NUG Monthly Meeting

17 Jun, 2021

Today's plan

- Interactive please participate!
 - Raise hand or just speak up
 - NERSC User Slack (link in chat), #webinars channel
- Agenda:
 - Win-of-the-month
 - Today-I-learned
 - Announcements/CFPs
 - Topic of the day: GPU Programming Models and Interoperability
 - Coming meetings: topic suggestions/requests?
 - Last month's numbers

Win of the month

Show off an achievement, or shout out someone else's achievement, e.g.:

- Had a paper accepted
- Solved a bug
- A scientific achievement (maybe candidate for Science highlight, or High Impact Scientific Achievement award)
- An Innovative Use of High Performance Computing (also a candidate for an award) (https://www.nersc.gov/science/nersc-hpc-achievement-awards/)

Please let us know of award-worthy work from you or your colleagues - tell us what you did, and what was the key insight?

Today I learned

What surprised you that might benefit other users to hear about? (and might help NERSC identify documentation improvements!)

Eg:

- Something you got stuck on, hit a dead end, or turned out to be wrong about
 - Give others the benefit of your experience!
 - Opportunity to improve NERSC documentation
- A tip for using NERSC
- Something you learned that might benefit other NERSC users

"If we knew what it was we were doing, it would not be called research, would it?" - Einstein

Announcements and CFPs

See weekly email for these and more:

- NERSC Power Outage July 9-12
- Upcoming Cori OS update August
 - Statically-linked executables likely to need re-link
- CFPs:
 - Parallel Applications Workshop, Alternatives to MPI+X (at SC21)
 - SuperCheck-SC21
- Training:
 - Lmod on Perlmutter, June 22
 - Cl at NERSC, July 7
 - ECP-IDEAS webinar on Mining Development Data to Understand and Improve Software Engineering Processes, July 7
 - CUDA Multithreading with Streams, July 16

GPU Programming Models and Interoperability

Between PrgEnvs: no interoperability

- In general: Fortran and C++ can call C libs - even across PrgEnvs
- Fortran and C++
 between PrgEnvs
 are generally not
 interoperable

Which PrgEnv?

Recommendation: use PrgEnv-nvidia for GPU applications

- The most GPU-oriented
- Significant work has gone into making PrgEnv-nvidia a GPU-friendly environment
 - Including support for interoperability
- Caveats:
 - Uses nvc / nvc++ / nvfortran for CPU code too
 - Another PrgEnv may offer better performance for CPU code

Recommendation: Avoid mixing GPU programming models

 Higher-level models are more likely to interoperate, eg Kokkos calling CUDA or OpenMP-based libs, OpenMP calling CUDA-based libs

PrgEnv-nvidia

Eg: OpenMP app calling CUDA lib

From:

https://github.com/jkwack/GAMESS_RI-MP2_MiniApp/blob/ECP-proxy/source/rimp2_energy_whole_KERN.f90#L274

Tip: **NVLAmath** provides CUDA math libs behind familiar BLAS etc interface (-cudalib=nvlamath)

(See

https://drive.google.com/file/d/1yaRt AWJ13sHrskwP6PCz3NYmjSogPhS 6/view?usp=sharing)

Other PrgEnv may be more complicated

PrgEnv-gnu: patchy GPU support, generally lower (GPU) performance

PrgEnv-cray: good CPU performance, C++ and Fortran compilers are based on different suites

C/C++: based on Clang

Fortran: Cray-classic (in-house development)

Using CUDA requires separate module load cudatoolkit, usage may be more complex

PrgEnv-gnu

PrgEnv-cray

Summary

- Interoperability is possible but best not to rely on it
- Higher-level frameworks (Kokkos, RAJA) give the most flexibility
 - But C++ only
- OpenMP (especially OpenMP 5.x) and OpenACC have support for interoperability
 - But support for OpenMP 5.x is still immature/in-development

See interoperability section of

https://www.nersc.gov/users/training/events/nvidia-hpcsdk-openmp-target-offload-training-december-2020/

Also see:

https://www.nersc.gov/users/training/events/openacc-data-management-part-2-of-3-openacc-training-series-may-28-2020/ https://www.nersc.gov/users/training/gpus-for-science/gpus-for-science-2020/

Discussion / Q&A

Coming up

Topic requests/suggestions?

We'd love to hear some lightning talks **from NERSC users** about the research you use NERSC for!

Last month's numbers - May

Scheduled and overall availability:	Scheduled		Overall
	Cori	98.5%	92.9%
	HPSS	100%	99.5%
	CFS	100%	100%

Cori: 2 outages (2 unscheduled totaling 10 hrs)

Last month's numbers - April

Cori Utilization: 94.1%

Large jobs: 30.7%

New Tickets: 528

Closed Tickets: 548

Backlog at 1 May: 466

Thank You

