NERSC Oakland Facility & Web Broadcast

http://www.nersc.gov/users/training/events/nersc-file-systems/

25

For permanent,
archival storage

You transfer files to
and from HPSS
using one of ftp,
pftp, or the HPSS
hsi client.

For more info see the
NERSC web site:
type “hpss getting
started” in the
search box

Hostname: archive.nersc.gov
Over 15 Petabyes of data stored
Data increasing by 1.7X per year
120 M files stored
150 TB disk cache
8 STK robots
44,000 tape slots
44 PB maximum capacity today
Average data xfer rate: 100 MB/sec

26

Archival Storage (HPSS)

Data Transfer and Archiving

A NERSC Training Event
NERSC Oakland Facility & Web Broadcast

http://www.nersc.gov/users/training/events/data-transfer-and-archiving/

27

How to Get Help

28

•  NERSC’s emphasis is on enabling scientific discovery
•  User-oriented systems and services

–  This is what sets NERSC apart from other centers

•  Help Desk / Consulting
–  Immediate direct access to consulting staff that includes 7 Ph.Ds

•  User group (NUG) has tremendous influence
–  Monthly teleconferences & Yearly meetings

•  Requirement-gathering workshops with top scientists
–  Completed five, including BER
–  Microbial Genome and Metagenome Data Processing and Analysis with
the IMG Family of Systems; Victor M. Markowitz, LBNL; Natalia N. Ivanova and
Nikos C. Kyrpides, Genome Biology Program, JGI

•  Ask, and we’ll do whatever we can to fulfill your request

NERSC Services

30

1-800-666-3772 (or 1-510-486-8600)

Computer Operations* = menu option 1 (24/7)

Account Support (passwords) = menu option 2,
accounts@nersc.gov

HPC Consulting = menu option 3, or consult@nersc.gov
(8-5, M-F Pacific time)

Online Help Desk = https://help.nersc.gov/

* Passwords during non-business hours

How to Get Help

Accounts & Allocations

31

32

There are two types of "accounts" at NERSC. It is important
to differentiate between them.

1.  Your personal, private account
•  Associated with your "login" or "user name”

•  Identifies you to our systems and is used when logging into NERSC
systems and web services.
•  Your PI requests an account for you.

2.  An allocation account, or "repository” (aka “repo”)
•  Like a bank account you use to "pay" for computer time.
•  PIs request allocations of time and/or storage
•  An individual user may belong to one or many repositories.

To apply for either type of account, see the NERSC web
site at http://www.nersc.gov/.

Accounts

33

•  You must have an allocation of time to run jobs at NERSC (be a
member of a “repo”)

•  Project PIs apply through the ERCAP process

•  Computer time and storage allocations are awarded by DOE

•  Most allocations are awarded in the fall

–  Allocation year starts in January

–  2011: Additional awards made for May 1 start of Hopper production service

–  Small startup allocations are awarded throughout the year

–  Additional time available through NISE and ALCC

•  If your repo runs out of time, you can request more through your
project’s DOE program manager who handles NERSC allocations (list
available on NERSC web site)

Allocations

34

•  Log into the NERSC NIM web site at https://
nim.nersc.gov/ to manage your NERSC accounts.
•  In NIM you can check your daily allocation
balances, change your password, run reports,
update your contact information, change your login
shell, etc.

Accounting Web Interface (NIM)

Connecting to NERSC

36

Computing Environment

39

41

•  NERSC installs dot-files in your home
directory (e.g. .login, .profile)

–  Commands in dot-files are executed when you
log in (or start a new shell)
–  Do not modify these or your jobs and compiles
will not work correctly.

•  Each dot-file sources an additional file with
the same name, but with an .ext extension.

–  Put your local modifications in these .ext files
(e.g. .login.ext, .profile.ext)

Shell Initialization Files

42

•  Easy access to NERSC’s extensive software
collection is controlled by the modules utility.
•  With modules, you manipulate your computing
environment to use applications and programming
libraries.
•  In many cases, you can ignore modules because
NERSC has already loaded a rich set of modules for
you when you first log in.
•  If you want to change that environment you "load,"
"unload," and "swap" modules.
•  A small set of module commands can do most of
what you'll want to do

Modules

43

•  Shows you your currently loaded modules.
•  When you first log in, you have a number of modules
loaded for you. Here is an example from Hopper.
 nid00163% module list  

