
Kenneth Craft

Compiler Technical Consulting Engineer

Intel® Corporation

03-06-2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda
Introduction to Intel® Compiler
Vectorization Basics
Optimization Report
Floating Point Model
Explicit Vectorization

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

-O0 no optimization; sets -g for debugging

-O1 scalar optimizations
• Excludes optimizations tending to increase code size

-O2 default (except with -g)
• includes auto-vectorization; some loop transformations such as unrolling;

inlining within source file;
• Start with this (after initial debugging at -O0)

-O3 more aggressive loop optimizations
• Including cache blocking, loop fusion, loop interchange, …
• May not help all applications; need to test

-qopt-report [=0-5]
• Generates compiler optimization reports in files *.optrpt

Basic Optimizations with icc/ifort -O…

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Common Optimization Options

Windows* Linux*, OS X*

Disable optimization /Od -O0

Optimize for speed (no code size increase) /O1 -O1

Optimize for speed (default) /O2 -O2

High-level loop optimization /O3 -O3

Create symbols for debugging /Zi -g

Multi-file inter-procedural optimization /Qipo -ipo

Profile guided optimization (multi-step build) /Qprof-gen

/Qprof-use

-prof-gen

-prof-use

Optimize for speed across the entire program

(“prototype switch”)

fast options definitions changes over time!

/fast
same as: /O3 /Qipo

/Qprec-div-,

/fp:fast=2 /QxHost)

-fast
same as:

Linux: -ipo –O3 -no-prec-div –static –fp-

model fast=2 -xHost)

OS X: -ipo -mdynamic-no-pic -O3 -no-

prec-div -fp-model fast=2 -xHost

OpenMP support /Qopenmp -qopenmp

Automatic parallelization /Qparallel -parallel

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Interprocedural Optimizations (IPO)
Multi-pass Optimization

• Interprocedural optimizations performs a static, topological analysis of your

application!

• ip: Enables inter-procedural
optimizations for current
source file compilation

• ipo: Enables inter-procedural
optimizations across files

- Can inline functions in separate files

- Especially many small utility functions benefit from IPO

Enabled optimizations:

• Procedure inlining (reduced function call overhead)

• Interprocedural dead code elimination, constant propagation and procedure reordering

• Enhances optimization when used in combination with other compiler features

• Much of ip (including inlining) is enabled by default at option O2

Windows* Linux*
/Qip -ip

/Qipo -ipo

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Profile-Guided Optimizations (PGO)
Static analysis leaves many questions open for the optimizer like:

§ How often is x > y
§ What is the size of count
§ Which code is touched how often

Use execution-time feedback to guide (final) optimization
Enhancements with PGO:

– More accurate branch prediction

– Basic block movement to improve instruction cache behavior

– Better decision of functions to inline (help IPO)

– Can optimize function ordering

– Switch-statement optimization

– Better vectorization decisions

if (x > y)
do_this();

else
do that();

for(i=0; i<count; ++I
do_work();

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Don’t use a single Vector lane!
Un-vectorized and un-threaded software will under perform

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Permission to Design for All Lanes
Threading and Vectorization needed to fully utilize modern hardware

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorize and Thread for Performance Boost

2012
Intel Xeon

Processor E5-2600
codenamed Sandy

Bridge

2013
Intel Xeon

Processor E5-2600
v2 codenamed Ivy

Bridge

2010
Intel® Xeon®

Processor X5680
codenamed
Westmere

2017
Intel® Xeon® Platinum

Processor 81xx
codenamed Skylake

Server

2014
Intel Xeon

Processor E5-2600
v3 codenamed

Haswell

2016
Intel Xeon

Processor E5-2600
v4 codenamed

Broadwell

Vectorized
& Threaded

Threaded

Vectorized
Serial

200

150

100

50

0

The Difference Is Growing with Each New
Generation of Hardware

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more information go to http://www.intel.com/performance. Configurations for 2007-
2016 Benchmarks at the end of this presentation

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, &
SSSE3 instruction sets & other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer
to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. Notice Revision #20110804

130x

http://www.intel.com/performance

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Illustrations: Xi, Yi & results 32 bit integer

SIMD Types for Intel® Architecture

AVX
Vector size: 256 bit
Data types:
8, 16, 32, 64 bit integer
32 and 64 bit float
VL: 4, 8, 16, 32

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0
X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

255

Intel® AVX-512
Vector size: 512 bit
Data types:
8, 16, 32, 64 bit integer
32 and 64 bit float
VL: 8, 16, 32, 64

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0
X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

X16

Y16

X16◦Y16

511

…

…

…

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

127 0 SSE
Vector size: 128 bit
Data types:
8, 16, 32, 64 bit integer
32 and 64 bit float
VL: 2, 4, 8, 16

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Evolution of SIMD for Intel Processors

MMX MMX MMX MMX MMX MMX MMX MMX

SSE SSE SSE SSE SSE SSE SSE SSE

SSE2 SSE2 SSE2 SSE2 SSE2 SSE2 SSE2 SSE2

SSE3 SSE3 SSE3 SSE3 SSE3 SSE3 SSE3

Prescott

SSSE3 SSSE3 SSSE3 SSSE3 SSSE3 SSSE3

SSE4.1 SSE4.1 SSE4.1 SSE4.1 SSE4.1

SSE4.2 SSE4.2 SSE4.2 SSE4.2

AVX AVX AVX

MMX

SSE

SSE2

SSE3

SSSE3

SSE4.1

SSE4.2

AVX

MeromWillamette Penryn

AVX2 AVX2 AVX2

AVX-512 F/CD AVX-512 F/CD

AVX-512 ER/PR
AVX-512

VL/BW/DQ

Nehalem Sandy Bridge Haswell Knights
Landing

Skylake
server

128b
SIMD

256b
SIMD

512b
SIMD

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Math Libraries
icc (ifort) comes with optimized math libraries

• libimf (scalar; faster than GNU libm) and libsvml (vector)
• Driver links libimf automatically, ahead of libm
• More functionality (replace math.h by mathimf.h for C)
• Optimized paths for Intel® AVX2 and Intel® AVX-512 (detected at run-time)

Don’t link to libm explicitly! -lm
• May give you the slower libm functions instead
• Though the Intel driver may try to prevent this
• GCC needs -lm, so it is often found in old makefiles

Options to control precision and “short cuts” for vectorized math library:
• -fimf-precision = < high | medium | low >
• -fimf-domain-exclusion = < mask >

• Library need not check for special cases (¥, nan, singularities)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda
Introduction to Intel® Compiler
Vectorization Basics
Optimization Report
Explicit Vectorization

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Auto-vectorization of Intel Compilers
void add(double *A, double *B, double *C)
{
for (int i = 0; i < 1000; i++)
C[i] = A[i] + B[i];

}

subroutine add(A, B, C)
real*8 A(1000), B(1000), C(1000)
do i = 1, 1000

C(i) = A(i) + B(i)
end do

end

.B2.14:
movups xmm1, XMMWORD PTR [edx+ebx*8]
movups xmm3, XMMWORD PTR [16+edx+ebx*8]
movups xmm5, XMMWORD PTR [32+edx+ebx*8]
movups xmm7, XMMWORD PTR [48+edx+ebx*8]
movups xmm0, XMMWORD PTR [ecx+ebx*8]
movups xmm2, XMMWORD PTR [16+ecx+ebx*8]
movups xmm4, XMMWORD PTR [32+ecx+ebx*8]
movups xmm6, XMMWORD PTR [48+ecx+ebx*8]
addpd xmm1, xmm0
addpd xmm3, xmm2
addpd xmm5, xmm4
addpd xmm7, xmm6
movups XMMWORD PTR [eax+ebx*8], xmm1
movups XMMWORD PTR [16+eax+ebx*8], xmm3
movups XMMWORD PTR [32+eax+ebx*8], xmm5
movups XMMWORD PTR [48+eax+ebx*8], xmm7
add ebx, 8
cmp ebx, esi
jb .B2.14
...

