Today is the Great American Shakeout, an earthquake safety drill
The drill started at 10:19 am
If you’re seeing this, NERSC is still in the drill and we’ll start the webinar as soon as we get back
Thanks for your patience!
Agenda

- Data Day/NUG 2017 recap
- Best Practices for I/O on KNL
Data Day/NUG 2017 Recap

https://www.nersc.gov/users/NUG/annual-meetings/nersc-data-day-and-nug2017
Data Day 2017

• NERSC’s second annual Data Day was held on Tuesday 19th Sept
 – data challenge/hackathon on Wednesday 20th.

• 13 speakers on a range of data-related topics from Deep Learning to data management
• Science areas included neuroscience, particle physics and LCLS.
• Over 80 attendees!

• Recordings of all talks are on the website: https://www.nersc.gov/users/training/data-day/data-day-2017/
Data Competition

• We challenged users to use NERSC machine learning tools to mine information from:
 – SLURM job information
 – Astronomy dataset

• Winning entries gave us real insight into our data!
 – E.g. Lowest queue wait times if you submit on Saturday/Sunday night

• Datasets and code from winning teams are up on the website
 – Nice demonstration of using SciKitLearn and TensorFlow at NERSC

• **Morning**: Data Competition, a combined event with Data Day 2017

• **Afternoon**: NERSC Status and Future Plans
 – Views from DOE, NERSC Update, Innovations on Cori and Edison, NESAP2, Storage 2020, Big Data, Accounting and Security update, User Requirements and Survey

• **NUG 2017: 70 Attendees**
NUG 2017 Day 2

• Featuring science and technology talks
 – High Impact NERSC Sciences
 – NESAP
 – 5 large-scale Gordon Bell submissions
 – The best paper from IXPUG
 – A Keynote presentation from the ECP Director Doug Kothe on Exascale Science Applications
 – 4 NERSC HPC achievement awards (General and Early Career)
 • High Impact Science Achievement
 • Innovative Use of HPC

-- All 4 HPC award winners presented in person!
-- From Germany, ANL, LLNL, and LBNL
-- Details on HPC awards and winners are at: https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2017/nersc/
Best Practices for I/O on KNL
Single Stream IO Looks Bad…

- Bandwidth Ratio Haswell / KNL = 2.30 (at same CPU freq) = 3.46 (Turbo)
Parallel File System on Cori

Haswell with Aries Network

- CMP
- ...
- CMP

2004

130

LNET

KNL with Aries Network

- CMP
- ...
- CMP

9688

LNET

Infiniband

OSS

OST

248

248

1 primary MDS, 4 additional MDS
Cori Haswell vs. KNL

<table>
<thead>
<tr>
<th></th>
<th>KNL</th>
<th>Haswell</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>1.4GHz</td>
<td>2.3GHz</td>
</tr>
<tr>
<td>Memory</td>
<td>96 G DDR4, 16G HBM</td>
<td>128 G DDR4</td>
</tr>
<tr>
<td>Cache(L1, L2, L3)</td>
<td>64K, 1M</td>
<td>64K, 256K, 40M</td>
</tr>
<tr>
<td>Node</td>
<td>68 core, single socket</td>
<td>32 core, two socket</td>
</tr>
<tr>
<td>Capacity</td>
<td>9688 nodes</td>
<td>2388 nodes</td>
</tr>
</tbody>
</table>
Cori Haswell IO vs. KNL IO

Major finding in the IO evaluation, CUG’17
Tip 1: Core Specialization

❖ Core Specialization

#SBATCH -S 4

❖ Isolate system overhead to designated cores on a compute node.
Tip 2: Process Affinity

❖ Process Affinity, in case of node not fully packed, e.g., 4 MPI tasks

use --cpu_bind=cores along with –c

e.g., srun -n 4 -c 64 --cpu_bind=cores

❖ Otherwise, the processes will go to the same core

❖ Optimized WRF IO on KNL with 8X speedup

300 seconds → 36 seconds (in reading initial input) -- John Michalakes, UCAR
Tip 3: Direct IO vs. Buffered IO

❖ KNL is close to Haswell with direct IO

But Direct IO largely slow down your IO BW in most cases

❖ Page buffer benefits generally, e.g., write, multi-read

User don’t need to do anything

❖ Direct IO can be better than buffered IO in large one-time read

○ POSIX: O_DIRECT in open()
○ IOR: -B
○ MPI: setenv MPIO_DIRECT_READ
○ HDF5: H5Pset_fapl_direct()
 ■ 11% speedup

Comparison of Direct IO on KNL ~ 486GB
Tip 4: Collective Buffer

- KNL has larger inter-node latency than Haswell
- Increasing buffer size in MPIIO can improve IO BW
Tip 5.1: IO Parallelism - MPI

- KNL I/O performance can be markedly different from Haswell
- KNL requires multiple I/O streams to match Haswell performance.
- Initial results published at CUG’17.

Tip 5.2: IO Parallelism - OpenMP

❖ Figure 1: 16 to 32 threads on a single core can saturate the bandwidth

❖ IO on burst buffer on a single KNL core is able to saturate the I/O bandwidth

❖ Benchmarks: Stanford Legion program
Tip 6: General Recommendations

❖ General Lustre striping and MPIIO optimization still apply to Cori KNL.

https://www.nersc.gov/users/storage-and-file-systems/i-o-resources-for-scientific-applications/optimizing-io-performance-for-lustre/
Best Practices for KNL IO

❖ Core Specialization
❖ Process Affinity
❖ Direct IO vs. Buffered IO
❖ Collective Buffer
❖ IO Parallelism
❖ General Recommendations on Cori Lustre FS

https://www.nersc.gov/users/storage-and-file-systems/i-o-resources-for-scientific-applications/optimizing-io-on-cori-knl/