
18 November, 2021

NUG Monthly
Meeting

Today's plan
• Interactive - please participate!

• Raise hand or just speak up
• NERSC User Slack (link in chat), #webinars channel

• Agenda:
• Win-of-the-month
• Today-I-learned
• Announcements/CFPs
• Topic of the day: Spack at NERSC by Steve Leak.
• Coming meetings: topic suggestions/requests?
• Last (two!) month's numbers

https://join.slack.com/t/nerscusers/shared_invite/zt-eyfakhuo-BCeeQdvsi4ylrUNHtGvqDA

Win of the month

Show off an achievement, or shout out someone else's achievement, e.g.:

• Had a paper accepted
• Solved a bug
• A scientific achievement (maybe candidate for Science highlight, or High

Impact Scientific Achievement award)
• An Innovative Use of High Performance Computing (also a candidate for an

award) (https://www.nersc.gov/science/nersc-hpc-achievement-awards/)

Please let us know of award-worthy work from you or your colleagues - tell us what
you did, and what was the key insight?

https://www.nersc.gov/science/nersc-hpc-achievement-awards/

Perlmutter's SC21 Top500 Wins!

#5 overall (HPL) 70.87PF #7 Green 27.37GF/W #3 HPCG 1.9PF

Today I learned

What surprised you that might benefit other users to hear about?

(and might help NERSC identify documentation improvements!)

Eg:

• Something you got stuck on, hit a dead end, or turned out to be wrong about
• Give others the benefit of your experience!
• Opportunity to improve NERSC documentation

• A tip for using NERSC
• Something you learned that might benefit other NERSC users

"If we knew what it was we were doing, it would not be called research, would it?" -
Einstein

See weekly email for these and more:
● Annual User Survey is now open!

○ Look for an email from NERSC@nbriresearch.com
● In related news: you can see the NERSC 2020 Annual Report online (one thing the survey

contributes to). Also the 2020 User Demographics
● Heads up: User information is transmitted to DOE Office of Science at end of year

○ Includes name, institutional affiliation(s), and project title(s)
● New default python module coming in January

Announcements and CFPs

https://www.nersc.gov/assets/Uploads/NERSC-2020-Annual-Report-Final.pdf
https://www.nersc.gov/assets/Uploads/NERSC-User-Demographics-2020.pdf

● Breaking news: Perlmutter User Training originally scheduled for early December will
most likely be has been rescheduled to January 5-7, 2022

● Users with GPU-ready workloads can request access to Perlmutter by filling out this form
● Prepare your dotfiles for Perlmutter!

○ $HOME is shared across both systems, but each system has its own modules (and
module system), etc

○ Check $NERSC_HOST before making system-specific settings in your .bashrc /
.cshrc

Perlmutter Announcements

https://docs.nersc.gov/systems/perlmutter/#access

Announcements and CFPs

● Apply for Prestigious Alvarez & Hopper Postdoctoral Fellowships in Computing Sciences at
Berkeley Lab & NERSC by Next Monday, November 22

● Applications for DOE Computational Science Graduate Fellowship are now open
○ For first- and second- year PhD students

● Call for Proposals: Quantum Information Science on Perlmutter
● Nominate someone for the James Corones Award in Leadership, Community Building &

Communication
○ Mid-career scientist or engineer making an impact in leadership, community building, and

scientific communication
● Others?

Spack at NERSC

What is it?

"Supercomputing Package Manager"

Automates software installation

Tip: All of today's topic is in our docs! =>

(and the docs have links to other Spack
information)

Why use it?

• Building software is laborious
• And error prone

• Spack automates a lot of the
busy-work
• Including the details of getting

the right invocation to build the
software with the options you
want

• Recommendation: Use Spack as the
first option for installing software

Why not use it?

• Scientific software is complex
• Automation is complex
• .. complex2 !
• The details of what Spack did, and

why, are often opaque
• When something fails, finding why

(and fixing it) is usually absurdly
difficult

• Recommendation: If the fix isn't easy,
stop digging
• Move to a different build method

Today's goal: Demystify Spack and
describe NERSC's Spack setup

• Jargon dictionary
• Essential Spack commands
• Working with environments
• How Spack decides what to install
• Spack idiosyncrasies
• Spack setup at NERSC
• Workflow for installing software with Spack
• What to do when it doesn't work
• Q&A

Spack words, and what they mean

Package: "Source code" describing a piece of software and how to
build it (actually a Python class), along with any patches etc that might
need to be applied first

Spack words, and what they mean

Repo: A collection ("repository") of packages. Pretty much everything
is in the "builtin" repo, but Spack has a "repos" config section where
you can specify locations and order of repos to search

Spack words, and what they mean

Spec: Spack has a DSL for declaratively describing the parameters
with which a package should be (or was) built