Intel® SSE4.2
.B2.15
vmovupd ymm0, YMMWORD PTR [ebx+eax*8]
vmovupd ymm2, YMMWORD PTR [32+ebx+eax*8]
vmovupd ymm4, YMMWORD PTR [64+ebx+eax*8]
vmovupd ymm6, YMMWORD PTR [96+ebx+eax*8]
vaddpd ymm1, ymm0, YMMWORD PTR [edx+eax*8]
vaddpd ymm3, ymm2, YMMWORD PTR [32+edx+eax*8]
vaddpd ymm5, ymm4, YMMWORD PTR [64+edx+eax*8]
vaddpd ymm7, ymm6, YMMWORD PTR [96+edx+eax*8]
vmovupd YMMWORD PTR [esi+eax*8], ymm1
vmovupd YMMWORD PTR [32+esi+eax*8], ymm3
vmovupd YMMWORD PTR [64+esi+eax*8], ymm5
vmovupd YMMWORD PTR [96+esi+eax*8], ymm7
add eax, 16
cmp eax, ecx
jb .B2.15

Intel® AVX

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Linux*, macOS*: -x<code>, Windows*: /Qx<code>

§ Might enable Intel processor specific optimizations

§ Processor-check added to “main” routine:

Application errors in case SIMD feature missing or non-Intel processor with appropriate/informative message

<code> indicates a feature set that compiler may target (including instruction sets and optimizations)

Microarchitecture code names: BROADWELL, HASWELL, IVYBRIDGE, KNL, SANDYBRIDGE, SILVERMONT, SKYLAKE,

SKYLAKE-AVX512

SIMD extensions: COMMON-AVX512, MIC-AVX512, CORE-AVX512, CORE-AVX2, CORE-AVX-I, AVX, SSE4.2, etc.

Basic Vectorization Switches I

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Linux*, macOS*: -ax<code>, Windows*: /Qax<code>

§ Multiple code paths: baseline and optimized/processor-specific

§ Optimized code paths for Intel processors defined by <code>

§ Multiple SIMD features/paths possible, e.g.: -axSSE2,AVX

§ Baseline code path defaults to –msse2 (/arch:sse2)

§ The baseline code path can be modified by –m<code> or –x<code> (/arch:<code> or /Qx<code>)

§ Example: icc -axCORE-AVX512 -xAVX test.c

Linux*, macOS*: -m<code>, Windows*: /arch:<code>

§ No check and no specific optimizations for Intel processors:
Application optimized for both Intel and non-Intel processors for selected SIMD feature

§ Missing check can cause application to fail in case extension not available

Basic Vectorization Switches II

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Default for Linux*: -msse2, Windows*: /arch:sse2:

§ Activated implicitly

§ Implies the need for a target processor with at least Intel® SSE2

Default for macOS*: -msse3 (IA-32), -mssse3 (Intel® 64)

For 32 bit compilation, –mia32 (/arch:ia32) can be used in case target processor does not support Intel® SSE2 (e.g. Intel® Pentium® 3 or
older)

Special switch for Linux*, macOS*: -xHost, Windows*: /QxHost

§ Compiler checks SIMD features of current compilation host processor and makes use of latest SIMD feature available

§ Works with non-Intel processors as well

§ Code only executes on processors with same SIMD feature or later as on build host

Basic Vectorization Switches III

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiler helps with alignment
SSE: 16 bytes
AVX: 32 bytes
AVX512 64 bytes

A[0] A[1] A[2] A[3] A[4] A[5]

A[2] A[3] A[4] A[5]

A[6] A[7] A[8]

Vectorized body :

A[0] A[1]

Peel :

A[8]A[6] A[7]

Remainder :

Compiler can split loop in 3 parts to have aligned access in the loop body

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to Align Data (Fortran)
Align array on an “n”-byte boundary (n must be a power of 2)

!dir$ attributes align:n :: array
• Works for dynamic, automatic and static arrays (not in common)

For a 2D array, choose column length to be a multiple of n,
so that consecutive columns have the same alignment (pad if necessary)

-align array32byte compiler tries to align all array types

And tell the compiler…

!dir$ vector aligned OR
!$omp simd aligned(var [,var…]:<n>)

• Asks compiler to vectorize, assuming all array data accessed in loop are
aligned for targeted processor
• May cause fault if data are not aligned
!dir$ assume_aligned array:n [,array2:n2, …]

• Compiler may assume array is aligned to n byte boundary
• Typical use is for dummy arguments
• Extension for allocatable arrays in next compiler version

n=16 for Intel® SSE, n=32 for Intel® AVX, n=64 for Intel® AVX-512

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to Align Data (C/C++)
Allocate memory on heap aligned to n byte boundary:

void* _mm_malloc(int size, int n)
int posix_memalign(void **p, size_t n, size_t size)
void* aligned_alloc(size_t alignment, size_t size) (C11)
#include <aligned_new> (C++11)

Alignment for variable declarations:
__attribute__((aligned(n))) var_name or
__declspec(align(n)) var_name

And tell the compiler…
#pragma vector aligned

• Asks compiler to vectorize, overriding cost model, and assuming all array data accessed in
loop are aligned for targeted processor

• May cause fault if data are not aligned

__assume_aligned(array, n)

• Compiler may assume array is aligned to n byte boundary

n=64 for Intel® Xeon Phi™ coprocessors, n=32 for Intel® AVX, n=16 for Intel®

SSE

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Guidelines for Writing Vectorizable Code

Prefer simple “for” or “DO” loops
Write straight line code. Try to avoid:

• function calls (unless inlined or SIMD-enabled functions)

• branches that can’t be treated as masked assignments.

Avoid dependencies between loop iterations
• Or at least, avoid read-after-write dependencies

Prefer arrays to the use of pointers
• Without help, the compiler often cannot tell whether it is safe to vectorize code

containing pointers.

• Try to use the loop index directly in array subscripts, instead of incrementing a separate

counter for use as an array address.

• Disambiguate function arguments, e.g. -fargument-noalias

Use efficient memory accesses
• Favor inner loops with unit stride

• Minimize indirect addressing a[i] = b[ind[i]]

• Align your data consistently where possible (to 16, 32 or 64 byte boundaries)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda
Introduction to Intel® Compiler
Vectorization Basics
Optimization Report
Explicit Vectorization

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Limitations of auto-
vectorization
Why some loops don’t auto-vectorize

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Auto-Vectorization Works Great…

Scalar mode Vector (SIMD) mode

+
X

Y

X + Y

+
X

Y

X + Y

= =
x7+y7 x6+y6 x5+y5 x4+y4 x3+y3 x2+y2 x1+y1 x0+y0

y7 y6 y5 y4 y3 y2 y1 y0

x7 x6 x5 x4 x3 x2 x1 x0

for (i=0; i<n; i++) z[i] = x[i] + y[i];

… provided loop is not too complex – compiler must be able to:

§ prove safety;

§ generate corresponding SIMD code;

§ envisage improved performance.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Obstacles to Auto-Vectorization

Multiple loop exits
§ Or trip count unknown at loop entry

Dependencies between loop iterations
§ Mostly, read-after-write “flow” dependencies

Function or subroutine calls
§ Except where inlined

Nested (Outer) loops
§ Unless inner loop fully unrolled

Complexity
§ Too many branches
§ Too hard or time-consuming for compiler to analyze

https://software.intel.com/articles/requirements-for-vectorizable-loops

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr foo.c

Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
Multiversioned v1

remark #25231: Loop multiversioned for Data Dependence
remark #15135: vectorization support: reference theta has unaligned access
remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15145: vectorization support: unroll factor set to 2
remark #15164: vectorization support: number of FP up converts: single to double precision 1
remark #15165: vectorization support: number of FP down converts: double to single precision 1
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
…. (loop cost summary) ….
remark #25018: Estimate of max trip count of loop=32

LOOP END

LOOP BEGIN at foo.c(4,3)
Multiversioned v2

remark #15006: loop was not vectorized: non-vectorizable loop instance from multiversioning
LOOP END
===

Example of New Optimization Report

#include <math.h>
void foo (float * theta, float * sth) {

int i;
for (i = 0; i < 128; i++)

sth[i] = sin(theta[i]+3.1415927);
}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias foo.c
Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
remark #15135: vectorization support: reference theta has unaligned access
remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15145: vectorization support: unroll factor set to 2
remark #15164: vectorization support: number of FP up converts: single to double precision 1
remark #15165: vectorization support: number of FP down converts: double to single precision 1
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
remark #36091: --- begin vector loop cost summary ---
remark #36092: scalar loop cost: 114
remark #36093: vector loop cost: 55.750
remark #36094: estimated potential speedup: 2.040
remark #36095: lightweight vector operations: 10
remark #36096: medium-overhead vector operations: 1
remark #36098: vectorized math library calls: 1
remark #36103: type converts: 2
remark #36104: --- end vector loop cost summary ---
remark #25018: Estimate of max trip count of loop=32

LOOP END

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {

int i;
for (i = 0; i < 128; i++)

sth[i] = sin(theta[i]+3.1415927);
}

(/Qalias-args- on Windows*)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias foo.c

Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
remark #15135: vectorization support: reference theta has unaligned access

remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
remark #36091: --- begin vector loop cost summary ---
remark #36092: scalar loop cost: 111
remark #36093: vector loop cost: 28.000
remark #36094: estimated potential speedup: 3.950
remark #36095: lightweight vector operations: 9
remark #36098: vectorized math library calls: 1
remark #36104: --- end vector loop cost summary ---
remark #25018: Estimate of max trip count of loop=32

LOOP END

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {

int i;
for (i = 0; i < 128; i++)

sth[i] = sinf(theta[i]+3.1415927f);
}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias -xavx foo.c

Begin report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
remark #15135: vectorization support: reference theta has unaligned access
remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
remark #36091: --- begin vector loop cost summary ---
remark #36092: scalar loop cost: 110
remark #36093: vector loop cost: 15.370
remark #36094: estimated potential speedup: 7.120
remark #36095: lightweight vector operations: 9
remark #36098: vectorized math library calls: 1
remark #36104: --- end vector loop cost summary ---
remark #25018: Estimate of max trip count of loop=16

LOOP END
===

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {

int i;
for (i = 0; i < 128; i++)

sth[i] = sinf(theta[i]+3.1415927f);
}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias -xavx foo.c

Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(6,3)
remark #15134: vectorization support: reference theta has aligned access

remark #15134: vectorization support: reference sth has aligned access
remark #15002: LOOP WAS VECTORIZED
remark #36064: unmasked aligned unit stride loads: 1
remark #36065: unmasked aligned unit stride stores: 1
remark #36091: --- begin vector loop cost summary ---
remark #36092: scalar loop cost: 110
remark #36093: vector loop cost: 13.620
remark #36094: estimated potential speedup: 8.060
remark #36095: lightweight vector operations: 9
remark #36098: vectorized math library calls: 1
remark #36104: --- end vector loop cost summary ---
remark #25018: Estimate of max trip count of loop=16

LOOP END
===

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {

int i;
__assume_aligned(theta,32);
__assume_aligned(sth,32);
for (i = 0; i < 128; i++)

sth[i] = sinf(theta[i]+3.1415927f);
}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

§ Enables the optimization report and controls the level of details

§ /Qopt-report[:n], -qopt-report[=n]
§ When used without parameters, full optimization report is issued on stdout with details level 2

§ Control destination of optimization report

§ /Qopt-report-file:<filename>, -qopt-report=<filename>
§ By default, without this option, a <filename>.optrpt file is generated.

§ Subset of the optimization report for specific phases only

§ /Qopt-report-phase[:list], -qopt-report-phase[=list]
Phases can be:

– all – All possible optimization reports for all phases (default)

– loop – Loop nest and memory optimizations

– vec – Auto-vectorization and explicit vector programming

– par – Auto-parallelization

– openmp – Threading using OpenMP

– ipo – Interprocedural Optimization, including inlining

– pgo – Profile Guided Optimization

– cg – Code generation

Optimization Report Phases

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Improved Optimization Report

subroutine test1(a, b ,c, d)

integer, parameter :: len=1024

complex(8), dimension(len) :: a, b, c

real(4), dimension(len) :: d

do i=1,len

c(i) = exp(d(i)) + a(i)/b(i)

enddo

end

$ ifort -c -S -xmic-avx512 -O3 -qopt-report=4 -qopt-report-file=stderr -qopt-report-

phase=loop,vec,cg -qopt-report-embed test_rpt.f90

• 1 vector iteration comprises

• 16 floats in a single AVX-512 register (d)

• 16 double complex in 4 AVX-512 registers per variable (a, b, c)

• Replace exp(d(i)) by d(i) and the compiler will choose a vector length of 4

• More efficient to convert d immediately to double complex

From assembly listing:

VECTOR LENGTH 16

MAIN VECTOR TYPE: 32-bits floating point

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Improved Optimization Report
Compiler options: -c -S -xmic-avx512 -O3 -qopt-report=4 -qopt-report-file=stderr -qopt-
report-phase=loop,vec,cg -qopt-report-embed
…

remark #15305: vectorization support: vector length 16
remark #15309: vectorization support: normalized vectorization overhead 0.087
remark #15417: vectorization support: number of FP up converts: single

precision to double precision 1 [test_rpt.f90(7,6)]
remark #15300: LOOP WAS VECTORIZED
remark #15482: vectorized math library calls: 1
remark #15486: divides: 1
remark #15487: type converts: 1

…
• New features include the code generation (CG) / register allocation report
• Includes temporaries; stack variables; spills to/from memory

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Get reports as annotation to source files:
§ Linux*, macOS*: -qopt-report-annotate=[text|html],

Windows*: /Qopt-report-annotate=[text|html]

§ *.annot file is generated

Annotated Source Listing

// ------- Annotated listing with optimization reports for "test.cpp" -------
//
1 void add(double *A, double *B, double *C, double *D)
2 {
3 for (int i = 0; i < 1000; i++)
...
//LOOP BEGIN at test.cpp(3,2)
//Multiversioned v1
//test.cpp(3,2):remark #15300: LOOP WAS VECTORIZED
//LOOP END
...
4 D[i] = A[i] + B[i]+C[i];
5 }
6

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda
Introduction to Intel® Compiler
Vectorization Basics
Optimization Report
Explicit Vectorization

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP* SIMD Programming
Vectorization is so important

è consider explicit vector programming

Modeled on OpenMP* for threading (explicit parallel programming)

Enables reliable vectorization of complex loops the compiler can’t auto-vectorize
§ E.g. outer loops

Directives are commands to the compiler, not hints
§ E.g. #pragma omp simd or !$OMP SIMD
§ Compiler does no dependency and cost-benefit analysis !!

§ Programmer is responsible for correctness (like OpenMP threading)

§ E.g. PRIVATE, REDUCTION or ORDERED clauses

Incorporated in OpenMP since version 4.0 Þ portable

§ -qopenmp or -qopenmp-simd to enable

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP* SIMD pragma
Use #pragma omp simd with -qopenmp-simd

Use when you KNOW that a given loop is safe to vectorize
The Intel® Compiler will vectorize if at all possible

§ (ignoring dependency or efficiency concerns)
§ Minimizes source code changes needed to enforce vectorization

void addit(double* a, double* b,
int m, int n, int x)
{
for (int i = m; i < m+n; i++) {

a[i] = b[i] + a[i-x];
}

}

void addit(double* a, double * b,
int m, int n, int x)
{
#pragma omp simd // I know x<0
for (int i = m; i < m+n; i++) {

a[i] = b[i] + a[i-x];
}

}

loop was not vectorized:
existence of vector dependence. SIMD LOOP WAS VECTORIZED.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP* SIMD directive

Use !$OMP SIMD with -qopenmp-simd

Use when you KNOW that a given loop is safe to vectorize

The Intel® Compiler will vectorize if at all possible
§ (ignoring dependency or efficiency concerns)

Minimizes source code changes needed to enforce vectorization

subroutine add(A, N, X)
integer N, X
real A(N)

DO I=X+1, N
A(I) = A(I) + A(I-X)

ENDDO
end

subroutine add(A, N, X)
integer N, X
real A(N)

!$ OMP SIMD
DO I=X+1, N

A(I) = A(I) + A(I-X)
ENDDO

end

loop was not vectorized:
existence of vector dependence. SIMD LOOP WAS VECTORIZED.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Clauses for OMP SIMD directives

The programmer (i.e. you!) is responsible for correctness

§ Just like for race conditions in loops with OpenMP* threading

Available clauses:

§ PRIVATE

§ LASTPRIVATE like OpenMP for threading

§ REDUCTION

§ COLLAPSE (for nested loops)

§ LINEAR (additional induction variables)

§ SIMDLEN (preferred number of iterations to execute concurrently)

§ SAFELEN (max iterations that can be executed concurrently)

§ ALIGNED (tells compiler about data alignment)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example: Outer Loop Vectorization
#ifdef KNOWN_TRIP_COUNT
#define MYDIM 3
#else // pt input vector of points
#define MYDIM nd // ptref input reference point
#endif // dis output vector of distances
#include <math.h>

void dist(int n, int nd, float pt[][MYDIM], float dis[], float ptref[]) {
/* calculate distance from data points to reference point */

#pragma omp simd
for (int ipt=0; ipt<n; ipt++) {

float d = 0.;

for (int j=0; j<MYDIM; j++) {
float t = pt[ipt][j] - ptref[j];
d+= t*t;

