NVIDIA.

N
o
V)
<
aa

+

+
O
<
o
-
O

WHAT IS CUDA?

> CUDA Architecture
» Expose GPU parallelism for general-purpose computing
» Expose/Enable performance

> CUDA C++
» Based on industry-standard C++
» Set of extensions to enable heterogeneous programming
» Straightforward APIs to manage devices, memory etc.

> This session introduces CUDA C++

» Other languages/bindings available: Fortran, Python, Matlab, etc.

2 <ANVIDIA.

GPU KERNELS: DEVICE CODE

void mykernel (void) ({

» CUDA C++ keyword indicates a function that:

> Runs on the device
» Is called from host code (can also be called from other device code)

» nvcce separates source code into host and device components

> Device functions (e.g. mykernel ()) processed by NVIDIA compiler

> Host functions (e.g. main ()) processed by standard host compiler (e.g. gcc)

3 <ANVIDIA.

GPU KERNELS: DEVICE CODE

mykernel 1,1 (),

> Triple angle brackets mark a call to device code
» Also called a “kernel launch”
» We’ll return to the parameters (1,1) in a moment

» The parameters inside the triple angle brackets are the CUDA kernel execution configuration

4 <A NVIDIA.

RUNNING CODE IN PARALLEL

> GPU computing is about massive parallelism

> So how do we run code in parallel on the device, for example adding one vector to another?

add<<< 1, 1 >>>();

I

add<<< N, 1 >>>();

> Instead of executing add () once, execute N times in parallel

5 “ANVIDIA.

VECTOR ADDITION ON THE DEVICE

» With @add () running in parallel we can do vector addition

> Terminology: each parallel invocation of add () is referred to as a

» The set of all blocks is referred to as a

» Each invocation can refer to its block index using

__global wvoid add(int *a, int *b) {

bl] = Dbl I + al 1’
}
> By using to index into the array, each block handles a different index
> Built-in variables like are zero-indexed (C/C++ style), 0..N-1, where N is from the kernel execution

configuration indicated at the kernel launch

6 <ANVIDIA.

VECTOR ADDITION ON THE DEVICE

int main() {
int *a, *b;
int size = N * sizeof (int);
// Allocate memory
((void **)g&a, size);
((void **)g&b, size);
// Set up input values
random ints(a, N); random ints(b, N);
// Launch add() kernel on GPU with N blocks
add<<iii, 1>>>(a, b);
// Cleanup
cudaFree (a) ; cudaFree (b) ;

return O;

7 <A NVIDIA.

v

\{

v

CUDA THREADS

Terminology: a block can be split into parallel

Let’s change add () to use parallel threads instead of parallel blocks

~_global wvoid add(int *a, int *b) {
b[] = bl 1 + al

We use instead of blockIdx.x

Need to make one change inmain () :

add<<k< 1, >>>() ;

8

“ANVIDIA.

Y

COMBINING BLOCKS AND THREADS

We’ve seen parallel vector addition using:
> Many blocks with one thread each

> One block with many threads

Let’s adapt vector addition to use both blocks and threads
Why? We’ll come to that...

First let’s discuss data indexing...

9 “ANVIDIA.

INDEXING ARRAYS WITH BLOCKS AND THREADS

> No longer as simple as using blockIdx.x and threadIdx.x

» Consider indexing an array with one element per thread (8 threads/block):

threadIdx.x

threadIdx.x

1

2

3

4

5

6

> With M threads/block a unique index for each thread is given by:

int index = threadlIdx.x + blockIdx.x * M;

~

blockIdx.x = 2

v
blockIdx.x = 3

10

“ANVIDIA.

INDEXING ARRAYS: EXAMPLE

> Which thread will operate on the red element?

|

threadIdx.x = 5

0

1

2

3

5

7 |

N

J

v
blockIdx.x = 2

int index = threadIdx.x + blockIdx.x * M;

5 + 2 * 8;

21;

11

“ANVIDIA.

VECTOR ADDITION WITH BLOCKS AND THREADS

» Use the built-in variable for threads per block

int index threadIdx.x + blockIdx.x * ;

» Combined version of add () to use parallel threads and parallel blocks:

~_global wvoid add(int *a, int *b) {
int index = threadlIdx.x + blockIdx.x * blockDim.x;
b[index] = b[index] + a[index];

}

» What changes need to be made in main () ?

12 <A NVIDIA.

VECTOR ADDITION WITH BLOCKS AND THREADS

int main() {

int *a, *b;

int size = N * sizeof (int);

// Allocate memory
((void **)g&a, size);
((void **)g&b, size);

// Set up input values

random ints(a, N); random ints(b, N);

// Launch add() kernel on GPU with N blocks

add<<< , >>>(a, b);

// Cleanup

cudaFree (a) ; cudaFree (b) ;

return O;

13 <A NVIDIA.

HANDLING ARBITRARY VECTOR SIZES

» Typical problems are not friendly multiples of blockDim. x

» Avoid accessing beyond the end of the arrays:

~ global wvoid add(int *a, int *b, int n) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < n)
b[index] = b[index] + a[index];

}

» Update the kernel launch:

add<<< , M>>>(a, b, 1);

14 <A NVIDIA.

WHY DO WE HAVE HIERARCHICAL PARALLELISM?

» Threads seem unnecessary
» They add a level of complexity

> What do we gain?

> Unlike parallel blocks, threads have mechanisms to:
> Communicate

> Synchronize

» Two level hierarchy maps more appropriately to GPU hardware design

15 <A NVIDIA.

FURTHER STUDY

An introduction to CUDA:

» https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/

Another introduction to CUDA:

» https://devblogs.nvidia.com/even-easier-introduction-cuda/

CUDA Programming Guide:

» https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CUDA Documentation:

» https://docs.nvidia.com/cuda/index.html

OLCF CUDA Training Series

» https://www.olcf.ornl.gov/cuda-training-series/

16

“ANVIDIA.

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/even-easier-introduction-cuda/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html
https://www.olcf.ornl.gov/cuda-training-series/

NVIDIA.