Spack words, and what they mean

Spec: (cont'd)
Given a partial
spec, and defaults
from packages and
Spack
configuration,
Spack uses an
ASP solver to work
out a detailed
("concrete") spec

Spack words, and what they mean

Variant: A selectable build option for a package (defined in Spack in
the package definition). Usually corresponds to a ./configure
option or an optional dependency.
You can enable (+), disable (- or ~) or set (name=value) a variant

Spack words, and what they mean

Hash: Spack calculates a hash of each full concrete spec (including
dependencies), and uses it as a key to identify the install. This turns
out very handy for distinguishing between the many possible builds of
the same software

Tip: You can override the location for $SPACK_BASE by setting it in
your .bashrc or .bash_profile (default is $HOME/sw)

Spack words, and what they mean

Install_tree: The location Spack will install stuff in. The location and
the directory-naming convention are defined in a config file

Spack words, and what they mean

Install_tree: (cont'd)
NERSC setup puts the
install_tree in the user's
$HOME, and organizes installs
by target architecture

Spack adds some indexing
information to each install,
and caches it in .spack_db/
at the install_tree root

Upstream: Another install_tree (but read-only) that Spack is allowed to
use. Eg if "netcdf" requires "hdf5", and "hdf5" is installed upstream,
Spack does not need to build "hdf5" in order to build "netcdf", it can
use the upstream install.
NERSC config has an upstream in /global/common/sw/install,

Spack words, and what they mean

so users can build on
software that we (via
swowner) install
Tip: one upstream is
the E4S deployment
at NERSC

Spack words, and what they mean

Buildcache: An installed software package, tarred up and
GPG-signed, allowing someone else to install it without redoing the
./configure and build steps
E4S makes builds available via a buildcache, and NERSC has one set
up on CFS (where it can be served via https)

Spack words, and what they mean

Environment: A declarative
description of an "environment" (ie
collection of software specs
alongside build/install preferences)
that Spack should make available.
(So, more like a purchase order
than a conda environment)
In practice: a directory with a
spack.yaml file in it, in which you
can declare local Spack
preferences and desired installs

Summary of Spack jargon

• Package - a unit of software that Spack can build and install
• Repo - a collection of packages
• Spec - a description of the parameters used when building a

package
• Variant - a build option you can select for a package
• Hash - a unique identifier for an install, calculated deterministically

from the concrete spec
• Install_tree - the place Spack installs software to
• Upstream - an install_tree Spack can use builds from
• Buildcache - a pre-built package for faster/easier installation
• Environment - a description of zero or more things you would like

Spack to build, along with adjustments to Spack's config for them

Summary of Spack jargon
• Package - a unit of software that Spack can build and install
• Repo - a collection of packages
• Spec - a description of the parameters used when building a package
• Variant - a build option you can select for a package
• Hash - a unique identifier for an install, calculated deterministically from the

concrete spec
• Install_tree - the place Spack installs software to
• Upstream - an install_tree Spack can use builds from
• Buildcache - a pre-built package for faster/easier installation
• Environment - a description of zero or more things you would like Spack to

build, along with adjustments to Spack's config for them

Essential commands

• spack find lists packages installed in the install_tree and upstreams
• spack list finds packages (installed or not) in repos - i.e. packages that

Spack can build

Essential commands

• spack info shows what Spack knows about a package

Essential commands

• spack spec computes and shows a concrete spec (given a partial one)

Essential commands

• spack install -v <spec> performs the necessary download,
configure, build and install steps to install the package and any needed
dependencies

Summary

• When it goes smoothly, Spack saves much time and effort
• (When it doesn't, it can be hard to fix, often best to find an alternative)
• NERSC setup defaults to installing software in your $HOME/sw

• And can use upstream installs such as E4S

• We ran through some of the jargon you'll encounter related to Spack
• And a basic recipe for using it to install software

One final tip: The Spack Slack (http://spackpm.slack.com/) is a really helpful
forum!

http://spackpm.slack.com/

Q&A

Coming up

December: AY Transition - what to expect

January: (tentatively) A presentation of some of the work of one of our regular
participants

Also coming soon:
NERSC docs
Queue wait time findings (from one of our regular participants)

We'd love to hear some lightning talks from NERSC users about the research
you use NERSC for!

Last month's numbers - Sept/Oct

Cori: 6 outages (4 unscheduled totaling 6 hrs 0 min)

NGF issue

Cabinet power failureNGF issue Cabinet power failure

Last month's numbers - Sept/Oct

Cori daily availability:

Cori daily utilization:

New Tickets: 570 (Sept), 724 (Oct)

Closed Tickets: 490 (Sept), 724 (Oct)

Backlog at 1 Nov: 642

Thank You