}

dis[ipt] = sqrtf(d);
}

Inner loop with
low trip count

}

Outer loop with
high trip count

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Outer Loop Vectorization
icc -std=c99 -xavx -qopt-report-phase=loop,vec -qopt-report-file=stderr -c dist.c
…
LOOP BEGIN at dist.c(26,2)

remark #15542: loop was not vectorized: inner loop was already vectorized
…

LOOP BEGIN at dist.c(29,3)
remark #15300: LOOP WAS VECTORIZED

We can vectorize the outer loop by activating the pragma using -qopenmp-simd
#pragma omp simd

Would need private clause for d and t if declared outside SIMD scope

icc -std=c99 -xavx -qopenmp-simd -qopt-report-phase=loop,vec -qopt-report-file=stderr -qopt-report=4 -c dist.c
…
LOOP BEGIN at dist.c(26,2)

remark #15328: … non-unit strided load was emulated for the variable <pt[ipt][j]>, stride is unknown to compiler
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
LOOP BEGIN at dist.c(29,3)

remark #25460: No loop optimizations reported

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Unrolling the Inner Loop

There is still an inner loop.
If the trip count is fixed and the compiler knows it, the inner loop can be fully unrolled. Outer
loop vectorization is more efficient also because stride is now known

icc -std=c99 -xavx -qopenmp-simd -DKNOWN_TRIP_COUNT -qopt-report-phase=loop,vec -qopt-
report-file=stderr -qopt-report=4 -c dist.c
…
LOOP BEGIN at dist.c(26,2)

remark #15328: vectorization support: non-unit strided load was emulated for the variable <pt[ipt][j]>,
stride is 3 [dist.c(30,14)]

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

LOOP BEGIN at dist.c(29,3)
remark #25436: completely unrolled by 3 (pre-vector)

LOOP END
LOOP END

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Options Speed-up What’s going on
-O1 -xavx 1.0 No vectorization

-O2 -xavx 1.5 Inner loop vectorization

-O2 -xavx -qopenmp-simd 3.5 Outer loop vectorization
unknown stride

-O2 -xavx -qopenmp-simd
-DKNOWN_TRIP_COUNT

6.5 Inner loop fully unrolled
known outer loop stride

-O2 -xcore-avx2 -qopenmp-simd -
DKNOWN_TRIP_COUNT

7.4 + Intel® AVX2
including FMA instructions

Outer Loop Vectorization - performance

Performance tests are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary.
The results above were obtained on a 4th Generation Intel® Core™ i7-4790 system, frequency 3.6 GHz, running
Ubuntu* version 14.04.5 and using the Intel® C++ Compiler version 18.0.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Options Speed-up What’s going on
-O1 -xavx 1.0 No vectorization

-O2 -xavx 0.94 Inner loop vectorization

-O2 -xavx -qopenmp-simd 2.2 Outer loop vectorization
unknown stride

-O2 -xavx -qopenmp-simd
-DKNOWN_TRIP_COUNT

4.5 Inner loop fully unrolled
known outer loop stride

-O2 -xcore-avx2 -qopenmp-simd -
DKNOWN_TRIP_COUNT

4.8 + Intel® AVX2
including FMA instructions

Outer Loop Vectorization - performance

Performance tests are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary.
The results above were obtained on a 4th Generation Intel® Core™ i7-4790 system, frequency 3.6 GHz, running
Ubuntu* version 14.04.5 and using the Intel® Fortran Compiler version 18.0.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Faster, Scalable Code with Intel® Math Kernel Library

45

• Features highly optimized, threaded, and vectorized math functions
that maximize performance on each processor family

• Utilizes industry-standard C and Fortran APIs for compatibility with
popular BLAS, LAPACK, and FFTW functions—no code changes
required

• Dispatches optimized code for each processor automatically without
the need to branch code

What’s New in Intel® MKL 2018
§ Improved small matrix multiplication performance in GEMM and LAPACK

§ Improved ScaLAPACK performance for distributed computation

§ 24 new vector math functions

§ Simplified license for easier adoption and redistribution

§ Additional distributions via YUM, APT-GET, and Conda repositories

**Certain technical specifications and select processors/skus apply. See product site for more details.

Learn More: software.intel.com/mkl

software.intel.com/computer-vision-sdk

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Faster Machine Learning & Analytics with Intel® DAAL
• Features highly tuned functions for classical machine learning and

analytics performance across spectrum of Intel® architecture
devices

• Optimizes data ingestion together with algorithmic computation
for highest analytics throughput

• Includes Python*, C++, and Java* APIs and connectors to popular
data sources including Spark* and Hadoop*

• Free and open source community-supported versions are
available, as well as paid versions that include premium support.

Learn More: software.intel.com/daal

Pre-processing Transformation Analysis Modeling Decision Making

Decompression,
Filtering,

Normalization

Aggregation,
Dimension Reduction

Summary Statistics
Clustering, etc.

Machine Learning (Training)
Parameter Estimation

Simulation

Forecasting
Decision Trees, etc.

Validation

Hypothesis testing
Model errors

What’s New in 2018 version
§ New Algorithms:

§ Classification & Regression Decision Tree

§ Classification & Regression Decision Forest

§ k-NN

§ Ridge Regression

§ Spark* MLlib-compatible API wrappers for easy substitution of
faster Intel DAAL functions

§ Improved APIs for ease of use

§ Repository distribution via YUM, APT-GET, and Conda

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Integrated Performance Primitives 2018
Highly Optimized Image, Signal & Data Processing Functions

47

Intel® Integrated Performance Primitives provides developers with ready-to-use, processor optimized functions

to accelerate Image, Signal, Data Processing & Cryptography computation tasks

§ Multi-core, multi-OS and multi-platform ready, computationally intensive and highly optimized functions

§ Plug in and use APIs to quickly improve application performance

§ Reduced cost and time-to-market on software development and maintenance

§ Access Priority Support, which connects you direct to Intel engineers for technical questions (paid versions only)

What’s New in 2018 version
§ Added new functions to support LZ4 data compression/decompression

§ You can use GraphicsMagick to access IPP optimized functions

§ Platform aware APIs provide 64 bit parameters for image dimensions and vector length.

**Certain technical specifications and select processors/skus apply. See product site for more details.

Learn More: software.intel.com
Roadmap Notice: All information provided here is subject to change without notice.

Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

https://software.intel.com/en-us/support/intel-premier-support
../software.intel.com/computer-vision-sdk

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
48

What’s Inside Intel® Integrated Performance Primitives
High Performance , Easy-to-Use & Production Ready APIs

1 Available only in Intel® Parallel Studio Composer Edition.

Image Processing

Computer Vision

Color Conversion

Image Domain

Data Compression

Cryptography

String Processing

Data Domain

Signal Processing

Vector Math

Signal Domain

Operating System: Windows*, Linux*, Android*, MacOS1*

Intel® Architecture Platforms

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
49

Bitwise Reproducibility with the Same Executable:

• Reproducibility from one run to another: -qno-opt-dynamic-align

• Makes results independent of alignment

• Alternative: align all data, e.g. -alignarray64byte (Fortran); _mm_malloc() etc.
(C/C++)

• Reproducibility from one run-time processor to another:

• -fimf-arch-consistency=true -qno-opt-dynamic-align

• with 18.0, -fimf-use-svml -qno-opt-dynamic-align might suffice for Sandy Bridge
and later

• Reproducibility for different domain decompositions (# threads and/or # MPI ranks)

• -fp-model consistent (safest) with no parallel reductions (except TBB
parallel_deterministic_reduce)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
50

Bitwise Reproducibility with Different Executables:

• Reproducibility between different compile-time processor targets; different
optimization levels; etc.

• -fp-model consistent (equivalent to -fp-model precise -nofma -fimf-
arch-consistency=true)

• -fp-model consistent -fimf-use-svml re-enables vectorization of math
functions in 18.0

• Reproducibility between Windows* and Linux* (being worked on) or
different compiler versions ?

• Not covered; best try is -fp-model consistent -fimf-use-svml -fimf-
precision=high

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
51

Summary

• Auto Vectorize as much as possible

• This will ensure that future architectures will vectorize

• Optimization Report is the way the compiler communicates to you

• Tells you what didn’t vectorize and why.

• OpenMP SIMD

• For when auto vectorization isn’t possible, or when you need vectorize
outer loops.

