
Running climate
simulations on Cori

Koichi Sakaguchi

Atmospheric Sciences and Global Change Division

PNNL

January 27, 2022

Throughput per job or throughput per
year?

2

My research topics

Ringler et al., 2010; Ju et al., 2011; Skamarock et al., 2012

Atmospheric turbulence in the planetary boundary
layer and moist convection

Interactions between land surface and
atmosphere/clouds
Interactions between small- (~km) and large-
scale(~103 km) atmospheric phenomena

A hierarchy of models/resolutions — from Large
Eddy Simulations (∆x~100m) to General Circulation
Models (∆x~100km) ∆x = 4km

∆x = 30km

3

How we see the Earth system

Atmosphere

Land

Ocean

Sea Ice

Land Ice

River

4

How we model the Earth system
Example from :

(Common Infrastructure for Modeling the Earth)

CIME

$modelroot/cime/ config/e3sm/ config_grids.xml
config_inputdata.xml
machines/

src/ components/
drivers/
externals/
share/

scripts/

Atmosphere

$modelroot/components/cam/

bld/

src/

tools/
tests/
docs/
cime_config/

advection/
chemistry/
control/
cpl/
dynamics/
physics/
utils/

cam/
carma/
clubb/
...

aer_rad_props.F90
aoa_tracers.F90
boundarydata.F90
...
zm_conv_intr.F90

doc/
....

Land
$modelroot/components/clm/

bld/

src/

tools/
tests/
cime_config/

biogeochem/
biogeophys/
cpl/
data_types/
dyn_subgrid/
external/
main/

ActiveLayerMod.F90
AerosolMod.F90
AerosolType.F90
...
WaterfluxType.F90

...

Ocean
$modelroot/components/mpas-ocean/

bld/

src/

driver/
cime_config/

core_landice/
core_ocean/
core_seaice/
.../

mpas_ocn_forward_mode.F
mpas_ocn_time_integration.F
mpas_ocn_time_integration_rk4.F
mpas_ocn_time_integration_split.F

$modelroot/components/mpas-source/

testing_and_setup/
...

Makefile

mode_analysis/
mode_forward/
mode_init/
shared/
tracer_groups/

analysis_member/
driver/

Sea Ice

$modelroot/components/mpas-seaice/

bld/
driver/
cime_config/Land Ice

$modelroot/components/mpas-albany-landice/

bld/
driver/
cime_config/
tools/

River

$modelroot/components/mosart/
bld/
doc/
cime_config/
src/

cpl/

riverroute/

wrm/

MOSART_physics_mod.F90
RtmDateTime.F90
RtmFileUtils.F90
...
RunoffMod.F90

5

How we model (a part of) the atmosphere

xy

z

2. discretize in time and space
to solve numerically

t = tn

t = tn+1

𝜕𝑢
𝜕𝑡 ≈

Δ𝑢
Δ𝑡 =

𝑢!
!"#

− 𝑢!
!

𝑡"#$ − 𝑡"

x = xi-1

x = xi+1
x = xi

𝜕𝑢
𝜕𝑥 ≈

Δ𝑢
Δ𝑥 =

𝑢%#$ − 𝑢%&$
𝑥%#$ − 𝑥%&$

3. numerically integrate in time at each grid cell

'$,&,'
!"#&'$,&,'

!

(!
= − $

∆*
'$"#,&,'
! #'$,&,'

!

+

+
−

'$,&,'
! #'$(#,&,'

!

+

+
-...

𝑢%,-,."#$ = 𝑢%,-,." −
1
∆𝑥

𝑢%#$,-,." + 𝑢%,-,."

2

+

−
𝑢%,-,." + 𝑢%&$,-,."

2

+

−... ∆𝑡

future value = sum of spatially dependent processes operating now ∆x ∼4-100km

1. Simplify the equations governing
atmospheric state and motion

𝜕𝜌̅𝐮
𝜕𝑡

= −∇ 7 𝜌̅𝐮𝐮 − ∇𝑝 +⋯+ 𝑆! + 𝑆"

𝜕𝑢
𝜕𝑡 = −

𝜕𝑢𝑢
𝜕𝑥 −

1
𝜌̅
𝜕𝜌̅𝑢𝑤
𝜕𝑧 −

1
𝜌̅
𝜕𝑝
𝜕𝑥 + ⋯

x-component:

Sd :unresolved dynamics
Sp :radiative, chemical, thermodynamics

6

How we model the Earth system

Atmosphere
$modelroot/components/cam/

bld/

src/

tools/
tests/
docs/
cime_config/

advection/
chemistry/
control/
cpl/
dynamics/
physics/
utils/

cam/
carma/
clubb/
...

aer_rad_props.F90
aoa_tracers.F90
boundarydata.F90
...
micro_mg2_0.F90
micro_mg_cam.F90
...

zm_conv_intr.F90
(122 files)

Example from :

eul/
fv/
se/

trunc.F90
stepon.F90
spmd_dyn.F90
restart_dynamics.F90
...

