
Nestor Demeure1
1 National Energy Research Scientific Computing Center, Berkeley CA, United-states

JAX: writing Performant Portable 
GPU code in Python.
NUG Meeting 2022: Performance Portability Panel



Who am I?

I am a NESAP Postdoctoral Researcher at NERSC with a focus on high
performance computing, numerical accuracy and artificial intelligence.

I specialize in helping teams of researchers make use of high performance
computing environments.

I am currently working to help port the TOAST software framework to the new
Perlmutter supercomputer and, in particular, port it to graphic processors (GPU).

2

https://github.com/hpc4cmb/toast


Can we have good GPU 
performance, portability and 

productivity?

3



Introducing JAX

4

High-level introduction to JAX



What is JAX?

JAX is a Python library to write code that can run in parallel on:

■ CPU,
■ GPU (Nvidia and AMD),
■ TPU,
■ etc.

Developed by Google as a building block for deep-learning frameworks. Seeing
wider use in numerical applications including:

■ Molecular dynamics,
■ computational fluid dynamics,
■ ocean simulation. 5

https://github.com/google/jax
https://github.com/google/jax/issues/2012
https://github.com/google/jax-md
https://github.com/google/jax-md
https://github.com/google/jax-cfd
https://arxiv.org/abs/2203.13760
https://veros.readthedocs.io/en/latest/


What does JAX look like?

It has a Numpy-like interface:

6

from jax import random
from jax import numpy as jnp

key = random.PRNGKey(0)
x = random.normal(key, shape=(3000, 3000), dtype=jnp.float32)

y = jnp.dot(x, x.T) # runs on GPU if available



How does JAX work?

Calls a just-in-time compiler when you execute your function with a new
problem size:

7



JAX’s limitations

■ Compilation happens just-in-time, at runtime,
easily amortized on a long running computation

■ input sizes must be known to the tracer,
padding, masking and recompiling for various sizes

■ loops and tests are limited inside JIT sections,
JAX provides replacement functions

■ no side effects and no in-place modifications,
one gets used to it, it actually helps with correctness

■ focus on GPU optimizations rather than CPU.
there is growing attention to the problem 8



Is it worth it?

9



Case study

10

Porting the TOAST codebase to GPU



TOAST

TOAST is a large Python application used to study the cosmic microwave
background.

It is made of pipelines distributed with MPI and composed of C++ kernels
parallelized with OpenMP.

Kernels use a wide variety of numerical methods including random number
generation, linear algebra and fast fourier transforms.

We ported one pipeline to GPU, from C++ to Numpy to JAX.

11

https://github.com/hpc4cmb/toast


Porting the code (x7 reduction in lines of code)

12



Performance per kernel (up to x17 speed-up)

13



Overview

14

Should you use JAX in your project?



JAX’s strengths

15

I believe JAX is in a sweet spot for research and complex numerical codes:

■ Focus on the semantic, leaves optimization to the compiler,

■ single code base to deal with CPU and GPUs,

■ immutable design is actually nice for correctness,

■ easy to use numerical building blocks inside kernels.



Should you use JAX?

16

■ Your code is written in Python,

■ your code can be written with Numpy,

■ your array sizes are not too dynamic,

■ single-thread CPU is an acceptable fallback in the absence of GPU.



Thank you!

17

ndemeure@lbl.gov

mailto:ndemeure@lbl.gov