• Correctness is on the user

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Further Information

Webinars:

https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports

https://software.intel.com/videos/new-vectorization-features-of-the-intel-compiler
https://software.intel.com/videos/from-serial-to-awesome-part-2-advanced-code-vectorization-and-optimization

https://software.intel.com/videos/data-alignment-padding-and-peel-remainder-loops

Vectorization Guide (C): https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

Explicit Vector Programming in Fortran:
https://software.intel.com/articles/explicit-vector-programming-in-fortran

Initially written for Intel® Xeon Phi™ coprocessors, but also applicable elsewhere:

https://software.intel.com/articles/vectorization-essential

https://software.intel.com/articles/fortran-array-data-and-arguments-and-vectorization

The Intel® C++ and Fortran Compiler Developer Guides, https://software.intel.com/en-

us/cpp-compiler-18.0-developer-guide-and-reference https://software.intel.com/en-us/fortran-compiler-18.0-

developer-guide-and-reference

https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/new-vectorization-features-of-the-intel-compiler
https://software.intel.com/en-us/videos/from-serial-to-awesome-part-2-advanced-code-vectorization-and-optimization
https://software.intel.com/videos/data-alignment-padding-and-peel-remainder-loops
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/vectorization-essential
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/fortran-compiler-18.0-developer-guide-and-reference

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

BackUp
Compiler must recognize to handle apparent dependencies

55

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP* SIMD-
Enabled functions
A way to vectorize loops containing calls to functions that can’t be inlined

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Function calls can have side effects that introduce a loop-carried dependency,
preventing vectorization

Possible remedies:

§ Inlining
§ best for small functions
§ Must be in same source file, or else use -ipo

§ OMP SIMD pragma or directive to vectorize rest of loop, while
preserving scalar calls to function (last resort)

§ SIMD-enabled functions

§ Good for large, complex functions and in contexts where inlining is difficult

§ Call from regular “for” or “DO” loop
§ In Fortran, adding “ELEMENTAL” keyword allows SIMD-enabled function to be called

with array section argument

Loops Containing Function Calls

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD-Enabled Function
Compiler generates SIMD-enabled (vector) version of a scalar function that

can be called from a vectorized loop:

#pragma omp declare simd uniform(y,z,xp,yp,zp)
float func(float x, float y, float z, float xp, float yp, float zp)

{

float denom = (x-xp)*(x-xp) + (y-yp)*(y-yp) + (z-zp)*(z-zp);

denom = 1./sqrtf(denom);

return denom;

}

…

#pragma omp simd private(x) reduction(+:sumx)
for (i=1; i<nx; i++) {

x = x0 + (float) i * h;

sumx = sumx + func(x, y, z, xp, yp, zp);

}

#pragma omp simd may not be needed in simpler cases

These clauses are required for

correctness, just like for OpenMP*

FUNCTION WAS VECTORIZED with ...

SIMD LOOP WAS VECTORIZED.

y, z, xp, yp and zp are constant,
x can be a vector

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD-Enabled Function
Compiler generates SIMD-enabled (vector) version of a scalar function that
can be called from a vectorized loop:

real function func(x, y, z, xp, yp, zp)
!$omp declare simd (func) uniform(y, z, xp, yp, zp)

real, intent(in) :: x, y, z, xp, yp, zp
denom = (x-xp)**2 + (y-yp)**2 + (z-zp)**2
func = 1./sqrt(denom)

end
…
!$omp simd private(x) reduction(+:sumx)

do i = 1, nx-1
x = x0 + i * h

sumx = sumx + func(x, y, z, xp, yp, zp)
enddo

SIMD-enabled function must have explicit interface
!$omp simd may not be needed in simpler cases

These clauses are required for
correctness, just like for OpenMP*

FUNCTION WAS VECTORIZED with ...

SIMD LOOP WAS VECTORIZED.

y, z, xp, yp and zp are constant,
x can be a vector

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Clauses for SIMD-Enabled Functions
#pragma omp declare simd (C/C++)
!$OMP DECLARE SIMD (fn_name) (Fortran)

• UNIFORM argument is never vector

• LINEAR (REF|VAL|UVAL) additional induction variables use REF(X) when vector
argument is passed by reference (Fortran default)

• INBRANCH / NOTINBRANCH specify whether function will be called conditionally
• SIMDLEN vector length
• ALIGNED asserts that listed variables are aligned
• PROCESSOR(cpu) Intel extension, tells compiler which processor to target,

e.g. core_2nd_gen_avx, haswell, knl, skylake_avx512
NOT controlled by -x… switch, may default to SSE

Simpler is to target processor specified by -x switch
using -vecabi=cmdtarget

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD-Enabled Fortran Subroutine
Compiler generates SIMD-enabled (vector) version of a scalar subroutine that can be
called from a vectorized loop:

subroutine test_linear(x, y)
!$omp declare simd (test_linear) linear(ref(x, y))

real(8),intent(in) :: x
real(8),intent(out) :: y
y = 1. + sin(x)**3

end subroutine test_linear
…
Interface
…
do j = 1,n

call test_linear(a(j), b(j))
enddo

SIMD-enabled routine must have explicit interface
!$omp simd not needed in simple cases like this

remark #15301: FUNCTION WAS VECTORIZED.

remark #15300: LOOP WAS VECTORIZED.

Important because arguments
passed by reference in Fortran

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD-Enabled Fortran Subroutine
The LINEAR(REF) clause is very important
• In C, compiler places consecutive argument values in a vector register

• But Fortran passes arguments by reference
• By default compiler places consecutive addresses in a vector register
• Leads to a gather of the 4 addresses (slow)
• LINEAR(REF(X)) tells the compiler that the addresses are consecutive; only need

to dereference once and copy consecutive values to vector register

• Same method could be used for C arguments passed by reference

Approx speed-up for double precision array of 1M elements built with -xcore-avx2:

SIMD options Speed-up Memory access Vector length

No DECLARE SIMD 1.0 scalar 1

DECLARE SIMD but no LINEAR(REF) 1.7 Non-unit stride 2

DECLARE SIMD with LINEAR(REF) 4.3 Unit stride 4

plus -vecabi=cmdtarget 4.6 Unit stride 8

Performance tests are measured using specific computer
systems, components, software, operations and functions.
Any change to any of those factors may cause the results to
vary. The results above were obtained on a 4th Generation
Intel® Core™ i7-4790 system, frequency 3.6 GHz, running
Ubuntu* version 14.04.5 and using the Intel® Fortran Compiler
version 18.0

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Special Idioms
Compiler must recognize to handle apparent dependencies

63

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
64

Special Idioms

Dependency on an earlier iteration usually makes vectorization unsafe

§ Some special patterns can still be handled by the compiler

– Provided the compiler recognizes them (auto-vectorization)

– Often works only for simple, ‘clean’ examples

– Or the programmer tells the compiler (explicit vector programming)

– May work for more complex cases

– Examples: reduction, compress/expand, search, histogram/scatter, minloc

§ Sometimes, the main speed-up comes from vectorizing the rest of a large loop, more

than from vectorization of the idiom itself

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Auto-vectorizes with any instruction set:
icc -std=c99 -O2 -qopt-report-phase=loop,vec -qopt-report-file=stderr reduce.c;
…

LOOP BEGIN at reduce.c(17,6))
remark #15300: LOOP WAS VECTORIZED

65

Reduction – simple example
double reduce(double a[], int na) {
/* sum all positive elements of a */

double sum = 0.;
for (int ia=0; ia <na; ia++) {

if (a[ia] > 0.) sum += a[ia]; // sum causes cross-iteration dependency
}
return sum;

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

icc -std=c99 -O2 -fp-model precise -qopt-report-phase=loop,vec -qopt-report-file=stderr reduce.c;
…

LOOP BEGIN at reduce.c(17,6))
remark #15331: loop was not vectorized: precise FP model implied by the command line or a directive

prevents vectorization. Consider using fast FP model [reduce.c(18,26)

Vectorization would change order of operations, and hence the result
§ Can use a SIMD pragma to override and vectorize:

icc -std=c99 -O2 -fp-model precise -qopenmp-simd -qopt-report-file=stderr reduce.c;
LOOP BEGIN at reduce.c(18,6)

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

66

Reduction – when auto-vectorization doesn’t work

#pragma omp simd reduction(+:sum)
for (int ia=0; ia <na; ia++) {

sum += …

Without the reduction clause, results would be
incorrect because of the flow dependency. See
“SIMD-Enabled Function” section for another
example.