mpas/

mpas_atm_core.f90
mpas_atm_core_interface.f90
mpas_atm_time_integration.f90
...
xml_stream_parser.c

external/

Fluid dynamics (AKA
dynamical core)
Different schemes available

- Unresolved fluid dynamics
- Radiative transfer
- Molecular scale processes
(e.g., cloud particle growth)
- Chemistry

Different schemes often available for each process
Each scheme developed by different groups from labs and universities, including students

Test cases in the previous NERSC Exascale Science
Application Program (NESAP) for optimization for KNL

(Barns et al., 2016)

Large community model code
with many options

Not easy to optimize the code for a given (new) architecture
(exceptions emerging: e.g., DOE E3SM/SCREAM model)

7

Timescale & chaos of global atmosphere/climate
system

Holbrook et al., 2019

Stevens et al. 2019

∆x~ 4km
T ~ 3 months
ensemble # = 1

∆x~ 100km
T ~ 100 years
ensemble # = 40-100

∆x~ 200km
T ~ 2000 years
ensemble # = 1-5

8

My experience on NERSC to run climate
simulations: How long it takes?

Example: experimental climate model code (CESM2 beta05)

∆x = 25 km

∆x = 100 km

of horizontal grid columns = 137,218
of vertical levels = 32
of grid boxes = 4,390,976 (moderate grid resolution)

1 simulation month / ~3 hr realtime using 40 nodes (2560 MPI ranks) on KNL
(1 simulation month / 1.5 hr realtime using 40 nodes (960 MPI ranks) on Edison)

Typically submit a job for ~ 8 hours on KNL for two months simulation

Simulation periods: 1989-2010 and 2079-2100 -> 44 years

-> 44 years = 528 months -> 264 jobs

Each job depends on the previous job, which wrote a “restart” file at the end

If no queue waiting -> 264 jobs * 6 core hours = 1584 hrs = 66 days
What is the expected queue time?

No support for openMP; use only MPI

9

NERSC Best Practices are our best friends

I adopted the following best practices (https://docs.nersc.gov/jobs/best-practices/)

- Set an appropriate Lustre file striping
For a high-resolution simulation (230,000,000 grid points), reduced the time spent on writing
a restart-file (230GB) from ~ 2 hours (default striping) to ~ 15 minutes

https://docs.nersc.gov/performance/io/lustre/

- Burst Buffer -> yet to try (already got advice from Steve Leak on where to put relevant commands
in the (complex) CESM job management code)

- For large jobs, use --bcast option (copy model executable to the compute-node local path before
starting srun

- Prepare environment when submitting a job (CESM’s job management code does this automatically)

- For small jobs, use the same switch (--switches option)

- Core specialization (#SBATCH -S 4; leave 4 cores on a KNL node for system overhead)

- Most of the input/output files on the scratch (fastest I/O with compute nodes)

10

2020 average regular queue wait time on KNL

Many thanks to Steve Leak for helping me to retrieve the necessary data from MyNERSC!

40 nodes for 8 hours ~ 12 hours queue time

with queue waiting:
264 jobs*(6 core hrs + 12 queue
hours) = 4752 hrs = 198 days

+
manual work: configuration,
tests, post-process, etc

system down time

-> ~ 1 year

+

Cannot simply take the best
throughput # MPI ranks; need
to consider queue wait time
for a given number of nodes

11

2020 average regular queue wait time on Haswell

40 nodes for 8 hours ~ 30 hours queue time

12

Science pushes toward higher resolutions: how
does simulation costs increase

Higher-resolutions -> more grid boxes (problem
size increases)
-> Weak scaling problem

Simulation cost (NERSC hrs) vs. # of MPI ranks
(top) and # of grid columns (bottom)

For the current NERSC Charge policy, only the
code with a perfect strong scaling (x2 MPI
ranks, 1/2 run time for the same problem size)
will keep the cost same regardless of nodes
used (orange line in the top panel)

My simulations using a range of grid resolutions
are not perfect weak scaling as expected (top:
green line, bottom: orange line), and they
become less and less optimal with higher
resolutions (also as expected)

13

Challenges and my thoughts

In general, queues for <= 3 hours are less crowded regardless of requested # of nodes (on KNL)
For climate simulations, one month is a convenient time scale (for statistics); less than a month
typically requires saving an additional (large) file to keep statistics of many variables at the end of
each job

Current model code has optimal numbers of MPI ranks (I/O and
communication/halo cells); increasing just MPI # to fit the job to be
within 3 hours is difficult

Heinzeller et al., 2016, Geosci. Mod. Dev.

Large community model code cannot be optimized for a given
system by an individual science project

Experimental/cutting edge models start to support GPU offloading
(MPAS -> OpenACC, SCREAM-> Kokkos)

On-line calculation of summary statistics/dimension reduction
by off-loading to GPU?

Many model processes are memory-bound
Users need more HPC knowledge to run simulations

MPI + threading necessary?

