
CUDA C++ BASICS

2

WHAT IS CUDA?

CUDA Architecture

Expose GPU parallelism for general-purpose computing

Expose/Enable performance

CUDA C++

Based on industry-standard C++

Set of extensions to enable heterogeneous programming

Straightforward APIs to manage devices, memory etc.

This session introduces CUDA C++

Other languages/bindings available: Fortran, Python, Matlab, etc.

3

GPU KERNELS: DEVICE CODE

__global__ void mykernel(void) {

}

CUDA C++ keyword __global__ indicates a function that:

Runs on the device

Is called from host code (can also be called from other device code)

nvcc separates source code into host and device components

Device functions (e.g. mykernel()) processed by NVIDIA compiler

Host functions (e.g. main()) processed by standard host compiler (e.g. gcc)

4

GPU KERNELS: DEVICE CODE

mykernel<<<1,1>>>();

Triple angle brackets mark a call to device code

Also called a “kernel launch”

We’ll return to the parameters (1,1) in a moment

The parameters inside the triple angle brackets are the CUDA kernel execution configuration

5

RUNNING CODE IN PARALLEL

GPU computing is about massive parallelism

So how do we run code in parallel on the device, for example adding one vector to another?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

Instead of executing add() once, execute N times in parallel

6

VECTOR ADDITION ON THE DEVICE

With add() running in parallel we can do vector addition

Terminology: each parallel invocation of add() is referred to as a block

The set of all blocks is referred to as a grid

Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b) {

b[blockIdx.x] = b[blockIdx.x] + a[blockIdx.x];

}

By using blockIdx.x to index into the array, each block handles a different index

Built-in variables like blockIdx.x are zero-indexed (C/C++ style), 0..N-1, where N is from the kernel execution
configuration indicated at the kernel launch

7

VECTOR ADDITION ON THE DEVICE
int main() {

int *a, *b;

int size = N * sizeof(int);

// Allocate memory

cudaMallocManaged((void **)&a, size);

cudaMallocManaged((void **)&b, size);

// Set up input values

random_ints(a, N); random_ints(b, N);

// Launch add() kernel on GPU with N blocks

add<<<N, 1>>>(a, b);

// Cleanup

cudaFree(a); cudaFree(b);

return 0;

}

8

CUDA THREADS

Terminology: a block can be split into parallel threads

Let’s change add() to use parallel threads instead of parallel blocks

We use threadIdx.x instead of blockIdx.x

Need to make one change in main():

add<<< 1, N >>>();

__global__ void add(int *a, int *b) {

b[threadIdx.x] = b[threadIdx.x] + a[threadIdx.x];

}

9

COMBINING BLOCKS AND THREADS

We’ve seen parallel vector addition using:

Many blocks with one thread each

One block with many threads

Let’s adapt vector addition to use both blocks and threads

Why? We’ll come to that…

First let’s discuss data indexing…

10

INDEXING ARRAYS WITH BLOCKS AND THREADS

No longer as simple as using blockIdx.x and threadIdx.x

Consider indexing an array with one element per thread (8 threads/block):

With M threads/block a unique index for each thread is given by:

int index = threadIdx.x + blockIdx.x * M;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

11

INDEXING ARRAYS: EXAMPLE

Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;

= 5 + 2 * 8;

= 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

12

VECTOR ADDITION WITH BLOCKS AND THREADS

Use the built-in variable blockDim.x for threads per block

Combined version of add() to use parallel threads and parallel blocks:

What changes need to be made in main()?

__global__ void add(int *a, int *b) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

b[index] = b[index] + a[index];

}

int index = threadIdx.x + blockIdx.x * blockDim.x;;

13

VECTOR ADDITION WITH BLOCKS AND THREADS
int main() {

int *a, *b;

int size = N * sizeof(int);

// Allocate memory

cudaMallocManaged((void **)&a, size);

cudaMallocManaged((void **)&b, size);

// Set up input values

random_ints(a, N); random_ints(b, N);

// Launch add() kernel on GPU with N blocks

add<<<N / THREADS_PER_BLOCK, THREADS_PER_BLOCK>>>(a, b);

// Cleanup

cudaFree(a); cudaFree(b);

return 0;

}

14

HANDLING ARBITRARY VECTOR SIZES

Typical problems are not friendly multiples of blockDim.x

Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

b[index] = b[index] + a[index];

}

add<<<(N + M - 1) / M, M>>>(a, b, N);

Update the kernel launch:

15

WHY DO WE HAVE HIERARCHICAL PARALLELISM?

Threads seem unnecessary

They add a level of complexity

What do we gain?

Unlike parallel blocks, threads have mechanisms to:

Communicate

Synchronize

Two level hierarchy maps more appropriately to GPU hardware design

16

FURTHER STUDY

An introduction to CUDA:

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/

Another introduction to CUDA:

https://devblogs.nvidia.com/even-easier-introduction-cuda/

CUDA Programming Guide:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CUDA Documentation:

https://docs.nvidia.com/cuda/index.html

OLCF CUDA Training Series

https://www.olcf.ornl.gov/cuda-training-series/

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/even-easier-introduction-cuda/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html
https://www.olcf.ornl.gov/cuda-training-series/