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

With Intel® AVX2, does not auto-vectorize

§ icc -c -std=c99 -xcore-avx2 -qopt-report-file=stderr -qopt-report-phase=vec compress.c

…

LOOP BEGIN at compress.c(17,2)

remark #15344: loop was not vectorized: vector dependence prevents vectorization.

remark #15346: vector dependence: assumed ANTI dependence between nb (4:19) and nb (4:21)

LOOP END

67

Compress – simple example

int compress(float *a, float *restrict b, int na) {

int nb = 0;

for (int ia=0; ia <na; ia++) {

if (a[ia] > 0.) b[nb++] = a[ia]; // nb causes cross-iteration dependency

}

return nb;

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

icc -c -std=c99 -xcommon-avx512 -qopt-report-file=stderr -qopt-report=3 compress.c
…
LOOP BEGIN at compress.c(3,2)

remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 1
remark #15457: masked unaligned unit stride stores: 1

…
remark #15478: estimated potential speedup: 14.010
remark #15497: vector compress: 1

LOOP END

§ Compile with -S to see new instructions in assembly code:
grep vcompress compress.s
vcompressps %zmm5, %zmm2{%k1} #4.19
vcompressps %zmm2, %zmm1{%k1} #4.19
vcompressps %zmm2, %zmm1{%k1} #4.19
vcompressps %zmm5, %zmm2{%k1} #4.19

68

Compress with Intel® AVX-512

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

With Intel® AVX2, does not auto-vectorize

§ ifort -c -xcore-avx2 -qopt-report-file=stderr -qopt-report-phase=vec -qopt-report=3 compress.f90

…

LOOP BEGIN at compress.f90(10,3)

remark #15344: loop was not vectorized: vector dependence prevents vectorization.

remark #15346: vector dependence: assumed ANTI dependence between nb (12:7) and nb (12:7)

LOOP END

69

Compress – simple example

subroutine compress(a, b, na, nb)

implicit none

real, dimension(na), intent(in) :: a

real, dimension(*), intent(out) :: b

integer, intent(in) :: na

integer, intent(out) :: nb

integer :: ia

nb = 0

do ia=1, na

if(a(ia) > 0.) then

nb = nb + 1 ! dependency

b(nb) = a(ia) ! compress

endif

enddo

end

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

ifort -c -xcommon-avx512 -qopt-report-file=stderr -qopt-report=3 compress.f90
…
LOOP BEGIN at compress.c(3,2)

remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 1
remark #15457: masked unaligned unit stride stores: 1

…
remark #15478: estimated potential speedup: 13.080
remark #15497: vector compress: 1

LOOP END

§ Compile with -S to see new instructions in assembly code:
grep vcompress compress.s
vcompressps %zmm5, %zmm2{%k1} #13.7
vcompressps %zmm2, %zmm1{%k1} #13.7
vcompressps %zmm2, %zmm1{%k1} #13.7
vcompressps %zmm5, %zmm2{%k1} #13.7

70

Compress with Intel® AVX-512

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

By default, the inner reduction loop over i2 is vectorized
icc -std=c99 -xcommon-avx512 -qopt-report-file=stderr -qopt-report-phase=vec compress3.c

LOOP BEGIN at compress3.c(5,3)
remark #15300: LOOP WAS VECTORIZED

LOOP END

More efficient to vectorize the outer loop over i2, especially if n1 >> n2

71

Compress – more complex example

int compress(int n1, int n2, float a[][n2], float b[restrict]) {
int nb = 0;
for (int i1=0; i1 <n1; i1++) {
float sc = 0.f;
for (int i2=0; i2<n2; i2++) sc += a[i1][i2];

if (sc > 0.f) b[nb++] = sc;
}
return nb;

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

omp simd tells compiler to vectorize outer loop
omp ordered takes care of the nb dependency

if omitted, results may be incorrect
monotonic(nb:1) enables (much) more efficient code generation

72

Compress – Explicit Vectorization with OpenMP*

int compress(int n1, int n2, float a[][n2], float b[restrict]) {
int nb = 0;

#pragma omp simd
for (int i1=0; i1 <n1; i1++) {
float sc = 0.f;
for (int i2=0; i2<n2; i2++) sc += a[i1][i2];

#pragma omp ordered simd monotonic(nb:1)
{ if (sc > 0.f) b[nb++] = sc; }

}
return nb;

}

icc -std=c99 -xcommon-avx512 -qopenmp-simd …

LOOP BEGIN at compress3.c(4,2)
remark #15301:

OpenMP SIMD LOOP WAS VECTORIZED
remark #15452: unmasked strided loads: 1
remark #15457: masked unaligned unit stride stores: 1
…
remark #15497: vector compress: 1
…
LOOP BEGIN at compress3.c(6,3)

remark #15548: loop was vectorized along with the
outer loop

LOOP END
LOOP END

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

By default, the inner reduction loop over ia1 is vectorized
ifort -xcommon-avx512 -qopt-report-file=stderr -qopt-report-phase=vec compress6.f90

LOOP BEGIN at compress6.f90(27,5)
remark #15300: LOOP WAS VECTORIZED

LOOP END

More efficient to vectorize the outer loop over ia2, especially if na2 >> na1

73

Compress – more complex example

subroutine compress(a, b, na1, na2, nb)
implicit none
real(8), intent(in), dimension(na1,na2)) :: a
real(8), intent(out), dimension(*) :: b
integer, intent(in) :: na1, na2
integer, intent(out) :: nb
integer :: ia1, ia2, ib
real(8) :: sum

nb = 0

do ia2=1, na2
sum = 0.
do ia1=1, na1

sum = sum + a(ia1,ia2)
enddo
if(sum.gt.0.) then

nb = nb + 1
b(nb) = sum

endif
enddo

end

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

ifort -xcommon-avx512 -qopt-report-file=stderr
-qopt-report-phase=vec compress6.f90

LOOP BEGIN at compress6.f90(25,3)
…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15452: unmasked strided loads: 1
remark #15457: masked unaligned unit stride stores: 1

…
remark #15497: vector compress: 1

…
LOOP END

§ Use local variable ib for compress counter, not
dummy argument nb

omp simd tells compiler to vectorize outer loop
omp ordered takes care of the nb dependency.

If omitted, results may be incorrect.
monotonic(ib) enables (much) more efficient

code generation.

74

Compress – Explicit Vectorization with OpenMP*

subroutine compress(a, b, na1, na2, nb)
...
ib = 0 ! Don’t use dummy argument nb here!
!$omp simd private(sum)
do ia2=1, na2

sum = 0.
do ia1=1, na1

sum = sum + a(ia1,ia2)
enddo

!$omp ordered simd monotonic(ib:1)
if(sum.gt.0.) then

ib = ib + 1
b(nb) = sum

endif
!$omp end ordered

enddo
nb = ib

end

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

omp simd tells compiler to vectorize outer loop
omp ordered takes care of the nb dependency

if omitted, results may be incorrect
monotonic(nb:1) enables (much) more efficient code generation

75

Compress – Explicit Vectorization with OpenMP*

int compress(int n1, int n2, float a[][n2], float b[restrict]) {
int nb = 0;

#pragma omp simd
for (int i1=0; i1 <n1; i1++) {
float sc = 0.f;
for (int i2=0; i2<n2; i2++) sc += a[i1][i2];

#pragma omp ordered simd monotonic(nb:1)
{ if (sc > 0.f) b[nb++] = sc; }

}
return nb;

}

icc -std=c99 -xcommon-avx512 -qopenmp-simd …

LOOP BEGIN at compress3.c(4,2)
remark #15301:

OpenMP SIMD LOOP WAS VECTORIZED
remark #15452: unmasked strided loads: 1
remark #15457: masked unaligned unit stride stores: 1
…
remark #15497: vector compress: 1
…
LOOP BEGIN at compress3.c(6,3)

remark #15548: loop was vectorized along with the
outer loop

LOOP END
LOOP END

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Options Speed-up
(C)

Speed-up
(Fortran)

Simple loop -O2 -xcore-avx2 1.0 1.0

-O2 -xcommon-avx512 15.4 14.6

Nested loop -O2 xcommon-avx512 1.0 1.0

ordered -O2 xcommon-avx512 -qopenmp-simd 2.4 1.8

monotonic -O2 xcommon-avx512 -qopenmp-simd 8.2 5.2

76

Compress loops - performance

Performance tests are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to vary.
The results above were obtained on an Intel® Xeon® Platinum 8180M system, frequency 2.5 GHz,
running Fedora 25 and using the Intel® Fortran Compiler version 18.0 update 1.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
77

Search Loops

Normally, a vectorizable loop must have a single exit

§ And iteration count must be known at start of execution
– Else a later iteration may have started before an earlier iteration decides the loop should be

terminated

Simple “search” loops are an exception

§ Compiler recognizes
– executes special code if an exit occurs during a SIMD iteration