Currently Loaded Modulefiles:  
 1) modules/3.1.6.5 12) cray/csa/3.0.0-1_2.0202.19602.75.1  
 2) moab/5.3.6 13) cray/account/1.0.0-2.0202.19482.49.3  
 3) torque/2.4.7 14) cray/projdb/1.0.0-1.0202.19483.52.1  
 4) xt-asyncpe/4.0 15) Base-opts/2.2.48B  
 5) xtpe-barcelona 16) pgi/10.5.0  
 6) xtpe-target-cnl 17) xt-libsci/10.4.3  
 7) xt-service/2.2.48B 18) pmi/1.0-1.0000.7901.22.1.ss  
 8) xt-os/2.2.48B 19) xt-mpt/5.0.0  
 9) xt-boot/2.2.48B 20) xt-pe/2.2.48B  
 10) xt-lustre-ss/2.2.48B_1.6.5 21) PrgEnv-pgi/2.2.48B  
 11) cray/job/1.5.5-0.1_2.0202.19481.53.6 22) cray/MySQL/5.0.64-1.0202.2899.21.1 #

•  The most important module is called "PrgEnv-pgi", which
lets you know that the environment is set up to use the
Portland Group compiler suite.

module list

hopper03% module list
Currently Loaded Modulefiles:
 1) modules/3.2.6.6 11) xpmem/0.1-2.0301.25333.20.2.gem
 2) xtpe-network-gemini 12) xe-sysroot/3.1.61
 3) pgi/10.9.0 13) xt-asyncpe/4.9
 4) xt-libsci/10.5.01 14) atp/1.1.2
 5) xt-mpich2/5.2.1 15) PrgEnv-pgi/3.1.61
 6) udreg/2.2-1.0301.2966.16.2.gem 16) eswrap/1.0.8
 7) ugni/2.1-1.0301.2967.10.23.gem 17) xtpe-mc12
 8) pmi/2.1.1-1.0000.8296.10.8.gem 18) xt-shmem/5.2.1
 9) dmapp/3.0-1.0301.2968.22.24.gem 19) torque/2.4.8-snap.201004261413
 10) gni-headers/2.1-1.0301.2931.19.1.gem 20) moab/5.3.6-s14846

44

•  The "module avail" command will list all the available
modules. It's a very long list, so I won't list it here
•  You can use the module's name stem to do a useful search
•  nid00163% module avail PrgEnv

PrgEnv-cray/1.0.1(default) PrgEnv-pathscale/2.2.48B
(default)  
PrgEnv-gnu/2.2.48B(default) PrgEnv-pgi/2.2.48B(default)#

•  Here you see that four programming environments are
available using the Cray, GNU, Pathscale, and PGI compilers.
•  The word "default" is confusing here; it does not refer to the
default computing environment, but rather the default version
of each specific PrgEnv module. (It just happens that in this
case, there is only one version available of each.)

module avail

nid00163% module avail PrgEnv

PrgEnv-cray/1.0.1(default) PrgEnv-pathscale/2.2.48B(default)
PrgEnv-gnu/2.2.48B(default) PrgEnv-pgi/2.2.48B(default)

45

Let's say you want to use the Cray compiler instead
of PGI.

 %module swap PrgEnv-pgi PrgEnv-cray#

Now you are using the Cray compiler suite. That's
all you have to do.

You don't have to change your makefiles, or
anything else in your build script unless they contain
PGI or Cray-specific options or features.

module swap

%module swap PrgEnv-pgi PrgEnv-cray

module load
•  There is plenty of software that is not loaded by default.
•  You can consult the NERSC web pages to see a list, or you

can use the "module avail" command to see what modules
are available

•  For example, if you want to use the NAMD molecular
dynamics application. Try "module avail namd".

nid00163% module avail namd  
namd/2.6(default) namd/2.7b1_plumed namd/cvs  
namd/2.7b1 namd/2.7b2#

•  The default version is 2.6, but say you'd rather use some
features available only in version 2.7b2. In that case, just load
that module.

•  nid00163% module load namd/2.7b2

•  The “namd2” binary for version 2.7b2 is now in your UNIX
search path.

46

nid00163% module avail namd  
namd/2.6(default) namd/2.7b1_plumed namd/cvs  
namd/2.7b1 namd/2.7b2#

nid00163% module load namd/2.7b2

Compiling Code

48

49

•  Let's assume that you’re compiling
–  a parallel application

–  using MPI and the code is

–  written in Fortran, C, or C++

•  Then compiling is easy
–  You will use standard compiler wrapper

–  All the include file and library paths are set

–  Linker options are set

Invoking the Compilers

50

Parallel Compilers

Platform Fortran C C++
Cray ftn cc CC
Others mpif90 mpicc mpiCC

!Filename hello.f90
program hello

 implicit none
 include "mpif.h"

 integer:: myRank
 integer:: ierror

 call mpi_init(ierror)

 call mpi_comm_rank(MPI_COMM_WORLD,myRank)

 print *, "MPI Rank ",myRank," checking in!"

 call mpi_finalize(ierror)

% ftn –o hello.x hello.f90
That’s it!

