N10 process and plans

Nick Wright NERSC Chief Architect Advanced Technologies Group Lead

Oct 14 2022

NERSC has a dual mission to advance science and the state-of-the-art in supercomputing

- We collaborate with computer companies years before a system's delivery to deploy advanced systems with new capabilities at large scale
- We provide a highly customized software and programming environment for science applications
- We are tightly coupled with the workflows of DOE's experimental and observational facilities – ingesting tens of terabytes of data each day
- Our staff provide advanced application and system performance expertise to users

BERKELEY LAB

Office of

Perlmutter: A System Optimized for Science

- GPU-accelerated and CPU-only nodes meet the needs of large scale simulation and data analysis from experimental facilities
- Cray "Slingshot" High-performance, scalable, low-latency Ethernetcompatible network
- Single-tier All-Flash Lustre based HPC file system, >6x Cori's bandwidth
- Dedicated login and high memory nodes to support complex workflows

BERKELEY LAB

Office of

NERSC Systems Roadmap

BERKELEY LAB

Office of

NERSC's approach to strategic planning

Office of

Innovations like domain-specific hardware, enhanced security, open instruction sets, and agile chip development will lead the way.

BY JOHN L. HENNESSY AND DAVID A. PATTERSON

A New Golden Age for Computer Architecture

Extreme Heterogeneity 2018

PRODUCTIVE COMPUTATIONAL SCIENCE IN THE ERA OF EXTREME HETEROGENEITY

End of Moore's Law?

EETimes DESIGNLINES ~ EDUCATION PERSPECTIVES NUMBER OF A DAMAGE OF BRIDE OF TSMC Aims to Build World's First 3-nm Fab ANANDTECH ANOUT SMARTPHONES & TABLETS . SYSTEMS ENTERPH SMC1 will build the world's first 3-nm fab he company does the bulk of its 8008 Home > Semiconductors Samsung Announces 3nm GAA MBCFET PDK, 26 Version 0.1 ANANDTECH by Ian Cutress on May 14, 2008 8:00 PM EET ABOUT **MARTPHONES & TABLETS** Home > Citile Intel Details Manufacturing through 2023: 7nm, 237 7+, 7++, with Next Gen Packaging FINFET Planar FET + Add A toy Ian Outress & Anton Shiloy on May 8, 2010 4.35 PM 021

BERKELEY LAB

U.S. DEPARTMENT OF

Office of

TECH

Intel says Moore's Law is still alive and well. Nvidia says it's ended.

PUBLISHED TUE, SEP 27 2022-3:26 PM EDT

©KIFLESWING

WATCH LIVE

KEY POINTS

- Intel CEO Pat Gelsinger said on Tuesday at a company launch event that Moore's Law is "alive and well."
- Nvidia CEO Jensen Huang said last week Moore's Law has ended.
- Intel has committed to continue manufacturing some of its chips, while Nvidia relies entirely on third-party foundries for its production.

BERKELEY LAB

U.S. DEPARTMENT OF

Office of

	Supership			Introduction Sun	erchin Paf				
Cloud & Data	Solutions	Products	Data Center GPUs	s Software	Technolog	AMD CDNA 2 AMD CDNA 3	 New Math Formats 		
NVIDIA , Product:	s Solutions Ind	ustries For You		Shop Drivers	Support		 4th Gen Infinity Architecture Unified Memory APU Architecture 		
							 Snm Process and 3D Chiplet Packaging Next-Gen AMD Infinity Cache^{**} 	GPU	сри
Cou	plec	I CP	U-G	iPU		Al Performance/Watt Uplift	Expected performance-per-watt uplift through:		
Mor	e Tig	ghtly	/			CDNA 3	CONTINUES		

NVIDIA Grace Hopper Superchip

The breakthrough accelerated CPU for giant-scale AI and HPC applications.

Technology Trends Summary

- No more increases in clock speed for CPUs & GPUs
 - More & more cores
- Increases in performance will primarily be obtained through power increases
 - At the socket & the system level
- Tighter & Tighter CPU-GPU integration
 - Grace-Hopper from NVIDIA
 - MI-300 from AMD
- Flash Storage will continue to increase in capacity and eat into HDD space

What do we expect N10 to look like?

	Perlmutter	NERSC-10 Improvement	
Aggregate Performance	1	10x	
Peak Power	~6 MW	~3x	
CPU	64 cores	~2 x	
GPU	~20 TF	2-3 x	
Interconnect	25 GB/s/link	2 - 4x	
Number GPUs per node	4	1?	
Number of Nodes	1,536 GPU + 3,072 CPU	> 10x	
Storage	35 PB, >5 TB/s Lustre FS	> 5x Capacity spread over Lustre & reconfigurable storage	

BERKELEY LAB

Office of

What are the implications for NERSC users?

- Applications that don't use GPU's should try to !
- Applications that use GPUs on Perlmutter will run on N10 with little to no modifications
- Will need to express more parallelism
 - ~2x per CPU
 - ~2-4x per GPU
 - Will need (at least) 4x more MPI ranks to use the same fraction of the machine
- If you can consider modifying your application/algorithm to exploit lower precision

NERSC-10 Architecture: Designed to support complex simulation and data analysis workflows at high performance

NERSC-10 will provide on-demand, dynamically composable, and resilient workflows across heterogeneous elements within NERSC and extending to the edge of experimental facilities and other user endpoints

Complexity and heterogeneity managed using complementary technologies

- **Programmable infrastructure**: avoid downfalls of one-size-fits-all, monolithic architecture
- Al and automation: sensible selection of default behaviours to reduce complexity for users

Reconfigurable storage tailors performance to each workflow's characteristics and needs

NERSC-10 will be programmable to optimize for each workflow

- 1. User requests hardware resources, connections between them, and data placement
- 2. System schedules CPU, accelerators, storage, networking, and data movement
- 3. Same resources are later reconfigured to adapt to new requirements

NERSC-10 will achieve this by embracing technology trends

- Disaggregated, software-defined infrastructure to connect heterogeneous components
- Al and automation to manage
 - o complexity of scheduling and operations
 - o data movement between reconfigurations
 - o complexity for users sensible defaults

Pools of nodes and bandwidth can be reconfigured to support different SC workflows

<u>Software-defined networking</u> redirects bandwidth to paths that need it

<u>Microservices</u> allow services that utilize bandwidth to scale up/down

One hardware pool configurable to...

- DTNs file transfer from external facilities
- Routers stream data directly to compute
- Movers file transfer between storage tiers
- Metaschedulers dispatch units of work to compute

.S. DEPARTMENT OF

ENERG

Office of

Flexible and dynamic scheduling of compute, storage and bandwidth enables a workflow to reserve various resources at different times.

Summary

- NERSC-10 will be 10x the performance of Perlmutter
- GPU-enabled applications should have minimal issues in porting/running their applications
- Currently NERSC is planning to release the NERSC-10 RFP in CY-23 for delivery in 2026
- If you are not running on GPUs yet let us know why !
- We are always interested in hearing from users !
 - Fill out the user survey !! What can we do better?

Questions ?