– only works if no stores back to memory

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
78

Search Loop – very simple

icc -c -qopt-report-file=stderr search1.c ifort -c -qopt-report-file=stderr search1.f90
…
LOOP BEGIN at search1.c(4,3)

remark #15300: LOOP WAS VECTORIZED
LOOP END

integer function search (na, target, array)
integer, intent(in) :: na, target, array(na)

do i=1,na
if(array(i) == target) exit

enddo

search = i
end

int search(int * array, int target, int na) {
int i;

for(i=0; i<na; i++) {
if(array[i] == target) break;

}

return i;
}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
79

Search Loop – more complex
If loop contains vector store, compiler can’t handle

§ Do calculation until first negative value of a is encountered

icc -c -qopt-report-file=stderr search3.c ifort -c -qopt-report-file=stderr search3.f90
… …
remark #15520: loop was not vectorized: loop with multiple exits cannot be vectorized unless it meets search loop idiom criteria [

search3.c(5,18)] [search3.f90(8,3)]

integer function search(a,b,c,n)
real, dimension(n) :: a, b, c
integer :: n, i

do i=1,n
if(a(i) .lt. 0.) exit
c(i) = sqrt(a(i)) * b(i)

enddo

search = i-1
end

int search(float* a,float *b, float*c, int n)
{
int i;

for(i=0; i<n; i++) {
if(a[i] < 0.) break;
c[i] = sqrtf(a[i]) * b[i];

}

return i-1;
}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
80

OpenMP* SIMD to the Rescue

icc -c -qopenmp-simd … search5.c ifort -c -qopenmp-simd … search5.f90
… …

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

#pragma omp simd without “early_exit” clause is not sufficient:

search5.c(6): error: break cannot be used to exit simd region

integer function search(a,b,c,n)
real, dimension(n) :: a, b, c
integer :: n, i

!$omp simd early_exit
do i=1,n

if(a(i) .lt. 0.) exit
c(i) = sqrt(a(i)) * b(i)

enddo

search = i-1
end

int search(float* a,float *b, float*c, int n)
{
int i;

#pragma omp simd early_exit
for(i=0; i<n; i++) {
if(a[i] < 0.) break;
c[i] = sqrtf(a[i]) * b[i];

}

return i-1;
}

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
81

Search Loop – old way to fix
Split loop into simple search followed by a computation loop

§ Both loops then vectorize

§ Generated code is simpler but need to reload a
§ Good if SIMD not needed for other reasons

integer function search(a,b,c,n)

real, dimension(n) :: a, b, c

integer :: n, i, j

do i=1,n
if(a(i).lt.0.) exit

enddo

search = i-1

do j=1,search
c(j) = sqrt(a(j)) * b(j)

enddo

end function search

int search(float* a,float *b, float*c, int n)

{

int i, j;

for(i=0; i<n; i++) {
if(a[i] < 0.) break;

}

for(j=0; j<i; j++) {

c[j] = sqrtf(a[j]) * b[j];
}

return i-1;

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Options Speed-up
(C)

Speed-up
(Fortran)

1st example -O2 -xcore-avx2 -no-vec 1.0 1.0

-O2 -xcore-avx2 2.6 1.9

2nd example -O2 xcore-avx2 1.0 1.0

-O2 xcore-avx2 -qopenmp-simd 3.5 4.0

split loops -O2 xcore-avx2 5.2 5.0

82

Search loops - performance

Performance tests are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to vary.
The results above were obtained on a 4th Generation Intel® Core™ i7-4790 system, frequency 3.6 GHz,
running Red Hat* Enterprise Linux* version 7.2 and using the Intel® Fortran Compiler version 18.0
update 1.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

With Intel® AVX2, this does not vectorize
§ Store to h is a scatter (indirect addressing)
§ ih can have the same value for different values of i
§ Vectorization with a SIMD directive would cause incorrect results
ifort -c -xcore-avx2 histo2.f90 -qopt-report-file=stderr -qopt-report-phase=vec
LOOP BEGIN at histo2.f90(11,4)

remark #15344: loop was not vectorized: vector dependence prevents vectorization… remark
#15346: vector dependence: assumed FLOW dependence between line 15 and line 15
LOOP END

83

Histogramming with Intel® AVX2
! Accumulate histogram of sin(x) in h

do i=1,n
y = sin(x(i)*twopi)
ih = ceiling((y-bot)*invbinw)
ih = min(nbin,max(1,ih))
h(ih) = h(ih) + 1

enddo

for (i=0; i<n; i++) {
y = sinf(x[i]*twopi);
ih = floor((y-bot)*invbinw);
ih = ih > 0 ? ih : 0;
ih = ih < nbin ? ih : nbin;
h[ih] = h[ih] + 1;

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

INTEL® AVX-512 Conflict Detection Instructions
The VPCONFLICT instruction detects elements with
previous conflicts in a vector of indexes
§ Allows to generate a mask with a subset of elements that

are guaranteed to be conflict free
§ The computation loop can be re-executed with the

remaining elements until all the indexes have been
operated upon. In pseudo-code:

index = vload &B[i] // Load 16 B[i]

pending_elem = 0xFFFF; // all still remaining

do {

curr_elem = get_conflict_free_subset(index, pending_elem)

old_val = vgather {curr_elem} A, index // Grab A[B[i]]

new_val = vadd old_val, +1.0 // Compute new values

vscatter A {curr_elem}, index, new_val // Update A[B[i]]

pending_elem = pending_elem ^ curr_elem // remove done idx

} while (pending_elem)

VPCONFLICT instruction
VPCONFLICT{D,Q} zmm2/mem, zmm1{k1}

VPTESTNM{D,Q} zmm2, zmm3/mem, zmm2, k2{k1}

VPBROADCASTM{W2D,B2Q} k2, zmm1

VPLZCNT{D,Q} zmm2/mem, zmm1 {k1}

Intel Confidential 49

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

E.g. compile for Intel® Xeon Phi™ processor x200 family:

ifort -c -xmic-avx512 histo2.f90 -qopt-report-file=stderr -qopt-report=3 -S
…
LOOP BEGIN at histo2.f90(11,4)

remark #15300: LOOP WAS VECTORIZED
remark #15458: masked indexed (or gather) loads: 1
remark #15459: masked indexed (or scatter) stores: 1
remark #15478: estimated potential speedup: 13.930
remark #15499: histogram: 2

LOOP END

vpminsd %zmm20, %zmm5, %zmm3 #24.7 c19
vpconflictd %zmm3, %zmm1 #25.7 c21
vpgatherdd (%r13,%zmm3,4), %zmm6{%k1} #25.15 c21
vptestmd .L_2il0floatpacket.5(%rip), %zmm1, %k0 #25.7 c23
vpaddd %zmm21, %zmm6, %zmm2 #25.7 c27

…
vpbroadcastmw2d %k1, %zmm4 #25.7 c3
vpaddd %zmm21, %zmm2, %zmm2{%k1} #25.7 c5
vptestmd %zmm1, %zmm4, %k0{%k1} #25.7 c9 stall 1
vpscatterdd %zmm2, (%r13,%zmm3,4){%k1} #25.7 c3

85

Histogramming with Intel® AVX-512 CD

Some remarks
omitted

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compile for Intel® Xeon Phi™ processor x200 family:

ifort -c -xmic-avx512 histo2.f90 -qopt-report-file=stderr -qopt-report=3 -S
…
LOOP BEGIN at histo2.f90(11,4)

remark #15300: LOOP WAS VECTORIZED
remark #15458: masked indexed (or gather) loads: 1
remark #15459: masked indexed (or scatter) stores: 1
remark #15478: estimated potential speedup: 13.930
remark #15499: histogram: 2

LOOP END

86

Histogramming with Intel® AVX-512 CD

Some remarks
omitted

vpminsd %zmm20, %zmm5, %zmm3
vpconflictd %zmm3, %zmm1
work on simd lanes without conflicts
vpgatherdd (%r13,%zmm3,4), %zmm6{%k1} # load h
vptestmd .L_2il0floatpacket.5(%rip), %zmm1, %k0
vpaddd %zmm21, %zmm6, %zmm2 #increment h
…
vpbroadcastmw2d %k1, %zmm4
vplzcntd %zmm1, %zmm4
vptestmd %zmm1, %zmm5, %k0

..B1.18 # loop over simd lanes with conflicts
kmovw %r10d, %k1
vpbroadcastmw2d %k1, %zmm4
vpermd %zmm2, %zmm0, %zmm2{%k1}
vpaddd %zmm21, %zmm2, %zmm2{%k1} #increment histo
vptestmd %zmm1, %zmm4, %k0{%k1}
kmovw %k0, %r10d
testl %r10d, %r10d
jne ..B1.18
…
vpscatterdd %zmm2, (%r13,%zmm3,4){%k1} # final store

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

This does not auto-vectorize, even with Intel® AVX-512, due to the function call
§ Can be vectorized with OpenMP* by:

– Making myfun() a SIMD function
– Using the OMP ORDERED SIMD pragma/directive
– Add the OVERLAP hint to help compiler vectorize more efficiently

icc -c -std=c99 -xcommon-avx512 -qopt-report-file=stderr -qopt-report-phase=vec test3.c
…
remark #15543: loop was not vectorized: loop with function call not considered an optimization candidate.