No -I/path/to/
mpi/include or –
L/path/to/mpi/
lib

It’s all taken care of
for you.

52

•  You can use serial compilers as you
would on a typical Linux cluster

–  gcc, gfortran, pgf90, etc.
–  Won’t run on compute nodes on Crays
–  You need to supply all the compiler and
linker options
–  May have to load a module to access a
given compiler (e.g. module load pgi/11.2.0)

“Serial” compilers

53

All you have to do is load the appropriate module and compile.

Let's compile an example code that uses the HDF5 I/O library.
First let's try it in the default environment.

nid00195% cc -o hd_copy.x hd_copy.c  
INFO: linux target is being used  
Can't find include file hdf5.h (hd_copy.c: 39)#

The compiler doesn't know where to find the include file.
Now let's load the hdf5 module and try again.

nid00195% module load hdf5  
nid00195% cc -o hd_copy.x hd_copy.c  

We're all done and ready to run the program! No need to manually add
the path to HDF5; it's all taken care of by the scripts.

Using Programming Libraries
(Cray)

nid00195% cc -o hd_copy.x hd_copy.c  
INFO: linux target is being used  
Can't find include file hdf5.h (hd_copy.c: 39)#

nid00195% module load hdf5  
nid00195% cc -o hd_copy.x hd_copy.c

54

 Even with the module loaded, the compiler
doesn't know where to find the HDF5 files.

Using Programming Libraries
(non-Cray)

% mpicc -o hd_copy.x hd_copy.c!
 Can't find file hdf5.h (hd_copy.c: 39)  
 PGC/x86-64 10.8-0: compilation aborted 
% module load hdf5  
% mpicc -o hd_copy.x hd_copy.c  
 Can't find file hdf5.h (hd_copy.c: 39)  
 PGC/x86-64 10.8-0: compilation aborted#

55

% mpicc -o hd_copy.x hd_copy.c $HDF5 !
% module show hdf5

/usr/common/usg/Modules/modulefiles/hdf5/1.8.3:  

conflict hdf5-parallel  
module load szip  
module load zlib  
setenv HDF5_DIR /usr/common/usg/hdf5/1.8.3/serial  
setenv HDF5 -L/usr/common/usg/hdf5/1.8.3/serial/lib -
lhdf5_cpp -lhdf5_fortran -lhdf5_hl -lhdf5 -L/usr/common/usg/zlib/
default/lib -lz -L/usr/common/usg/szip/default/lib -lsz -I/usr/
common/usg/hdf5/1.8.3/serial/include -I/usr/common/usg/
hdf5/1.8.3/serial/lib -I/usr/common/usg/zlib/default/include -I/
usr/common/usg/szip/default/include  
setenv HDF5_INCLUDE -I/usr/common/usg/hdf5/1.8.3/
serial/include  
prepend-path PATH /usr/common/usg/hdf5/1.8.3/serial/bin  
prepend-path LD_LIBRARY_PATH /usr/common/usg/hdf5/1.8.3/
serial/lib  

Using Programming Libraries
(non-Cray)

We have to use environment variables defined in
the module (use “module show” to see them).

56

Hands On

You can try some example compiles
and run some jobs by following

https://www.nersc.gov/users/training/events/getting-started/
hands-on/

Running Jobs

57

•  Most jobs are parallel, using 10s to 100,000+
cores.
•  Many use custom codes; others use pre-
installed applications
•  Typically run a few hours, up to 48. Longer
runs can be accommodated if needed and
logistically possible.
•  Many jobs “package” lower concurrency
runs into one job

–  Even many “serial jobs”

–  Load balance may be an issue

Jobs at NERSC

59

•  Each supercomputer has 3 types of nodes that you will
use directly

–  Login nodes
–  Compute nodes
–  “MOM” nodes

•  Login nodes
–  Edit files, compile codes, run UNIX commands
–  Submit batch jobs
–  Run short, small utilities and applications

•  Compute nodes
–  Execute your application; dedicated to your job
–  No direct login access

•  “MOM” nodes
–  Execute your batch script commands
–  Carver: “head” compute node; Cray: shared “service” node

Login Nodes and Compute Nodes

Cray Systems

MOM
 Node

Compute
 Node

Compute
 Node

Compute
 Node

MOM
 Node

Compute
 Node

Compute
 Node etc….

No
local
disk

Login
 Node

Login
 Node

Login
 Node etc….

home

Login
 Node

Login
 Node

scratch

Login
 Node etc….

project HPSS

Full Linux OS – Shared Access CNL (no logins) – Dedicated

gscratch

Carver / Magellan / Dirac

MOM
& Compute

Compute
 Node

Compute
 Node

Compute
 Node

MOM
 & Compute

Compute
 Node

Compute
 Node etc….

No
local
disk

Login
 Node

Login
 Node

Login
 Node etc….

home

Login
 Node

Login
 Node

Login
 Node etc….

project HPSS

Full Linux OS – Shared Full Linux (no logins) – Dedicated

gscratch

62

•  A “job launcher” distributes your code to
all the nodes in your parallel job, starts
them, and manages their execution.
•  On Cray the job launcher is called
“aprun” and on other systems it is
“mpirun”.
•  Only the job launcher can start your job
on compute nodes
•  You can’t run the job launcher from
login nodes

Launching Parallel Jobs

63

•  To run a job on the compute nodes you
must write a “batch script,” which contains

–  Batch directives to allow the system to
schedule your job
–  An aprun or mpirun command that
launches your parallel executable

•  Submit the job to the queuing system
with the qsub command
–  %qsub my_batch_script#

Submitting Jobs

64

Sample Hopper Batch Script

#PBS -q debug#
#PBS -l mppwidth=96#
#PBS -l walltime=00:10:00#
#PBS -N my_job#
#PBS -e my_job.$PBS_JOBID.err#
#PBS -o my_job.$PBS_JOBID.out#
#PBS -V#

cd $PBS_O_WORKDIR#
aprun -n 96./my_executable#

The PBS directives required for each system are
different, so consult the NERSC web site for details.

65

Job Limits
There are per user, per machine job limits. See the NERSC web

site for details. Here are the limits on Hopper as of June 22, 2011.

66

•  Once your job is submitted, it will start
when resources are available
•  Monitor it with

–  qstat –a
–  qstat –u username
–  showq
–  qs
–  NERSC web site “Queue Look”

Monitoring Your Job

67

•  You can run small parallel jobs
interactively for up to 30 minutes

% qsub –I –V –lmppwidth=32#
[wait for job to start]#
% cd $PBS_O_WORKDIR#
% aprun –n 32 ./mycode.x#

Interactive Parallel Jobs

•  Your repository account is charged for each
core your job was allocated for the entire
length of your job.

–  The minimum allocatable unit is a node. Hopper
has 24 cores/node, so your minimum charge on
Hopper is 24*walltime.
–  e.g., mppwidth=96 for 1 hour of run time is
charged 96*1 = 96 MPP Hours (assuming the default
setting of mppnppn=24)
–  You are charged for your actual run time, not the
value of walltime in your batch script.

•  If you have access to multiple repos, pick
which one to charge in your batch script

–  #PBS –A repo_name

How Your Jobs Are Charged

69

•  Each machine has a “machine charge factor” (mcf)
that multiplies the “raw hours” used

–  Hopper and Franklin have mcf=1.0
–  Carver has mcf=1.5

•  Queues have “priority charge factors” (pcf) and
corresponding relative scheduling priorities

–  Premium pcf=2.0
–  Low pcf=0.5
–  Everything else pcf=1.0

•  On Hopper only:
–  reg_med, reg_big, reg_xbig jobs get a 25% discount

•  Storage and bandwidth are allocated and charged for
HPSS

–  Exhausting an HPSS allocation is rare
–  See the NERSC web site for details

Charge Factors & Discounts

Aside: Why Do You Care About
Parallelism?

71

72

Moore’s Law

2X transistors/Chip Every
1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Slide source: Jack Dongarra

73

Power Density Limits Serial
Performance

4004
8008

8080
8085

8086

286
386

486
Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
w

er
 D

en
si

ty
 (W

/c
m

2)

Hot Plate

Nuclear

Reactor

Rocket
Nozzle

Sun’s
Surface Source: Patrick Gelsinger,

Shenkar Bokar, Intel!

•  High performance serial processors waste power
-  Speculation, dynamic dependence checking, etc. burn power
-  Implicit parallelism discovery

•  More transistors, but not faster serial processors

•  Concurrent systems are
more power efficient
–  Dynamic power is

proportional to V2fC
–  Increasing frequency (f)

also increases supply
voltage (V) ! cubic
effect

–  Increasing cores
increases capacitance
(C) but only linearly

–  Save power by lowering
clock speed

74

Revolution in Processors

•  Chip density is continuing increase ~2x every 2 years
•  Clock speed is not
•  Number of processor cores may double instead
•  Power is under control, no longer growing

75

Moore’s Law reinterpreted
•  Number of cores per chip will double every two

years
•  Clock speed will not increase (possibly

decrease)
•  Need to deal with systems with millions of

concurrent threads
•  Need to deal with inter-chip parallelism as well

as intra-chip parallelism
•  Your take-away:

•  Future performance increases in computing
are going to come from exploiting
parallelism in applications