87

Histogramming – more complex
! Accumulate histogram of myfun(x) in h

do i=1,n
y = myfun(x(i))
ih = ceiling((y-bot)*invbinw)
ih = min(nbin,max(1,ih))
h(ih) = h(ih) + 1

enddo

for (int i=0; i<n; i++) {
float y = myfun(x[i]);
int ih = floor((y-bot)*invbinw);
ih = ih >= 0 ? ih : 0;
ih = ih <= nbin-1 ? ih : nbin-1;
++contents[ih];

}

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiler creates both vector and scalar versions

§ Use -vecabi=cmdtarget to target instruction set specified by -x… (/Qx…) switch

– Else ABI requires arguments to be passed using xmm registers (Intel® SSE)

– Linear(ref) clause avoids “gather” of vector of addresses

– Needed because Fortran default is pass by reference, not value

icc -c -std=c99 -xcommon-avx512 -qopenmp-simd -vecabi=cmdtarget -qopt-report-file=stderr myfun.c

…

remark #15347: FUNCTION WAS VECTORIZED with zmm, simdlen=16, unmasked, formal parameter types: (vector)

remark #15347: FUNCTION WAS VECTORIZED with zmm, simdlen=16, masked, formal parameter types: (vector)

88

Histogramming – SIMD function

#include <math.h>
#pragma omp declare simd
float myfun(float x) {

float twopi=2.f*acosf(-1.f);
float y = sinf(x*twopi);
return y*y*y;

}

real function myfun(x) result(y)
!$omp declare simd linear(ref(x))

real, intent(in) :: x
real, parameter :: twopi=2.*acos(-1.)

y = sin(x*twopi)**3
end function myfun

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Need explicit interface to SIMD function

§ omp ordered simd is sufficient for safe vectorization

– overlap(ih) may help compiler generate more efficient code

– ifort -c -xcommon-avx512 -qopenmp-simd -vecabi=cmdtarget histo_mod.f90 myfun.f90

…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

remark #15347: FUNCTION WAS VECTORIZED with zmm, simdlen=16, unmasked, formal parameter types: (linear_ref:4)

89

Histogramming – SIMD vectorization

type (histogram), allocatable :: hist(:)
…

subroutine hist_fill(x, nh)
integer, intent(in) :: nh
real, contiguous, intent(in) :: x(:)

…

interface myfun
real function myfun(x) result(y)
!$omp declare simd linear(ref(x))

…

n = size(x)

!$omp simd private(y, ih)
do i=1,n

y = myfun(x(i))
ih = ceiling((y-hist(nh)%bot)*hist(nh)%invbinw)
ih = min(hist(nh)%nbin,max(1,ih))

!$omp ordered simd overlap(ih)
hist(nh)%contents(ih) = hist(nh)%contents(ih) + 1

!$omp end ordered
enddo

end subroutine hist_fill

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Function prototype must be declared as SIMD
§ So that caller knows SIMD version is available
§ omp ordered simd is sufficient for safe vectorization

– overlap(ih) may help compiler generate more efficient code
– icc -c -std=c99 -xcommon-avx512 -qopenmp-simd -vecabi=cmdtarget -qopt-report=3 test3.c

…
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
…
remark #15347: FUNCTION WAS VECTORIZED with zmm, simdlen=16, unmasked, formal parameter types: (vector)

90

Histogramming – SIMD vectorization
#include <math.h>
#pragma omp declare simd
float myfun(float);

void hist_fill(float *x, int *restrict
contents, int n, int nbin) {

float bot=-1.f, top=1.f
float invbinw = (float)nbin / (top-bot);

#pragma omp simd
for (int i=0; i<n; i++) {

float y = myfun(x[i]);
int ih = floor((y-bot)*invbinw);
ih = ih >= 0 ? ih : 0;
ih = ih <= nbin-1 ? ih : nbin-1;

#pragma omp ordered simd overlap (ih)
++contents[ih];

} }

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Options Speed-up
(C)

Speed-up
(Fortran)

Simple histogram loop -xcore-avx2 1.0 1.0

-xcommon-avx512 3.3 3.2

loop with function call -xcommon-avx512 1.0 1.0

ordered simd -xcommon-avx512 -qopenmp-simd 2.3 2.6

overlap -xcommon-avx512 -qopenmp-simd 2.5 2.9

² -vecabi=cmdtarget -xcommon-avx512 -qopenmp-simd 3.2 3.7

91

Histogramming with Intel® AVX-512 - Performance

Performance tests are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to vary.
The results above were obtained on an Intel® Xeon® Platinum 8180M system, frequency 2.5 GHz,
running Fedora 25 and using the Intel® Fortran Compiler version 18.0 update 1.

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Speed-up depends on problem details

• Comes mostly from vectorization of other heavy computation in the loop

• Not from the scatter itself

• Speed-up may be (much) less if there are many conflicts

• E.g. histograms with a singularity or narrow spike

• Similar behavior for C and Fortran versions

• Speed-up due to vectorization would be considerably higher on Intel® Xeon Phi™ x200

processors because scalar processor is slower.

Other problems map to this

• E.g. energy deposition in cells in particle transport Monte Carlo simulation

92

Histogramming with Intel® AVX-512: speed-up

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FUTURE
OpenMP 5.0 is coming

93

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

94

Forthcoming features

User-defined reductions

Inclusive and Exclusive Scans

Either may be used to implement MINLOC and MAXLOC reductions

§ Determine minimum (maximum) value of an array and also its location

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization Summary

The importance of SIMD parallelism is increasing
• Moore’s law leads to wider vectors as well as more cores

• Don’t leave performance “on the table”

• Be ready to help the compiler to vectorize, if necessary
• With compiler directives and hints
• Using information from vectorization and optimization reports
• With explicit vector programming
• Use Intel® Advisor and/or Intel® VTune™ Amplifier XE to find the best places (hotspots) to

focus your efforts

No need to re-optimize vectorizable code for new processors
• Typically a simple recompilation

95

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
96

Further Information

Webinars:
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/new-vectorization-features-of-the-intel-compiler
https://software.intel.com/videos/from-serial-to-awesome-part-2-advanced-code-vectorization-and-optimization
https://software.intel.com/videos/data-alignment-padding-and-peel-remainder-loops

Vectorization Guide (C): https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

Explicit Vector Programming in Fortran:
https://software.intel.com/articles/explicit-vector-programming-in-fortran

Initially written for Intel® Xeon Phi™ coprocessors, but also applicable elsewhere:
https://software.intel.com/articles/vectorization-essential
https://software.intel.com/articles/fortran-array-data-and-arguments-and-vectorization

The Intel® C++ and Fortran Compiler Developer Guides, https://software.intel.com/en-
us/cpp-compiler-18.0-developer-guide-and-reference https://software.intel.com/en-us/fortran-compiler-18.0-
developer-guide-and-reference

https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/new-vectorization-features-of-the-intel-compiler
https://software.intel.com/en-us/videos/from-serial-to-awesome-part-2-advanced-code-vectorization-and-optimization
https://software.intel.com/videos/data-alignment-padding-and-peel-remainder-loops
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/vectorization-essential
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/fortran-compiler-18.0-developer-guide-and-reference

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

9797

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Prefetching for KNL

Hardware prefetcher is more effective than for KNC
Software (compiler-generated) prefetching is off by default
§ Like for Intel® Xeon® processors
§ Enable by -qopt-prefetch=[1-5]

KNL has gather/scatter prefetch
§ Enable auto-generation to L2 with -qopt-prefetch=5

§ Along with all other types of prefetch, in addition to h/w prefetcher – careful.
§ Or hint for specific prefetches

§ !DIR$ PREFETCH var_name [: type : distance]
§ Needs at least -qopt-prefetch=2

§ Or call intrinsic
§ _mm_prefetch((char *) &a[i], hint); C
§ MM_PREFETCH(A, hint) Fortran

